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Abstract

The RET tyrosine kinase signaling pathway is involved in the development of endocrine resis-

tant ER+ breast cancer. However, we know little about how ER+ cells activate RET signaling

and initiate an endocrine resistant phenotype. Here we show that both ER+ endocrine resis-

tant and sensitive breast cancers have a functional RET tyrosine kinase signaling pathway,

but that endocrine sensitive breast cancer cells lack RET ligands that are necessary to drive

endocrine resistance. Transcription of one RET ligand, GDNF, is necessary and sufficient to

confer resistance in the ER+ MCF-7 cell line. Endogenous GDNF produced by endocrine

resistant cells is translated, secreted into the media, and activates RET signaling in nearby

cells. In patients, RET ligand expression predicts responsiveness to endocrine therapies and

correlates with survival. Collectively, our findings show that ER+ tumor cells are “poised” for

RET mediated endocrine resistance, expressing all components of the RET signaling path-

way, but endocrine sensitive cells lack high expression of RET ligands that are necessary to

initiate the resistance phenotype.

Introduction

Estrogen receptor alpha (ERα) is the major driver of ~75% of all breast cancers. Current thera-

pies for patients ith ER+ breast cancer are largely aimed at blocking the ERα signaling pathway.

For example, tamoxifen blocks ERα function by competitively inhibiting E2/ERα interactions

[1] and fulvestrant promotes ubiquitin-mediated degradation of ERα [2]. Endocrine therapies

are estimated to have reduced breast cancer mortality by 25–30% [3]. However, despite the

widespread success of endocrine therapies, approximately 40–50% of breast cancer patients will

either present with endocrine-resistant breast cancer at the time of diagnosis or progress into

endocrine-resistant disease during the course of treatment [4]. Thus, there remains an urgent

need to further elucidate the mechanism of endocrine resistance.

Numerous studies have now identified growth factor-stimulated signaling “escape” path-

ways that may provide mechanisms for cell growth and survival that are independent of E2.

Foremost among these, the RET tyrosine kinase signaling pathway has been associated with
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endocrine resistance in both cell culture models as well as in primary tissues [5–8]. These stud-

ies have led to effective new biomarkers based on the downstream targets of RET signaling [6].

However, resistance by the RET signaling pathway has proven complex, relying in some cases

on a functional ERα to drive resistance in aromatase inhibitor models [6]. Furthermore, ge-

netic alterations in RET or its co-receptor, GFRA1, do not appear to be common in clinical

cases, suggesting that additional factors are involved. A better understanding of the transcrip-

tional targets of RET-mediated signaling pathways as well as understanding how these path-

ways crosstalk with ERα signaling will likely aid in the development of new predictive

biomarkers and new targets for therapeutic intervention.

Here, we used Precision Run-On and Sequencing (PRO-seq) to comprehensively map RNA

polymerase in tamoxifen-sensitive (TamS) and resistant (TamR) MCF-7 cells [9]. This approach

is highly sensitive to immediate and transient transcriptional responses to stimuli, allowing the

discovery of target genes within minutes of activation [10–14]. Moreover, active transcriptional

regulatory elements (TREs) can be detected by this method, including both promoters and dis-

tal enhancers, as these elements display distinctive patterns of transcription that can aid in their

identification [15–20]. Among the 527 genes and 1,452 TREs that differ in TamS and TamR

MCF-7 cells, we identified glial cell line-derived neurotrophic factor (GDNF), a ligand of RET

tyrosine kinase receptor, to be upregulated in TamR MCF-7 cells. Remarkably, we found that

all of the proteins necessary to drive endocrine resistance through RET receptor signaling are

expressed in TamS MCF-7 cells, with the exception of a single limiting protein, GDNF or any of

the other RET ligands (GDNF, NRTN, ARTN, or PSPN). To test this model, we manipulated

GDNF expression in MCF-7 cells and found that high GDNF expression is both necessary and

sufficient for tamoxifen resistance in our MCF-7 cell model. Several lines of evidence suggest

that RET ligands are the limiting reagent in clinical samples as well, including ample expression

of RET and its co-receptors, but limiting expression of GDNF and the other RET ligands in pri-

mary tumors. Additionally, RET ligand expression is predictive of responsiveness to endocrine

therapies in breast cancer patients. Taken together, our studies support a model in which tam-

oxifen sensitive and resistant cells are ‘poised’ for RET-mediated endocrine resistance by ex-

pressing RET and its co-receptor, but are limited by the abundance of RET ligands to drive a

resistant phenotype.

Results

Transcriptional differences between endocrine sensitive and resistant

MCF-7 cells

Although MCF-7 cells are ER+ and usually require E2 for growth and proliferation, a subset of

the heterogeneous MCF-7 cell population continues to grow in the presence of anti-estrogens

such as tamoxifen [9,21]. We hypothesized that the resistant cells display a unique transcrip-

tional program which can be used to identify factors that play a causative role in tamoxifen

resistance. We used PRO-seq to map the location and orientation of RNA polymerase in two

tamoxifen sensitive (TamS) and two de novo resistant (TamR) MCF-7 cell lines that were clon-

ally derived from parental MCF-7 cells [9]. Consistent with the Gonzalez-Malerva study, we

found that the TamS lines (TamS; B7TamS and C11TamS) were sensitive to as little as 1 nM of

tamoxifen, while the TamR lines (TamR; G11TamR and H9TamR) were not affected at concen-

trations as high as 100 nM (Fig 1A). PRO-seq libraries were prepared from all four cell lines

(Fig 1B), as previously described [22,23], and sequenced to a combined depth of 87 million

uniquely mapped reads (S1 Table). We quantified the similarity of transcription in the MCF-7

cell subclones by comparing the Pol II abundance in annotated gene bodies. Unbiased hierar-

chical clustering grouped B7TamS and C11TamS TamS lines into a cluster and left G11TamR and
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H9TamR TamR lines as more distantly related outgroups (Fig 1C). Although TamR cells clus-

tered independently, all four MCF-7 clones are nevertheless remarkably highly correlated

(Spearman’s Rho> 0.95), suggesting that relatively few transcriptional changes are necessary

to produce the tamoxifen resistance phenotype.

We identified 527 genes that are differentially transcribed between TamS and TamR MCF-

7 cells (1% FDR, DESeq2 [24]), 341 of which were transcribed more highly in TamS and 186

more highly in TamR cell lines (Fig 1D). Several of the differentially transcribed genes, includ-

ing, for example, PGR, GREB1, and GDNF, were identified in other models of endocrine resis-

tance [6,7,25–28], supporting our hypothesis that transcriptional changes in the MCF-7 model

are informative about endocrine resistance.

