
Citation: Wang, Y.; Li, M.; Lou, J.;

Xun, X.; Chang, L.; Wang, Y.; Zhang,

Q.; Lu, L.; Wang, H.; Hu, J.; et al.

Transcriptome and Network

Analyses Reveal the Gene Set

Involved in PST Accumulation and

Responses to Toxic Alexandrium

minutum Exposure in the Gills of

Chlamys farreri. Int. J. Mol. Sci. 2022,

23, 7912. https://doi.org/

10.3390/ijms23147912

Academic Editor: Alfredo

Ciccodicola

Received: 27 June 2022

Accepted: 15 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Transcriptome and Network Analyses Reveal the Gene Set
Involved in PST Accumulation and Responses to Toxic
Alexandrium minutum Exposure in the Gills of Chlamys farreri
Yujue Wang 1,† , Moli Li 1,†, Jiarun Lou 1, Xiaogang Xun 1, Lirong Chang 1, Yangrui Wang 1, Quanqi Zhang 1,2,3,
Longfei Lu 4, Huizhen Wang 1,2,*, Jingjie Hu 1,3, Zhenmin Bao 1,2,3 and Xiaoli Hu 1,2,*

1 MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences,
Ocean University of China, Qingdao 266003, China; wangyujue1236@126.com (Y.W.);
lml940520@163.com (M.L.); ljr9481@163.com (J.L.); xxgsemail@126.com (X.X.); changlr@163.com (L.C.);
wangyangrui@stu.ouc.edu.cn (Y.W.); qzhang@ouc.edu.cn (Q.Z.); hujingjie@ouc.edu.cn (J.H.);
zmbao@ouc.edu.cn (Z.B.)

2 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, China

3 Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering,
Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China

4 Weihai Changqing Ocean Science and Technology Co., Ltd., Weihai 264300, China; lulongfei567@163.com
* Correspondence: wanghuizhen@ouc.edu.com (H.W.); hxl707@ouc.edu.cn (X.H.);

Tel.: +86-0532-82031970 (X.H.)
† These authors contributed equally to this work.

Abstract: Bivalve molluscs are filter-feeding organisms that can accumulate paralytic shellfish toxins
(PST) through ingesting toxic marine dinoflagellates. While the effects of PST accumulation upon the
physiology of bivalves have been documented, the underlying molecular mechanism remains poorly
understood. In this study, transcriptomic analysis was performed in the gills of Zhikong scallop
(Chlamys farreri) after 1, 3, 5, 10, and 15 day(s) exposure of PST-producing dinoflagellate Alexandrium
minutum. Higher numbers of differentially expressed genes (DEGs) were detected at day 1 (1538)
and day 15 (989) than that at day 3 (77), day 5 (82), and day 10 (80) after exposure, and most of
the DEGs were only regulated at day 1 or day 15, highlighting different response mechanisms of
scallop to PST-producing dinoflagellate at different stages of exposure. Functional enrichment results
suggested that PST exposure induced the alterations of nervous system development processes and
the activation of xenobiotic metabolism and substance transport processes at the acute and chronic
stages of exposure, respectively, while the immune functions were inhibited by PST and might
ultimately cause the activation of apoptosis. Furthermore, a weighted gene co-expression network
was constructed, and ten responsive modules for toxic algae exposure were identified, among which
the yellow module was found to be significantly correlated with PST content. Most of the hub genes
in the yellow module were annotated as solute carriers (SLCs) with eight being OCTN1s, implying
their dominant roles in regulating PST accumulation in scallop gills. Overall, our results reveal the
gene set responding to and involved in PST accumulation in scallop gills, which will deepen our
understanding of the molecular mechanism of bivalve resistance to PST.

