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Abstract

Intermediate wheatgrass (Thinopyrum intermedium) is an outcrossing, cool season grass species currently undergoing direct domestication
as a perennial grain crop. Though many traits are selection targets, understanding the genetic architecture of those important for local
adaptation may accelerate the domestication process. Nested association mapping (NAM) has proven useful in dissecting the genetic con-
trol of agronomic traits many crop species, but its utility in primarily outcrossing, perennial species has yet to be demonstrated. Here, we
introduce an intermediate wheatgrass NAM population developed by crossing ten phenotypically divergent donor parents to an adapted
common parent in a reciprocal manner, yielding 1,168 F1 progeny from 10 families. Using genotyping by sequencing, we identified 8,003
SNP markers and developed a population-specific consensus genetic map with 3,144 markers across 21 linkage groups. Using both
genomewide association mapping and linkage mapping combined across and within families, we characterized the genetic control of flow-
ering time. In the analysis of two measures of maturity across four separate environments, we detected as many as 75 significant QTL,
many of which correspond to the same regions in both analysis methods across 11 chromosomes. The results demonstrate a complex ge-
netic control that is variable across years, locations, traits, and within families. The methods were effective at detecting previously identified
QTL, as well as new QTL that align closely to the well-characterized flowering time orthologs from barley, including Ppd-H1 and Constans.
Our results demonstrate the utility of the NAM population for understanding the genetic control of flowering time and its potential for ap-
plication to other traits of interest.
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Introduction
Intermediate wheatgrass (Thinopyrum intermedium; (Host)
Barkworth& D.R. Dewey; IWG hereafter) is a perennial, cool-
season grass undergoing direct domestication as a dual-use
forage and grain crop for human consumption (DeHaan et al.
2014). IWG is primarily self-incompatible, outcrossing allohex-
aploid (2n ¼ 6x ¼ 42) (Dewey 1962). Native to Europe and Asia,
it was introduced to North America in 1932 and has since been
used primarily as a hay and pasture grass (Dewey 1962; Ogle
et al. 2011) and a source disease resistance genes for common
wheat (e.g., Brettell et al. 1988; Friebe et al. 1996; Turner et al.
2013). Citing the need for perennial crops to improve agricul-
tural sustainability on highly erodible or marginal lands, the

Rodale Institute (Kutztown, PA, USA) in the early 1980s sur-
veyed over 100 perennial grasses for their domestication poten-
tial (Wagoner 1990). They selected IWG due to its relatively
large seed size, nutritional similarity to wheat, perennial
growth, and its ability to be mechanically harvested. Initial
germplasm surveys began in 1987 (Wagoner 1990) after which,
breeding and domestication programs were established at The
Land Institute (TLI; Salina, KS; DeHaan et al. 2018), the
University of Minnesota (Zhang et al. 2016), the University of
Manitoba (DeHaan et al. 2014), and new programs have been
initiated in Utah and Internationally in Europe in the last few
years. These programs utilize phenotype-, pedigree-, or
genotype-based recurrent selection and cultivars are developed
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as synthetics (DeHaan et al. 2014; Zhang et al. 2016; Bajgain
et al. 2020a, b; Crain et al. 2020).

Despite the many genetic resources developed for IWG, and
some early selection success, breeding targets remain vast. IWG
has a dense genetic consensus map with 10,029 markers from
seven full-sib families (Kantarski et al. 2016), an optimized proto-
col for developing genotyping-by-sequencing (GBS) libraries
(Elshire et al. 2011; Zhang et al. 2016), and a draft reference ge-
nome under development by the T. intermedium Genome
Sequencing Consortium (DeHaan et al. 2018; Larson et al. 2019).
Breeding and selection have primarily focused on increasing seed
size and yield on a per spike basis (DeHaan et al. 2018) and despite
the infancy of breeding efforts, gains from selection have been
observed. For example, after 5 cycles of selection at TLI, a 143%
increase in yield per spike and a 60% increase in seed mass was
predicted (observed response would require evaluation in the
same environment) in a spaced plant setting (DeHaan et al. 2018).
Furthermore, genomic selection has shown great promise in
IWG, demonstrating high-predictive ability (in one study, r¼ 0.46
– 0.67; depending on the trait, and > 0.5 in another) and has im-
proved the precision and efficiency of selection (Zhang et al. 2016;
Crain et al. 2021). Including significant markers from QTL map-
ping studies as co-factors in genomic selection models has been
shown to increase predictive ability and increases the frequency
of favorable alleles (Zhang et al. 2017; Bajgain et al. 2019a, b).
However, IWG is still susceptible to seed shattering (Larson et al.
2019), has low threshability (Zhang et al. 2016), is tall and prone
to stem lodging (Frahm et al. 2018), and has low-floret site utiliza-
tion that may contribute to low yields (Altendorf et al. 2020). An
improved understanding of the genetic architecture of these im-
portant traits has the potential to further increase efficiency and
precision in IWG breeding efforts through genomics assisted
breeding, but the difficulty lies in the fact that relatively few
marker-trait association studies have been conducted in IWG
and the genetic control of many important traits remains poorly
understood.

Nested association mapping (NAM) was developed to combine
the benefits of both linkage and association mapping by crossing
one common parent with a series of diverse donor parents and
developing segregating populations in the form of recombinant
inbred lines (RILs; Yu et al. 2008). This approach has demon-
strated utility in many crop species including maize (Buckler et al.
2009; McMullen et al. 2009), rice (Fragoso et al. 2017), wheat
(Bajgain et al. 2016; Jordan et al. 2018; Wang et al. 2019), barley
(Maurer et al. 2016; Nice et al. 2017; Hemshrot et al. 2019), sorghum
(Bouchet et al. 2017), and soybean (Song et al. 2017). Notably, all
the aforementioned species are self-compatible where the devel-
opment of RILs is possible and commonplace. To our knowledge,
there have been no formally published NAMs developed in an
outcrossing, self-incompatible species, nor for any cool season,
perennial grasses (Talukder and Saha 2017).