ER target genes are uniquely expressed in tamoxifen-sensitive MCF-7 cells

To confirm that transcriptional changes detected using PRO-seq lead to differences in mRNA

abundance, we validated transcriptional changes in PGR (Fig 2A) and GREB1 (Fig 2B) between

the B7TamS and G11TamR MCF-7 cells using qPCR (Fig 2C and 2D). Many of the differentially

transcribed genes are targets of ERα signaling, including PGR, GREB1, NOS1AP, and ELOVL2,

(Fig 1D) suggesting that changes between TamR and TamS MCF-7 cells can be explained in

Fig 1. PRO-seq provides a genome-wide location of active RNA polymerase. (a) Cell viability of tamoxifen sensitive (TamS; B7TamS and C11TamS) and resistant (TamR;

G11TamR and H9TamR) MCF-7 cells upon treatment with 0 (vehicle; EtOH), 10−11, 10−10, 10−9, 10−8, or 10−7 M of tamoxifen for 4 days. Data are represented as

mean ± SEM (n = 3). (b) Experimental setup for PRO-seq. PRO-seq libraries were prepared from all four cell lines grown in the absence of tamoxifen for 3 days. (c)

Spearman’s rank correlation of RNA polymerase abundance in the gene bodies (+1000 bp to the annotation end) of TamS and TamR cell lines. (d) MA plot showing

significantly changed genes (red) that are higher in TamS (top) or TamR (bottom) MCF-7 lines. Genes highlighted in the plots which are ERα targets are highlighted in

blue.

https://doi.org/10.1371/journal.pone.0194023.g001
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part by differences in the genomic actions of ERα. To test for an enrichment of ERα target

genes, we used an independent GRO-seq dataset [10] to investigate whether immediate tran-

scriptional changes following E2 treatment are correlated with genome-wide changes in TamS

and TamR MCF-7 cells. We found that genes up-regulated by 40 minutes of E2 treatment tend

to be transcribed more highly in TamS MCF-7 cells, and genes down-regulated by E2 are more

highly transcribed in TamR cell lines (Fig 2E). Thus, our data demonstrate global changes in

the genomic actions of ERα in tamoxifen resistance in this MCF-7 model system.

Distal enhancer activities correlate with tamoxifen resistance

To elucidate the mechanisms responsible for changes in gene transcription during the devel-

opment of tamoxifen resistance, we sought to discover the location of promoters and active

distal enhancers, collectively called transcriptional regulatory elements (TREs). Nascent tran-

scription is a sensitive way to identify groups of active enhancers [16–19], and results in en-

hancer predictions that are highly similar to the canonical active enhancer mark, acetylation of

histone 3 at lysine 27 (H3K27ac) [17,18,29]. We used our dREG software package [18] fol-

lowed by a peak refinement that identifies the regions between divergent paused RNA poly-

merase [30] to identify 39,753 TREs that were active in either the TamS or TamR MCF-7 lines.

TREs discovered using dREG were highly enriched for other active enhancer and promoter

marks in MCF-7 cells, especially H3K27ac (S1A Fig), as expected based on prior studies [16–

18,29]. As an example, we selected a transcribed enhancer downstream of the CCND1 gene for

Fig 2. ER target genes are uniquely expressed in TamS cells. (a-b) Transcription near the PGR (a) and GREB1 (b) loci in B7TamS and G11TamR cells. PRO-seq densities on

the sense and anti-sense strand are shown in red and blue, respectively. dREG scores are shown in green. Enhancers and promoters are shown in grey and light green

shading, respectively. Arrows indicate the direction of gene annotations. (c-d) PGR (c) and GREB1 (d) mRNA expression levels in B7TamS and G11TamR cells. Data are

represented as mean ± SEM (n = 3 for PGR; n = 4 for GREB1). ���� p< 0.0001. G11TamR is normalized to B7TamS. (e) Boxplots represent fold-change between TamS and

TamR of genes that are either up- or down-regulated following 40 minutes of estrogen (E2) in Hah et. al. (2011). Spearman’s Rho = 0.185, p< 2.2e-16. (f) Motifs enriched

in TREs that have different amounts of RNA polymerase between TamS and TamR cells compared with TREs that have consistent levels.

https://doi.org/10.1371/journal.pone.0194023.g002
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experimental validation using luciferase reporter gene assays, and confirmed luciferase activity

in both B7TamS and G11TamR MCF-7 cells (S1B and S1C Fig).

We used the abundance of RNA polymerase recruited to each TRE as a proxy for its tran-

scriptional activity in each MCF-7 subclone to identify differences in 1,452 TREs (812 increased

and 640 decreased) (1% FDR, DESeq2) between TamS and TamR MCF-7 cells. Differentially

transcribed TREs were frequently located near differentially expressed genes and undergo cor-

related transcriptional changes between the four MCF-7 subclones. GREB1 and PGR, for exam-

ple, are each located near several TREs, including both promoters (green) and enhancers (gray),

which undergo changes between TamR and TamS MCF-7 cells that are similar in direction and

magnitude to those of the primary transcription unit which encodes the mRNA (Fig 2A and

2B). These results are consistent with a broad correlation between changes at distal TREs and

protein coding promoters [10,16].

We hypothesized that differential transcription at TREs reflects differences in the binding of

specific transcription factors that coordinate changes between TamS and TamR lines. We identi-

fied 12 clusters of motifs enriched in TREs that are differentially active in the TamS and TamR

lines (Bonferroni corrected p< 0.05; RTFBSDB [31]). The top scoring motif in this analysis corre-

sponds to an estrogen response element (ERE), the canonical DNA binding sequence that recruits

ERα to estrogen responsive enhancers (Fig 2F). At least two of the top scoring motifs, those that

were putatively bound by NFIA and HOX-family transcription factors (HOXC13 shown), bind a

transcription factor that was itself differentially expressed in TamS and TamR MCF-7 cells (Fig

2F), consistent with our expectation that transcriptional changes of a transcription factor elicit

secondary effects on the activity of TREs, and downstream effects on gene transcription.