Keywords: paralytic shellfish toxins; Zhikong scallop; gills; weighted gene co-expression network; OCTN1s

1. Introduction

Bivalve molluscs are filter-feeding organisms mainly consuming microalgae and
can accumulate and concentrate various toxins during harmful algal blooms (HABs).
Paralytic shellfish toxins (PST) produced by marine dinoflagellates, such as Alexandrium
spp. and Gymnodinium spp., are the most widespread and among the most potent shellfish
contaminating biotoxins [1]. PST are a group of neurotoxic alkaloids including saxitoxin
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(STX) and its naturally occurring analogues, which can block the conduction of nerve
impulses by targeting voltage-gated sodium channels (Nav), resulting in neuromuscular
paralysis and metabolic stress in vertebrates [2,3]. Unlike humans and other mammals,
bivalves possess toxin-resistant amino acids in Nav protein, thus they are able to tolerate
high concentrations of PST [2,4]. In addition, gene family analysis indicated that the
genes related to detoxification, antioxidation, and immune stress, such as glutathione
S-transferase (GST) [5], ATP-binding cassette transporter (ABC) [6], superoxide dismutase
(SOD) [7], glutathione peroxidase (GPx) [8], and 70-kDa heat shock protein (HSP70) [9],
were significantly altered in expression after exposure to PST-producing Alexandrium,
implying the involvement of various biological processes in PST resistance.

By far, most of the studies on the molecular responses of bivalves to toxic algae focused
on the main PST loading organ, digestive gland [10,11]. Previous works have determined
that the accumulation and distribution of PST in bivalves is tissue/organ-specific [4]. The
gills of bivalves, which possess a huge surface area and are involved in respiration and
ciliary suspension feeding, could also accumulate a large amount of PST [12,13]. PST-
producing dinoflagellate exposure could affect the physiological and cellular processes of
gills in bivalves, such as higher mucus production, melanisation, hemocyte infiltration,
DNA damage, and oxidative stress [10,14–16]. However, the molecular mechanisms of
PST accumulation in bivalve gills and their transcriptional response to PST (or the PST-
producing species) during exposure are poorly studied.

Scallops represent an economically important species for marine farming and are
consumed worldwide. They are often used as a model species in various toxicology studies
due to their filter-feeding habits and their rapid accumulation of toxins. During HABs,
scallops could accumulate PST with higher concentrations and longer retention times
compared with many other bivalve species, resulting in substantial economic losses in
aquaculture and grave public health consequences [17]. In the present study, through
transcriptomic analysis, the overall and dynamic molecular responses of Zhikong scallop
(Chlamys farreri) gills to PST-producing dinoflagellate A. minutum exposure were revealed,
and the key module and candidate gene set involved in PST accumulation was further
identified by weighted gene co-expression network analysis (WGCNA). Our study repre-
sents the first comprehensive transcriptomic study on PST accumulation and responses in
the gills of bivalves.

2. Results and Discussion
2.1. Low Similarity in Differentially Expressed Genes (DEGs) among Different Stages of
A. minutum Exposure

In the current study, we analyzed the overall transcriptional changes in the gills of
C. farreri exposed to A. minutum at five time points to identify the possible genes involved
in PST response in this organ. A total of 1538, 77, 82, 80, and 989 DEGs (|log2FC(Fold
Change)| > 1 and p < 0.05) were identified after 1, 3, 5, 10, and 15 day(s) exposure to
A. minutum, respectively, when compared to the unexposed control (Figure 1a; Table S1).
The number of DEGs at day 1 was the largest, with 1006 up-regulated genes and 532 down-
regulated genes, followed by day 15, with 609 up-regulated and 380 down-regulated genes.
At day 3, 5, and 10, the number of up-regulated genes was only 43, 20, and 35, respectively,
and that of the down-regulated genes was 34, 62, and 45, respectively.
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Figure 1. Differentially expressed genes (DEGs) in gills of Chlamys farreri after exposure to toxic
Alexandrium minutum. (a) Comparison of the numbers of up- and down-regulated DEGs at each
time point post-exposure. (b) Venn diagram of DEGs at different time points compared to the
control group. Most up- and down-regulated DEGs were induced at 1 or 15 day(s) after exposure.
(c,d) The heatmaps represented the expression patterns of up- and down-regulated DEGs specifically
expressed at day 1 (day 1-specific), day 15 (day 15-specific), and co-expressed in both time points
(both at day 1 and day 15), and the top 10 Gene Ontology (GO) terms in the biological process
category of these genes.

We previously detected PST profiles and concentrations in gills at each time point
and found that gills were characterized by the domination of GTX2/3 and GTX1/4, which
closely resembled that of the toxic algae fed to scallops [6], and also contained a small
amount of the transformed types STX and NEO, which may be absorbed from the kidney,
the main organ for PST transformation (Figure S1) [4]. The content of PST increased
slightly during the first five days, then increased sharply and reached a peak at 15 days
after exposure (Figure S1a) [4]. We observed the highest number of DEGs showing acute
responses to toxic algae exposure at day 1. It has been reported that marine algal toxins
cause more severe genotoxic and cytotoxic effects in bivalve cells at short exposition
times [18]. The expression changes of a large number of DEGs might be caused by the
toxic effects produced by acute exposure of toxic algae. From day 3 to day 10 of exposure,
it is speculated to be a recovery period of scallop with a small number of genes being
significantly altered in expression. After that, the strong response of gene expression
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was observed again at day 15 post-exposure, which was potentially related to the high
accumulation of PST in scallop gills at this time point (Figure S1a), thus destroying the
balance of gene expression. Further Venn analysis showed that most of the DEGs at day
1 and day 15 were time point-specific, that is, 870 (86.5%) up-regulated DEGs from day 1
were specifically induced just at day 1, and 459 (75.4%) DEGs from day 15 were specifically
up-regulated just at day 15, while 412 (77.4%) and 237 (62.4%) DEGs were specifically
down-regulated at day 1 and day 15 of exposure, respectively (Figure 1b). Only 113 up-
regulated and 73 down-regulated DEGs were altered at both time points. These results
indicate different response mechanisms in the gills of scallops to acute and chronic exposure
to PST-producing algae. For the other three time points, the specifically up-regulated or
down-regulated DEGs were no more than 50%. No DEG was significantly induced or
inhibited at all five time points (Figure 1b).

2.2. Biological Processes of the Acute and Chronic Stages of Exposure

We further explored the function of up- and down-regulated DEGs through Gene
Ontology (GO) enrichment analysis. The significantly enriched GO terms were only found
at day 1 and day 15 post-exposure, and no enriched GO term was detected from the DEGs
at day 3, 5, and 10 (Table S2).

As shown in Figure 1c, the up-regulated DEGs specifically identified at day 1 were
mainly significantly enriched in the processes of nervous system development (e.g., neu-
rogenesis, neuron development, and nervous system development). Previous studies
have shown that the activity of STX at voltage-gated ion channels could have implications
for neurodevelopment in vertebrates, such as inhibiting the normal outgrowth of neu-
rite and inducing the alterations in neurogenesis [19,20]. Unlike the results in mammals,
our data showed several genes function as the positive regulator of neurite outgrowth
and neurogenesis, such as arylsulfatase B (ARSB) [21], neural-cadherin (NCad) [22], and
serine/threonine-protein kinase (unc-51) [23], were up-regulated at day 1 after exposure,
which may represent an acute response mechanism of scallop to protect the nervous system
in gills from PST attack. By comparison, the up-regulated DEGs specifically detected at
day 15 were mainly involved in the metabolic processes (e.g., drug metabolic process,
oxoacid metabolic process, and antibiotic metabolic process) and substance transport pro-
cesses (e.g., ion transport and cofactor transport) (Figure 1c). The DEGs involved in the
metabolic process included the members of cytochrome P450 (CYP450s), ATP-binding
transporter cassettes (ABCs), and sulfotransferases (SULTs), as well as the genes encoding
oxidoreductases, such as peroxisomal sarcosine oxidase (PIPOX), aldehyde dehydrogenase
(ALDH2), and sepiapterin reductase (SPR). CYP450s, ABCs, and SULTs are crucial mem-
bers of detoxification [24], and the up-regulation of these genes after toxic algae exposure
suggests the activation of inducible xenobiotic metabolism to detoxify PST in scallop gills.
The DEGs involved in transport processes mainly belonged to solute carriers (SLCs), the
transporter proteins that primarily mediate the absorption of small molecules into cells [25].
A large number of SLC genes were up-regulated at day 15, at which time point scallop
also contained the highest PST, implying their possible involvement in PST transport or
absorption. Besides, the up-regulated DEGs related to lipid metabolic-related processes
(e.g., cellular lipid metabolic process and lipid catabolic process) were induced at both time
points (Figure 1c), including peroxisomal acyl-coenzyme A oxidase 1 (ACOX1), peroxiso-
mal 2,4-dienoyl-CoA reductase (DECR2), and peroxisomal multifunctional enzyme type
2 (HSD17B4). Garcia et al. reported that exposure to marine biotoxins can cause oxidative
stress, and lead to the accumulation of reactive oxygen species (ROS), thus causing damage
to lipids [26]. The expression changes of lipid metabolism-related genes in scallop gills may
be related to oxidative stress caused by PST exposure.