ERα signaling remains functional in endocrine-resistant lines

GREB1 and PGR play a critical role in ERα genomic activity in breast cancer cells [27,32]. Our

observation that transcription of these ERα co-factors was lost in the resistant lines (Fig 2A,

2B, 2C and 2D) suggests that ERα signaling may be defective in the TamR cell lines. Consistent

with this expectation, several analyses (i.e., the enrichment of ERα target genes and EREs, Fig

1G and 1H) implicate global changes in the genomic actions of ERα during the development

of tamoxifen resistance. However, these analyses are correlative and do not directly test the

immediate responses to E2 in TamR and TamS lines.

To directly test the hypothesis that the genomic actions of ERα are substantially altered in

the TamR lines, we treated B7TamS and G11TamR MCF-7 cells for 40 minutes with either E2 or

tamoxifen, and monitored transcriptional changes using PRO-seq. RNA polymerase abundance

increased sharply at ERα ChIP-seq peaks [33] in B7TamS MCF-7 cells (Fig 3A top) in response

to E2, but not in response to tamoxifen, in agreement with our prior work [11,16]. Although we

observed a muted effect of E2 on enhancers in G11TamR compared with B7TamS, increases in Pol

II loading were observed in response to E2, but not tamoxifen (Fig 3A bottom). These results

demonstrate that E2 signaling pathway remains functional and able to affect gene transcription

in a stimulus-dependent manner in TamR cells. We attribute the muted response in G11TamR to

a 2.44-fold reduction in the abundance of ERα mRNA in G11TamR MCF-7 cells compared to

the B7TamS MCF-7 cells (Fig 3B). This muted effect explains the enrichment in E2 target genes,

as well as the ERE motif enrichment, between TamS and TamR lines shown in Figs 1 and 2.

Nevertheless, the genomic actions of E2-liganded ERα remain functional in TamR MCF-7 cells.

Given that E2 signaling remains functional, but muted in the TamR line, we next tested

whether ERα was required for the growth of our tamoxifen-resistant cells. We found that the

viability of both G11TamR and H9TamR MCF-7 cells was unaffected by treatment with the ER

degrader, fulvestrant (Fig 3C). Therefore, endocrine resistance in G11TamR and H9TamR MCF-7
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cells appears to occur independently of ERα signaling, suggesting that these TamR lines are

likely using an alternative pathway for cell survival and proliferation when grown in the pres-

ence of tamoxifen.

GDNF is necessary and sufficient to confer endocrine resistance in MCF-7

cells

We next investigated pathways by which TamR lines may promote cell survival in the presence

of endocrine therapies. Tyrosine kinase growth factor signaling pathways have been implicated

Fig 3. Tamoxifen resistant lines have functional ERα signaling. (a) Heatmap of changes in RNA polymerase abundance following 40 minutes of E2

or tamoxifen treatment near ERα bindings sites in B7TamS and G11TamR cells. (b) ESR1 mRNA expression levels in B7TamS and G11TamR cells. Data are

represented as mean ± SEM (n = 3). ���� p< 0.0001. (c) Cell viability of TamS and TamR cells upon treatment with 0 (vehicle; DMSO), 10−11, 10−10,

10−9, 10−8, or 10−7 M fulvestrant (ER degrader) for 4 days. Data are represented as mean ± SEM (n = 3).

https://doi.org/10.1371/journal.pone.0194023.g003
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in preclinical models of endocrine resistance [5,7,34]. RET is a cell surface receptor that elicits

cell survival signals when bound by one of four RET ligands, GDNF, NRTN, ARTN, and PSPN

[35]. One of these ligands, glial cell line-derived neurotrophic factor (GDNF), was among the

most highly up-regulated genes in both G11TamR and H9TamR MCF-7 lines (Fig 4A). We con-

firmed the transcriptional differences in GDNF between B7TamS and G11TamR MCF-7 cells

using qPCR and found that GDNF mRNA levels were increased by ~25 fold in the resistant line

(Fig 4B). We asked whether GDNF mRNA is translated into protein and secreted into the

Fig 4. GDNF is responsible for tamoxifen resistance in MCF-7 cells. (a) Transcription near the GDNF locus in B7TamS and G11TamR cells. PRO-seq densities on sense

strand and anti-sense strand are shown in red and blue, respectively. dREG scores are shown in green. The region near the GDNF promoter is shown in light green

shading. Arrow indicates the direction of gene annotations. (b) GDNF mRNA expression levels in B7TamS and G11TamR cells. Data are represented as mean ± SEM (n = 3).
�� p< 0.005. (c) Secreted GDNF levels in B7TamS and G11TamR cells. Data are represented as mean ± SEM (n = 2). � p< 0.05. (d) Cell viability of B7TamS cells in the

presence or absence of 10 ng/ml GDNF and/or 100 mM tamoxifen for 4 days. Data are represented as mean ± SEM (n = 3). � p< 0.05, ��� p< 0.0005. (e) GDNF mRNA

expression levels in G11TamR scrambled (SCR) and G11TamR GDNF knockdown (GDNF-KD) cells. Data are represented as mean ± SEM (n = 3). ���� p< 0.0001. (f)

Relative cell number of G11TamR scrambled (SCR) and G11TamR GDNF knockdown (GDNF-KD) cells after 4 days without or with 5 μM tamoxifen and/or 5 ng/ml GDNF

treatment. Data are represented as mean ± SEM (n = 9). � p< 0.05, �� p< 0.005.

https://doi.org/10.1371/journal.pone.0194023.g004
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media, and thereby could be acting to activate RET signaling in nearby cells. Using an ELISA

we found GDNF accumulates in media collected from G11TamR MCF-7 cells, but was undetect-

able in B7TamS MCF-7 cells (Fig 4C). Thus GDNF transcription, mRNA abundance, and GDNF

protein secretion correlate with endocrine resistance in MCF-7 cells, suggesting that GDNF

may contribute to the endocrine resistance phenotype.