On the other hand, the down-regulated DEGs specifically identified at day 1 were
significantly enriched in immunological processes (e.g., response to molecule of bacterial
origin, regulation of immune response, and regulation of response to biotic stimulus),
while the DEGs exclusively found at day 15 were mainly enriched in the processes of
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apoptosis (e.g., regulation of cell death and apoptotic process) and immune responses
(e.g., positive regulation of immune system process, regulation of immune response, and
positive regulation of response to stimulus). The down-regulated DEGs shared at both
time points were enriched in immune responses, including response to other organism and
cellular response to organic substance (Figure 1d). The immune system of marine bivalves
is sensitive to algal toxins. Chi et al. found that exposure to domoic acid impaired immune
functions in the bay scallop [27]. Abi-Khalil et al. reported that exposure to PST-producing
dinoflagellates significantly increased the susceptibility of oysters to pathogenic vibrio [28].
The down-regulation of immune-related pathways at both acute and chronic stages of
exposure in scallop indicates PST may cause a negative impact on immune functions.
Besides, our data also showed a down-regulation of genes related to apoptosis at day
15, including the genes encoding baculoviral IAP repeat-containing proteins (BIRCs) and
caspases (CASPs). BIRCs are important negative regulators of apoptosis [29], thus the
inhibition expression of BIRCs after toxic algae exposure may eventually activate apoptosis
in scallop. Given that apoptosis is a mechanism to remove unwanted or damaged cells, the
activation of this process seems to represent a protective mechanism for scallop to cope
with damaged cells caused by PST accumulation.

2.3. Yellow Module of Gene Network Is Associated with PST Accumulation

A gene co-expression network was constructed from 18 transcriptome datasets to
screen the toxin responsive modules. A total of 30 distinct modules were obtained from the
expression data of 24,928 genes using a dynamic tree cutting algorithm, with module sizes
ranging from 34 to 4773 (Figure 2a). Ten modules were identified as responsive modules,
including five up-regulated and five down-regulated modules. Among them, MEblack,
MEblue, MEred, MElightcyan, and MEyellow significantly enriched the up-regulated DEGs
identified at day 1, 1, 3, 5, and 15 post-exposure, respectively. For down-regulated DEGs,
MEskyblue, MEcyan, MEmidnightblue, MEtan, and MEgrey60 enriched the DEGs of 1 (day
1), 4 (day 3, 5, 10, 15), 1 (day 5), 3 (day 5, 10, 15), and 3 (day 5, 10, 15) time points of exposure,
respectively (Figure 2b; Table S3). These responsive modules were found to be involved
in diverse molecular functions, with up-regulated responsive modules mainly associated
with transporter activity (e.g., secondary active transmembrane transporter activity) and
various enzyme activity (e.g., disulfide oxidoreductase activity, hydro-lyase activity, and
transferase activity), whereas down-regulated responsive modules primarily participated
in channel activity, ubiquitin-protein transferase activity, and actin binding (Figure 2a).

Figure 2. (a) Gene co-expression network in gills after exposure to A. minutum. For network visu-
alization, each module is represented by a different color. Representative significant GO terms are
shown for each responsive module. (b) The boxplot of DEGs for ten responsive modules based on
the fold change of their expression levels.
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As mentioned above, gills mostly accumulated the incoming toxins GTX1/4 and
GTX2/3 from dinoflagellates, as well as a small amount of the transformed types STX,
and the content of these toxins varied with the extension of exposure time (Figure S1a).
To clarify the mechanism of toxin accumulation in scallop gills, we then analyzed the
correlation between the expression patterns of each responsive module and PST contents.
The hierarchical clustering indicated that the yellow module was significantly positively
correlated with the content of PST, including STX (r = 0.95, p = 9e − 10) and GTX2/3
(r = 0.49, p = 0.04). The concentration of GTX1/4 also showed a positive correlation with the
yellow module with the p value close to the significant level (r = 0.42, p = 0.08) (Figure 3a).
These toxins were all associated with the yellow module, indicating that this module may
be involved in the regulation of PST accumulation.

Figure 3. (a) Heatmap of module-trait relationships depicting correlations between module eigen-
genes and PST contents. Numbers in the table correspond to the correlation r and the p value in
brackets. The degree of correlation is illustrated with the color legend. (b) Network visualization of
hub genes in the yellow module (top 5% highest connectivity). Hub genes are connected by an edge
if the topological overlap between them is more than 0.50. Each node represents a hub gene, which is
labeled with gene name. Red nodes represent hub genes in SLC family, in which SLC22s are shown
in dark red. The genes related to the oxidation-reduction process are marked with green asterisks.

2.4. SLC Members Dominate the Hub Genes of the Yellow Module

As highly connected hub genes in a module play important roles in biological pro-
cesses, hub gene analysis of the yellow module was conducted. A total of 38 annotated hub
genes (top 5%) were identified in the yellow module (Figure 3b). Among them, 17 genes
were SLC genes from seven subfamilies, including SLC22 (8), SLC5 (2), SLC17 (2), SLC27 (2),
SLC6 (1), SLC23 (1), and SLC40 (1). The expression of all these genes was positively corre-
lated with the concentrations of STX (r = 0.9534~0.9579, p < 0.05), GTX2/3 (r = 0.4768~0.4902,
p < 0.05), and GTX1/4 (r = 0.4164~0.4344, p = 0.07~0.08) (Table S4). The largest number of
hub genes were from SLC22 subfamily. This subfamily comprises organic cation, zwitterion,
and anion transporters (OCTs, OCTNs, and OATs), which mediate the transport of a variety
of smaller and more hydrophilic substrates like various drugs and toxins [30]. Interestingly,
the hub genes in SLC22 subfamily were all annotated as SLC22A4 (OCTN1). In humans,
OCTN1 could transport various cations into the cell across the plasma membrane [31].
Given that PST are a group of complex guanidine-based alkaloids with a cationic effect,
our results indicate that the identified OCTN1s might function as the transporters for PST.
Besides, several other SLC hub genes, such as SLC5A6, SLC5A11, SLC6A5S, and SLC23A1,
came from the scallop-specifically expanded subfamilies, which belonged to the sodium-
dependent transporters participating in the absorption and distribution of xenobiotics
(SLC5) as well as neural signaling and homeostasis in scallops (SLC6 and SLC23) [32–35].
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Except for SLCs, the genes involved in the oxidation-reduction process, such as GPX, DCXR,
FABG, and GST, were also identified as hub genes, indicating these genes may play a crucial
role in protecting gill cells from oxidative stress caused by PST accumulation. Although
functionally diverse hub genes have been identified, the high number of hub genes belong
to SLC family, suggesting that SLCs, especially OCTN1s, might play a dominant role in
regulating PST accumulation in gills.