We tested whether GDNF is casually involved in endocrine resistance by manipulating

GNDF levels in our MCF-7 model. We first examined the effects of 10 ng/mL of recombi-

nant GDNF protein on the growth of B7TamS cells in the presence of antiestrogens. Remark-

ably, GDNF completely rescued B7TamS MCF-7 cells when challenged with both tamoxifen

(Fig 4D) and fulvestrant (ER degrader) (S2A Fig). This shows that ER does not need to be

present nor functional for GDNF-induced endocrine resistance. Moreover, GDNF treat-

ment without tamoxifen increased the proliferation rate of B7TamS MCF-7 cells by ~20%

(Fig 4D), suggesting that the growth pathways activated by GDNF can work independently

of ERα. Next we tested whether GDNF was necessary to confer endocrine resistance in our

model system by using short hairpin RNAs (shRNA) to knockdown GDNF in G11TamR

MCF-7 cells. Results show that GDNF depletion (GDNF-KD) reduced GDNF mRNA levels

by 57.38% (Fig 4E) and that these cells were significantly more sensitive to tamoxifen treat-

ment than G11 cells transfected with a scrambled control (Fig 4F). Moreover, endocrine

resistance could be restored to GDNF-KD G11 cells by the addition of 5 ng/ mL recombi-

nant GDNF protein (Fig 4F), demonstrating that growth inhibition does not reflect an off-

target effect of the GDNF shRNA. Taken together, these data demonstrate that GDNF plays

a central and causal role in establishing endocrine resistance in G11TamR MCF-7 cells.

Endocrine-sensitive ER+ breast cancer cells express RET transmembrane

receptors

Having shown that GDNF expression promotes endocrine resistance in our MCF-7 cell model,

we asked whether GDNF promotes resistance in patients as well. Increases in the expression of

RET tyrosine kinase or its co-receptor GFRα1 are thought to be involved in endocrine resis-

tance [5–7]. However, RET is itself transcriptionally activated by ERα and is highly abundant in

endocrine sensitive ER+ breast cancer cell models [10]. Analysis of mRNA-seq data from 1,177

primary breast cancers in the cancer genome atlas (TCGA) revealed that the RET mRNA ex-

pression level was highest in ER+ breast cancer and correlates positively with the expression

level of ESR1 (ERα) (Spearman’s ρ = 0.51, p< 2.2e-16; Fig 5A), suggesting that it is a direct tran-

scriptional target of ERα in vivo as well. GFRA1 mRNA encodes the GDNF co-receptor,

GFRα1, and, together with RET, activates RET-ligand signaling. Further analysis of the mRNA-

seq data set found that GFRA1 is also strongly correlated with ESR1 mRNA in breast cancers

(Spearman’s ρ = 0.52, p< 2.2e-16; S3A Fig), suggesting that it is also a direct target of E2 signal-

ing. In our MCF-7 endocrine resistance model, GFRA1 transcription is 5-fold higher in TamS

MCF-7 cells compared to TamR lines and RET transcription is not significantly different (Fig

5B and 5C), demonstrating that neither factor is overexpressed in TamR MCF-7 cells. Since

both RET and GFRA1 are naturally high in ER+ breast cancer cells, and since high expression

of these factors appears to be established in part by ERα, there must be other causes of endo-

crine resistance, both in cell models and in vivo.

ER+ breast cancer cells and primary breast cancers that are sensitive to

endocrine therapy lack GDNF to initiate resistance

Our finding that recombinant GDNF was sufficient for endocrine resistance in B7TamS MCF-7

cells demonstrates that GDNF is a key limiting factor, the absence of which prevents TamS

Breast cancer cells are poised for endocrine resistance
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cells from developing a resistant phenotype. To extend this hypothesis to primary breast can-

cers, we sought to determine whether GDNF expression is normally low, such that it might

limit RET pathway activation in most ER+ breast cancers. Indeed, GDNF expression was

detectible in only 565 of 1,177 primary breast cancers (48%) analyzed by TCGA (S3B Fig). In

principal, RET signaling may be activated by any of the four RET ligands (GDNF, NRTN,

ARTN, and PSPN). However, only low levels of NRTN, ARTN, or their co-receptors were

detected in primary breast tumors (Figs 5D, 5E and S3B). Thus, we conclude that RET ligand

expression is low compared with that of cell surface receptors, especially RET and GFRα1,

which are activated in part by ERα. This contrast between RET receptors and ligands supports

a model in which the RET signaling pathway is ‘poised’ for endocrine resistance by expression

of the receptors and that limiting levels of GDNF expression, or possibly other RET ligands,

would ensure endocrine sensitivity in most tumors.

Next, we investigated whether high RET ligand expression in a subset of ER+ tumors may

explain some cases of endocrine resistance. A careful examination of the GDNF expression

distribution in TCGA breast cancers revealed a long tail, indicating high GDNF expression in

a subset of cases in the TCGA dataset (Fig 5E). Our hypothesis that GDNF expression limits

RET-dependent endocrine resistance implies that these GDNF-high samples should be prone

to endocrine resistance. We devised a simple non-parametric computational approach, which

we call the ‘outlier score’, to quantify the degree to which GDNF is highly expressed based on

the symmetry of the empirical probability density function (see Methods; Fig 5E, blue line).

Based on this score, we conservatively estimate that, of 925 ER+ breast cancer patients in the

TCGA dataset, 122 have high expression of at least one of the RET ligands (13%), 57 of which

had high levels of GDNF (Fig 5F).

If RET ligands are the limiting factor for endocrine resistance, as we propose here, cases

included in this long distribution tail are those that are more likely to be resistant to endocrine

therapies. To test this hypothesis, we analyzed expression microarray data collected prospec-

tively by biopsies of patients that either respond, or do not respond, to the aromatase inhibitor

letrozole [36]. A score comprised of the sum of the outlier scores from all four RET ligands is

significantly higher in patients that do not respond to letrozole treatment (p = 0.016, one-sided

Wilcoxon rank sum test; Fig 5G). By contrast, there is no significant difference in RET expres-

sion in patients who respond or who do not respond to letrozole. These results suggest that

RET ligand expression, but not RET itself, explain the differences in response to letrozole in

this cohort of patients.