3. Materials and Methods
3.1. PST-Producing Dinoflagellate A. minutum Exposure

Scallops were challenged previously by PST-producing dinoflagellate, A. minutum
(AM-1 strain) [4]. Briefly, two-year-old adult C. farreri were collected and acclimated in
filtered and aerated seawater at 12.5 ± 0.5 ◦C for three weeks by feeding the non-toxic algae,
Isochrysis galbana. Then, scallop individuals were separated randomly into independent
tanks with aeration. Before the exposure, A. minutum strain was cultivated independently
and harvested at the late exponential growth phase [36,37]. Thereafter, 3 L of dinoflagellate
cells were fed to each scallop once a day with a concentration of 2500 cells/mL. After
feeding, scallops were sampled at 0 (control), 1 (acute exposure), 3, 5, 10, and 15 (chronic
exposure) day(s) after exposure with three individuals at each time point. The gills were
dissected, washed with sterile seawater, and immediately frozen at −80 ◦C.

3.2. Transcriptome Sequencing and DEGs Screening

Total RNA was isolated from the sampled gills following the protocol described
by Hu et al. [38]. RNA integrity was checked with agarose gel electrophoresis, and the
RNA concentration of each sample was measured using a Qubit RNA Assay Kit (Invitro-
gen). Eighteen RNA-seq libraries (three individuals for each time point) of the gills were
constructed using the NEB Next mRNA Library Prep Kit, following the manufacturer’s in-
structions. The prepared libraries were subjected to paired-end 125 bp (PE125) sequencing
on the Illumina HiSeq 2000 platform.

Raw reads were first cleaned by Trimmomatic and aligned on the genome of C. farreri
using STAR aligner with default parameters [39,40]. Gene expression levels in terms of
reads per kilobase of exon model per million mapped reads (RPKM) were calculated by
HTseq and custom Perl scripts [41]. Differential gene expression analysis of each time point
between the exposed and control groups was carried out using DESeq2 package, and genes
with |log2FC| > 1 and p < 0.05 were defined as significant DEGs [42]. Venn diagrams were
drawn to show the logical relations between the different sets of DEGs using the R package
VennDiagram (version 1.6.16) [43]. To be aware of the function of DEGs, GO enrichment
analysis was performed using TBtools [44]. Significantly enriched GO terms were defined
by a hypergeometric test and a threshold of p value of less than 0.05.

3.3. Gene Co-Expression Network Analysis

Gene co-expression networks were constructed by means of the R package WGCNA
using 18 transcriptomes from gills [45]. All the 24,928 genes expressed in gills were used
for network construction, with the following parameters: softPower = 3, minimum module
size = 30, and mergeCutHeight = 0.25. All gene modules corresponding to the branch
cut-off of the gene tree were labeled in different colors. The hubness of a gene in the module
was determined by intra-modular connectivity (Kwithin), and the top 5% of the genes
with the highest connectivity in the module were defined as hub genes. GO enrichment
analysis of each gene module was performed using TBtools. Cytoscape was used for the
visualization of gene co-expression networks [46].

3.4. Identification of Key Module for Toxin Accumulation

To identify the responsive modules, an over-representation analysis of DEGs between
toxin-exposed and control groups at each time point was performed for each module
by a hypergeometric test (p < 0.01). Then, we further identified the correlation between
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these responsive modules and toxin contents. The eigengenes were first calculated using
all genes in each responsive module, and then the eigengenes were associated with the
contents of several PST, including carbamoyl toxins (GTX1/4, GTX2/3, STX, and NEO)
and N-sulfocarbamoyl toxins C1/2. The only modules with p < 0.05 were considered as the
key modules for toxin accumulation.

4. Conclusions

This study demonstrated the molecular response and toxin accumulation mechanism
of scallop gills to PST exposure. Transcriptome analysis highlighted different response
mechanisms of scallop to PST at the acute and chronic stages of exposure. The results
suggested that PST exposure induced the alterations of nervous system development
processes and the activation of xenobiotic metabolism and substance transport processes at
the acute and chronic stages of exposure, respectively. PST also inhibited immune functions
and ultimately caused the activation of apoptosis. Further gene network analysis detected
a key module exhibiting significant correlations with the PST contents, the hub genes
of which were mainly from the SLC family, especially the members encoding OCTN1s,
indicating their dominant roles in regulating PST accumulation in gills. These findings
provide candidate genes and biological processes for further studies on the molecular
mechanisms of PST accumulation and responses in bivalves.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23147912/s1.
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