Discussion

In this study, we have used genomic tools to dissect how the GDNF-RET signaling pathway

becomes activated in breast cancer cells to promote resistance to endocrine therapies. System-

atic experimental manipulation of GDNF expression in TamS and TamR cell lines build on

work described in previous studies [5–8] by providing the strongest support yet for this pathway

Fig 5. Expression of RET ligands contributes to endocrine resistance. (a) Density scatterplot showing RET and ESR1 expression in mRNA-seq data

from 1,177 primary breast cancer models in the cancer genome atlas (TCGA). Spearman’s ρ = 0.51, p = 1.2e-60. (b) Transcription near the RET locus in

B7TamS and G11TamR cells. PRO-seq densities on sense strand and anti-sense strand are shown in red and blue, respectively. dREG scores are shown in

green. Enhancers and promoters are shown in grey and light green shading, respectively. Arrow indicates the directional movement of transcribed

genes. (c) Dot plot shows RET transcription levels in TamS and TamR MCF-7 cells. (d) Density scatterplots show the expression of RET ligands (GDNF,

NRTN, ARTN, and PSPN) versus ESR1 based on mRNA-seq data from 1,177 primary breast cancers. (e) RET ligand expression distribution in ER

+ breast cancers. The dotted blue line represents 2.5 times the range between the 25th and 50th percentile. (f) Fraction of ER+ breast cancers (n = 925)

with at least one RET ligand exceeding the threshold shown in panel E (shown in dark blue, n = 122). Among the 4 RET ligands, GDNF was the most

highly expressed (n = 60). (g) Boxplots show RET ligands score and RET expression levels in patients that respond or do not respond to aromatase

inhibitor letrozole. � p = 0.016.

https://doi.org/10.1371/journal.pone.0194023.g005
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playing a causal role in endocrine resistance in MCF-7 cells. To extrapolate these findings to

breast cancer patients we have conducted a detailed statistical analysis of data collected from

primary breast cancers. Furthermore, analysis of clinical data supports a model in which RET
and GFRA1 are actively transcribed in both endocrine sensitive MCF-7 cells and primary

tumors, awaiting RET ligands to initiate resistance to endocrine therapies. This is, to our knowl-

edge, the first study to suggest that expression of RET ligands themselves (including GDNF,

ARTN, NRTN, and PSPN) are responsible for RET-mediated endocrine resistance. Overall, our

study provides insights into how the RET signaling pathway become activated in ER+ breast

cancers.

We suggest that RET-mediated endocrine resistance occurs when ER+ breast cancer cells

express the RET ligand GDNF. Work on the RET signaling pathway in endocrine resistance

has largely focused on amplifications or increases in the expression of RET or its co-receptor

GFRα1 in resistance to aromatase inhibitors [6,7]. However, RET expression is not signifi-

cantly different in a cohort of patients resistant to the aromatase inhibitor letrozole (Fig 5G),

suggesting that other mechanisms may occur more commonly in patients than differences in

the expression of RET itself. Indeed, we find that expression of RET and GFRα1 are both high-

est in ER+ breast cancers, likely because of direct transcriptional activation of both genes by

E2/ ERα (Figs 5A and S3A). Thus, we propose that ER+ breast cancer cells are intrinsically

‘poised’ for RET-mediated endocrine resistance by the activation of RET cell-surface receptors,

but lack expression of the ligand GDNF.

Based on our findings, we hypothesize that increased expression of any one of the four RET

ligands, GDNF, ARTN, NRTN, or PSPN confers endocrine resistance on cells expressing the

RET receptor. In support of this model, we demonstrate that the scoring system we used,

based on RET ligand overexpression in tumors, clearly separates breast cancer patients that

respond to letrozole from those who do not (Fig 5G). Several findings also strongly support

the involvement of GDNF in endocrine resistance in our MCF-7 model, most notably the

observations that GDNF rescues B7TamS lines and that GDNF knockdown in G11 cells restores

sensitivity to tamoxifen (Fig 4F). These observations are also supported by existing studies

showing that another RET ligand, ARTN, contributes to tamoxifen resistance in MCF-7 cells

[37], extending and supporting the findings reported here. However, there is one RET ligand

that is notably an outlier. PSPN does not appear to have any predictive value in patients, and

thus may not play the same role in resistance as the other three RET ligands. This may reflect

the extremely low expression of its co-receptor, GFRA4, in primary breast cancers (S3B Fig),

preventing PSPN from having much effect on breast cancer cells. Taken together, these find-

ings suggest that RET ligand expression, especially GDNF, ARTN, and NRTN, explain endo-

crine resistance in many cases.

We also found evidence that ERα may itself play an important role in establishing expression

of the RET receptor and its GFRA1 co-receptor in breast cancer cells. RET is a well-character-

ized direct ERα target in cell lines [10,38]. By a comparison of RNA-seq data in primary breast

cancers (Figs 5A and S3), we show that both RET and GFRA1 correlate with expression of

ESR1, suggesting that they may be targets of ERα signaling in primary tumors. We also show

that GDNF promotes resistance in an ERα independent manner, as demonstrated by insensitiv-

ity of TamR cells to ER degradation by fulvestrant. Taken together, our findings demonstrate

that ERα may contribute to expression of RET receptors in ER+ cells, but that it’s actions are

dispensable to maintain resistance after the expression GDNF or other RET receptors.

Another important question is whether our findings based on the MCF-7 model are a gen-

eral mechanism of endocrine resistance. To determine whether GDNF is an important con-

tributor to primary breast tumors, we have conducted a detailed statistical analysis of publicly

available data. Our analyses found a correlation between RET ligand expression and resistance

Breast cancer cells are poised for endocrine resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0194023 April 2, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0194023


to aromatase inhibitors (Fig 5G). Moreover, we also show that mRNA abundance of both RET

and GFRA1 correlate with ESR1 across primary breast cancers (Figs 5A and S3A), suggesting

that RET and GFRA1 are direct targets of ERα signaling in primary patients as well. Taken

together with our cell-based model, these findings suggest that RET ligands are an important

factor that initiates endocrine resistance across biological systems.

A major question that remains unclear and of primary importance following our study is

how RET ligand expression becomes activated in primary tumors. The abundance of GDNF

mRNA appears to be extremely low in primary breast tumors analyzed by TCGA (Figs 5D, 5E

and S3B), which were in most cases collected before therapeutic intervention [39,40]. Notably,

GDNF is not natively expressed in ER+ TamS MCF-7 cells but rather becomes activated follow-

ing extended endocrine treatments. This may suggest that GDNF expression is initiated in

tumors by another stimulus-dependent pathway or introduced by another cell type in the

tumor microenvironment. We show in a companion paper that GDNF-RET stimulation indi-

rectly activates transcription of the endogenous GDNF gene [ref: Horibata et. al. (2018) PLoS

One]. Therefore one possibility is that GDNF becomes expressed after tumor cells are “primed”

with GDNF by another cell in the microenvironment. Another possibility is that GDNF expres-

sion in tumors may be initiated by pro-inflammatory cytokines, such as tumor necrosis factor

alpha (TNFα), to be transcribed in breast cancer cells [28]. This finding may link poor survival

outcomes in pro-inflammatory tumors [41,42] with GDNF-RET-mediated resistance to endo-

crine therapy.

Finally, we also do not know whether RET ligands are responsible for all types of endocrine

resistance. We found a clear distinction in one cohort of patients treated with letrozole (Fig

5G). Intriguingly, the RET ligand expression score is elevated in this subset of patients prior to

treatment, suggesting that RET ligands promote an intrinsic (rather than acquired) mode of

endocrine resistance. Whether RET ligands also play a role in resistance following recurrence

in cases where tumors previously responded remains unknown.

Taken together, results reported in this study implicate RET ligands, including GDNF, as

the primary determinant of endocrine resistance in both MCF-7 cells and patient samples (Fig

6). Clinical studies targeting larger cohorts of patients beginning endocrine therapies will be

required to fully validate our proposed mechanism of endocrine resistance.

Methods

Cell lines and cell culture

Tamoxifen-sensitive (TamS; B7TamS and C11TamS) and resistant (TamR; G11TamR and

H9TamR) MCF-7 cells[9] were a gift from Dr. Joshua LaBaer. TamS cells were grown in Dulbec-

co’s Modified Eagle Medium (DMEM) supplemented with 5% fetal bovine serum (FBS) and

1% Penicillin Streptomycin, and TamR cells were grown in the same media supplemented

with 1 μM tamoxifen. Tamoxifen used throughout in this paper is (Z)-4-Hydroxytamoxifen

(4-OHT; Sigma-Aldrich; Cat# H7904).

Cell viability assay

Briefly, 5 x 103 TamS and TamR cells were grown in 24-well TC-treated plates in their specific

culture media. After allowing the cells to adhere to the plate for 24 hours, they were rinsed

with PBS three times to remove any residual tamoxifen. The cells were treated with either

increasing doses of tamoxifen (0 (vehicle control; EtOH), 10−11, 10−10, 10−9, 10−8, or 10−7 M).

For setting up the rescue experiment with GDNF (PeproTech; Cat# 450–10), 5 x 103 B7TamS

cells were grown in 24-well TC-treated plates in their specific culture media. After allowing the

cells to adhere to the plate for 24 hours, they were treated with either EtOH (vehicle), 10−7 M
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tamoxifen, 10−7 M tamoxifen and 10 ng/mL GDNF, or 10 ng/mL GDNF treatment. The same set

up was performed for 10−7 M treatment of fulvestrant and using DMSO (vehicle) as a control.

After four days of endocrine treatment, cells were fixed with 4% paraformaldehyde and

stained with 0.5% crystal violet solution made in 25% methanol. After washing away non-spe-

cific crystal violet stain with PBS, we took pictures of each plate and the crystal violet stain

from the fixed cells was removed using 10% acetic acid. The absorbance was measured using

the Tecan plate reader at OD595nm. Samples were normalized to the untreated control. Three

biological replicates were performed and data are represented as mean ± SEM.

ELISA

TamS (B7TamS) and TamR (G11TamR) lines were plated on 6 well plate at 70% confluency. Cells

were washed with PBS and fresh media (DMEM supplemented with 5% FBS) was added the

next day. 96 hours later, media was collected and were concentrated with Amicon Ultra-4 cen-

trifugal filter units (Millipore; MWCO 3000). GDNF levels were measured using ELISA kit

(Abcam; Cat# ab100525) according to the manufacturers’ protocol.

Cell culture set up and nuclei isolation

TamS and TamR lines were grown in 150mm TC-treated culture dishes in their respective

normal culture media. Cells were rinsed with PBS at least three times 24 hours after plating.

Fig 6. Schematic diagram of RET activation in endocrine sensitive and resistant tumors. Both endocrine sensitive and resistant breast cancer cells express all

components of the RET signaling pathway, but endocrine sensitive breast cancer cells lack GDNF to initiate the resistance pathway. By contrast, endocrine

resistant cells secret GNDF, which acts in an autocrine or paracrine fashion to promote endocrine resistance in nearby cells.

https://doi.org/10.1371/journal.pone.0194023.g006
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Both the TamS and TamR cells were grown in Dulbecco’s Modified Eagle Medium supple-

mented with 5% fetal bovine serum and 1% Penicillin Streptomycin for an additional three

days until ~80% confluency in the absence of tamoxifen, in order to measure the difference

between TamS and TamR cells pre-treatment.

Nuclei were isolated as described previously [43]. Briefly, cells were rinsed three times

with ice-cold PBS and lysed using lysis buffer (10 mM Tris-HCl pH 7.4, 2 mM MgCl2,

3 mM CaCl2, 0.5% NP-40, 10% Glycerol, 1 mM DTT, 1X PIC (Roche; Cat# 11836153001),

and 1 μl/10 mL SUPERase-In (ThermoFisher; Cat# AM2694) dissolved in DEPC water).

Cells were homogenized by gently pipetting at least 30 times and the nuclei were harvested

by centrifugation at 1000 g for five minutes at 4˚C. The isolated nuclei were washed twice

with lysis buffer and were resuspended in 100 μL freezing buffer (50 mM Tris HCl pH 8.3,

5 mM MgCl2, 40% Glycerol, 0.1 mM EDTA pH 8.0, and 4 U/mL SUPERase-In). The iso-

lated nuclei were used for nuclear run-on and precision nuclear run-on sequencing (PRO-

seq) library preparation.

Nuclear run-on and PRO-seq library preparation

Nuclear run-on experiments were performed according to the methods described previously

[22,23]. 1x107 nuclei in 100 μL freezing buffer were mixed with 100 μL of 2x nuclear run-on buffer

(10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 1 mM DTT, 300 mM KCl, 50 μM biotin-11-ATP (Perkin

Elmer; Cat# NEL544001EA), 50 μM biotin-11-GTP (Perkin Elmer; Cat# NEL545001EA), 50 μM

biotin-11-CTP (Perkin Elmer Cat# NEL542001EA), 50 μM biotin-11-UTP (Perkin Elmer; Cat#

NEL543001EA), 0.4 units/μL SUPERase In RNase Inhibitor (Life Technologies; Cat# AM2694),

1% Sarkosyl (Fisher Scientific; Cat# AC612075000). The mixture was incubated at 37˚C for five

minutes. The biotin run-on reaction was stopped using Trizol (Life Technolgies; Cat# 15596–026),

Trizol LS (Life Technologies; Cat# 10296–010) and pelleted. The use of GlycoBlue (Ambion; Cat#

AM9515) is recommended for higher pellet yield. RNA pellets were re-dissolved in DEPC water

and denatured in 65˚C for 40 seconds and hydrolyzed in 0.2 N NaOH on ice for 10 minutes to

have a hydrolyzed RNA length with that range ideally of 40 to 100 nts. Bead binding (NEB; Cat#

S1421S) was performed to pull down nascent RNAs followed by 3’ RNA adaptor ligation (NEB;

Cat# M0204L). Another bead binding was performed followed by 5’ de-capping using RppH

(NEB; Cat# M0356S). 5’ phosphorylation was performed followed by 5’ adaptor ligation. The last

bead binding was performed before generation of cDNA by reverse transcription. PRO-seq librar-

ies were prepared according to manufacturers’ protocol (Illumina) and were sequenced using the

Illumina NextSeq500 sequencing.

Mapping of PRO-seq sequencing reads

PRO-seq reads failing Illumina quality filters were removed. Adapters were trimmed from the

3’ end of remaining reads using cutadapt with a 10% error rate [44]. Reads were mapped with

BWA[45] to the human reference genome (hg19) and a single copy of the Pol I ribosomal RNA

transcription unit (GenBank ID# U13369.1). The location of the RNA polymerase active site

was represented by a single base that denotes the 3’ end of the nascent RNA, which corre-

sponded to the position on the 5’ end of each sequenced read. Mapped reads were normalized

to reads per kilobase per million mapped (RPKM) and converted to bigWig format using Bed-

Tools[46] and the bedGraphToBigWig program in the Kent Source software package[47].

Downstream data analysis was preformed using the bigWig software package, available from:

https://github.com/andrelmartins/bigWig. All data processing and visualization was done in

the R statistical environment[48].
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Identification of active enhancers and promoters using dREG-HD

We identified TREs using dREG [18]. Data collected from all four cell lines (TamR and TamS

MCF-7 cells) was combined to increase statistical power for the discovery of a superset of

TREs active during any of the conditions examined.

The precise coordinates of TREs were refined using a strategy that we termed dREG-HD

(available at https://github.com/Danko-Lab/dREG.HD; manuscript in preparation). Briefly,

dREG-HD uses an epsilon-support vector regression (SVR) with a Gaussian kernel to map the

distribution of PRO-seq reads to DNase-I signal intensities. Training was conducted on ran-

domly chosen positions within dREG peaks in K562 cells (GEO ID# GSM1480327) extended by

200bp on either side. We selected the optimal set of features based on maximizing the Pearson

correlation coefficient between the imputed and experimental DNase-I signal intensity over an

independent validation set. Before DNase-I imputation, PRO-seq data was preprocessed by nor-

malizing read counts to the sequencing depth and scaled such that the maximum value was

within the 90th percentile of the training examples. To identify peaks, we smoothed the imputed

DNase-I signal using a cubic spline and identified local maxima. We tuned the performance of

the peak by empirically optimizing two free parameters that control the (1) smoothness of spline

curve fitting, and (2) a threshold level on the intensity of the imputed DNase-I signal. Parame-

ters were optimized to achieve<10% false discovery rates on a K562 training dataset by a grid

optimization over free parameters. We tested the optimized dREG-HD model (including both

DNase-I imputation and peak calling) a GRO-seq dataset completely held out from model

training and parameter optimization in on GM12878 lymphoblastoid cell lines (GSM1480326).

Testing verified that dREG-HD identified transcribed DNase-I hypersensitive sites with 82%

sensitivity at a 10% false discovery rate.

Additional genomic data in MCF-7 cells generated by the ENCODE project was down-

loaded from Gene Expression Omnibus. TREs discovered using dREG-HD were compared

with ChIP-seq for H3K27ac and H3K4me3 (accession numbers: GSM945854 and

GSM945269) and DNase-1 hypersensitivity (GSM945854).

Differential expression analysis (DESeq2)

We compared treatment conditions or cell lines using gene annotations (GENCODE v19). We

counted reads in the interval between 1,000 bp downstream of the annotated transcription

start site to the end of the gene for comparisons between TamS and TamR cell clones. To

quantify transcription at enhancers, we counted reads on both strands in the window covered

by each dREG-HD site. Differential expression analysis was conducted using deSeq2 [24] and

differentially expressed genes were defined as those with a false discovery rate (FDR) less than

0.01.

Motif enrichment analysis

Motif enrichment analyses were completed using the default set of 1,964 human motifs in

RTFBSDB[31] clustered into 622 maximally distinct DNA binding specificities (see ref Wang

et. al. (2016)). We selected the motif to represent each cluster with canonical transcription fac-

tors that were most highly transcribed in MCF-7 cells. We fixed the motif cutoff log odds ratio

of 7.5 (log e) in a sequence compared with a third-order Markov model as background. We

identified motifs enriched in dREG-HD TREs that change transcription abundance between

two conditions using Fisher’s exact test with a Bonferroni correction for multiple hypothesis

testing. TREs were compared to a background set of>1,500 GC-content matched TREs that

do not change transcription levels (<0.25 absolute difference in magnitude (log-2 scale) and

p> 0.2) using the enrichmentTest function in RTFBSDB[31].
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TCGA data analysis

Processed and normalized breast cancer RNA-seq data was downloaded from the Interna-

tional Cancer Genome Consortium (ICGC) data portal website (https://dcc.icgc.org). Data

profiling each gene was extracted using shell scripts. Processing and visualization was done in

R.

Letrozole microarray reanalysis

We reanalyzed Affymetrix U133A microarray data profiling mammary tumor biopsies before

and after treatment with letrozole[36]. Miller et. al. (2012) collected data from mammary tumor

biopsies prior to letorozle treatment, 10–14 days following the start of treatment, and 90 days

following the start of treatment. Samples were annotated as a “responder” (i.e., responds to

letrozole treatment), a “non-responder” (i.e., no benefit from letrozole treatment), or “not ass-

essable” (i.e., unknown). The Series Matrix Files were downloaded from Gene Expression

Omnibus (GSE20181) and each gene of interest was extracted and processed into a text file. We

used the following Affymetrix ID numbers 221359_at, 210683_at, 210237_at, 221373_x_at, and

211421_s_at, to represent GDNF, NRTN, ARTN, PSPN, and RET respectively. We found no

evidence of differences in RET or RET ligand expression across the three time points, and we

therefore used the average expression of each RET ligand in each sample when comparing

between responsive and non-responsive patients in order to decrease assay noise.

Outlier scores were designed to score the degree to which each sample fell within the tail of

the distribution representing high expression levels of each RET ligand (as shown in Fig 4F).

Because endocrine resistance could, in principal, be caused either by high expression of any

individual RET ligand on its own, or by moderately high expression of multiple RET ligands

in combination, we devised a data transformation and sum approach to score the degree to

which all four of the RET ligands were highly expressed in each sample. In our data transfor-

mation, expression levels were centered by the median value and scaled based on the lower tail

of the expression distribution (between quartile 0 and 50). This approach is similar in concept

to a Z-score transform, but uses the lower tail to estimate the variance in order to avoid having

high expression levels, which we hypothesize here may contribute to endocrine resistance,

from contributing to the denominator used to standardize the distribution of each RET ligand.

After transforming scores from all four RET ligands separately, we took the sum of the scores

to represent our final ‘outlier score’. Because our hypothesis specifically predicted an increase

in the RET ligand score to correlate with letrozole resistance, and because the number of

patients was small, we designed the analysis to use a one-tailed Wilcoxon rank sum test. How-

ever, in practice, using a two-tailed Wilcoxon rank sum test did not change the results of our

analysis. Data was processed and visualization was completed using R.

RNA isolation and quantitative real-time PCR

RNA was purified using an RNeasy Kit (Qiagen; Cat# 74104) and 1μg of purified RNA was

reverse-transcribed using a High Capacity RNA-to-cDNA kit (Applied Biosystems; Cat#

4387406) according to the manufacturers’ protocols. Real-time quantitative PCR analysis was

performed using the following primers: ACTB Forward (5’-CCAACCGCGAGAAGATGA-3’)

and Reverse (5’- CCAGAGGCGTACAGGGATAG-3’); ESR1 Forward (5’- TTACTGAC-
CAACCTGGCAGA-3’) and Reverse (5’-ATCATGGAGGGTCAAATCCA-3’); PGR Forward

(5’-GTCAGGCTGGCATGGTCCTT-3’) and Reverse (5’-GCTGTGGGAGAGCAACAGCA-
3’); GREB1 Forward (5’- GTGGTAGCCGAGTGGACAAT-3’) and Reverse (5’-ATTTGTTT
CCAGCCCTCCTT-3’) [49]; GDNF Forward (5’- TCTGGGCTATGAAACCAAGGA-3’) and

Reverse (5’- GTCTCAGCTGCATCGCAAGA-3’)[50]; and Power SYBR Green PCR Master
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Mix (Applied Bioystems; Cat#4367659). The samples were normalized to β-actin. At least

three biological replicates were performed and data are presented as mean ± SEM. All statisti-

cal analyses for qPCR were performed using GraphPad Prism. Groups were compared using a

two-tailed unpaired Student’s t-test.

Generation of GDNF knockdown G11 cells

GDNF expression was stably knocked down in G11TamR cells by transduction with lentivirus

expressing either a shRNA scrambled control or GDNF shRNA. Mission shRNA lentivirus

plasmids for control shRNA (Cat# SHC002) and GDNF shRNA (Cat# SHCLND-NM_000514)

from Sigma-Aldrich were used. Specifically, 1.5 μg pLKO.1 shRNA plasmid (Addgene; Plas-

mid #1864), 0.5 μg psPAX2 packaging plasmid (Addgene; Plasmid #12260), and 0.25 μg

pMD2.G envelope plasmid were used for packaging (Addgene; Plasmid #12259). The lentivi-

ruses were generated and transduced according to the manufacturer’s instructions (Sigma-

Aldrich). Clones were selected in 2 μg/ml of puromycin.

Cell proliferation assay

Approximately 1x106 G11-scrambled (G11-SCR) and G11-GDNF-knockdown (G11-GDNF-KD)

cells were plated in T25 TC-flask. The cells were grown in either 0, 5 μM tamoxifen in the pres-

ence or absence of 5 ng/mL GDNF for 7 days. The cell number was counted for quantification

and was normalized to the untreated group. Three biological replicates were performed.

Statistical analysis

Statistical parameters include the exact number of biological replicates (n), standard error of

the mean (mean ± SEM), and statistical significance are reported in the figure legends. Data

are reported statistically significant when p< 0.05 by two-tailed Student’s t-test. In figures,

asterisks and pound signs denote statistical significance as calculated by Student’s t-test. Spe-

cific p-values are indicated in the figure legends. Statistical analysis was performed using

GraphPad PRISM 6.

Supporting information

S1 Table. PRO-seq data collection and sequencing depth. PRO-seq was conducted in the

indicated cell clone and biological condition. Raw PRO-seq data were sequenced to a read

depth>20 million uniquely mapped reads and aligned using established pipelines.

(DOCX)

S1 Fig. dREG identifies highly enriched active enhancers and promoter makers in MCF-7

cells. (a) Heatmap depicting PRO-seq, Dnase-I-seq, H3K27ac, and H3K4me3 near 39,753

transcriptional regulatory elements (TREs) identified using dREG-HD from PRO-seq data

(left) in TamS and TamR MCF-7 cells. (b) Transcription and dREG scores in the locus near

the CCND1 gene in B7TamS and G11TamR MCF-7 cells. (c) Luciferase activity in B7TamS and

G11TamR MCF-7 cells in the presence of an enhancer located approximately 300kb down-

stream of CCND1. All data normalized to renilla control. Data are represented as mean ± SEM

(n = 3). �� p< 0.01, ���� p< 0.0001.

(EPS)

S2 Fig. GDNF induces fulvestrant resistance in TamS cells. (a) Cell viability of B7TamS cells

in the presence or absence of 10 ng/ml GDNF and/or 100 mM fulvestrant for 4 days. Data are
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represented as mean ± SEM (n = 3). �� p< 0.005, ���� p< 0.0001.

(EPS)

S3 Fig. RET ligand expression is low compared to RET and GFRα1 receptors. (a) Density

scatterplot showing the relationship between GFRA1 and ESR1 expression levels in 1,177 pri-

mary breast cancer samples in the cancer genome atlas (TCGA). Pearson’s R = 0.52; p< 2.2e-

16. (b) Violin plots depicting the absolute normalized expression level of receptor-tyrosine

kinase receptors and ligands in 1,177 primary breast cancer samples (TCGA). For each color,

the pair of genes represents receptor (left) and ligand (right). Gray represents the RET gene

which encodes the RET tyrosine kinase receptor required for signal transduction of all four

RET ligands.

(EPS)
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