In an outcrossing, self-incompatible species, the NAM design
still includes common and donor parents, but eliminates the RIL
development step, and all progeny are F1 and therefore highly
heterozygous and heterogeneous. While this may result in a de-
crease in mapping resolution due to the lack of recombination
and breakdown of LD associated with inbreeding, there are vari-
ous practical advantages NAM that may be realized. First and
foremost, multiple parents offer more genetic variation and in-
crease the utility of a population by allowing the dissection of
more than a single trait compared with a traditional bi-parental
mapping population. Second, relative to genome wide association
study (GWAS) in diverse populations, NAM offers increased

frequency and sampling of rare alleles in both common and do-
nor parents that may otherwise go undetected or filtered out due
to a minimum minor allele frequency (MAF) threshold. Finally,
crossing wild or unadapted donor parents with a highly adapted
common parent allows for the assessment of diverse germplasm
(Poland et al. 2011; Nice et al. 2017).

Contrary to an inbred NAM, an F1 NAM requires special con-
siderations with regards to the segregation of alleles. For exam-
ple, bi-parental families can segregate from anywhere between 2
and 4 alleles, and this number can vary across loci (Van Ooijen
2011). Thus, it is not possible to observe allele combinations in
homozygous, identical-by-descent states as it is in an inbreeding
species. Because the parents are segregating, imputation of
densely genotyped parents on progeny is difficult, and diverse do-
nor alleles cannot be assessed relative to a common genetic back-
ground. Many computational programs developed for NAMs and
other multi-parent populations, including the R packages “NAM”
(Xavier et al. 2015), “mppR” (Garin et al. 2107), and “R/qtl2”
(Broman et al. 2019), all depend on homozygous parents and prog-
eny to reconstruct haplotypes and phasing and are not suited for
heterozygous parents. In some cases, heterozygous sites within
the parents and progeny are excluded from the analysis, which
would likely result in significant data loss in the case of an out-
crossing species. Finally, it is important to note that instead of
maximizing genetic divergence between parental material, as
would be the case in a traditional NAM, the objective instead is to
maximize heterozygosity within parents to observe segregation
among the progeny. These challenges can be overcome by using
programs and methods designed for phasing and mapping in out-
crossing species, such as JoinMap and MapQTL (Van Ooijen 2009;
2011). Considering the demonstrated utility of the population de-
sign and the need within the IWG breeding community to assess
the genetic control of many traits of interest, a NAM population
is worth exploring.

Here, we introduce an IWG NAM population and assess its
utility by dissecting the genetic control of flowering time. The
timing of the transition from vegetative to reproductive phases is
a critical step to ensure proper timing for pollination, seed set
and dispersal, and variation for this trait has played a critical role
in the adaptation of crops to new growing environments
(Cockram et al. 2007). The objectives of this work were to: (1) de-
velop and genetically characterize an IWG NAM population; (2)
describe the phenotypic variation in the NAM for flowering time
over 2 years in two distinct locations: St. Paul, MN, and Salina,
KS; (3) assess the genetic control of flowering time using two
approaches: GWAS and linkage mapping within and across mul-
tiple populations. The linkage mapping method accurately
assesses the within family allele effects by utilizing phasing and
tracing the parental origin of 2–4 alleles at a locus. The GWAS ap-
proach serves as additional support for QTL identification, and
results are compared across both methods.

Materials and methods
Population development and establishment
Ten phenotypically diverse genets (donor parents) and one low-
shattering genet (common parent) were identified from Cycle 2 of
the University of Minnesota breeding program based on their
traits of interest (Table 1). Genet refers to plants of the same ge-
netic makeup, with multiple clones of each genet are referred to
as ramets. This terminology is consistent with Zhang et al. (2016)
and accounts for the heterozygous nature of IWG as the terms
line or cultivar would be inconsistent with normal usage in
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inbred crops. Parents, and therefore families, were named after
their numerical designation within the IWG breeding program
preceded with “WGN” for “Wheatgrass NAM.” Parental genets
were propagated from the field in Fall 2015 into 3–5 clones
each, planted in 3.8 L pots, and allowed to re-establish in the
greenhouse before vernalization at 4�C for 2 months. After ver-
nalization, plants were placed in a growth chamber (16 hour day,
18–20�C) to induce flowering. In May 2016, multiple reciprocal
crosses were made between each donor parent and the common
parent by bagging spikes together in custom pollination bags (PBS
International, UK) just before pollen shed. Spikes from each cross
were harvested in July 2016 and kept separate on the basis of
family and maternal parent identity. Spikes were threshed and
cleaned using a belt thresher, sieve (12/64” round; SEEDBURO,
Des Plaines, IL, USA) and aspirator (Air Blast Seed Cleaner;
ALMACO, Nevada, IA, USA). Approximately 150 seeds from each
cross (�75 from each maternal parent) were placed on moist blot-
ter paper (Anchor Paper, St. Paul, MN, USA) in petri dishes and
subjected to a cold treatment of 4�C for 3–5 days or until germina-
tion occurred. Germinating seeds were transplanted at 1 cm
depth into 10 cm 21-count trays and placed in a misting green-
house for 4 days and then transferred to an outdoor nursery.
Plants were watered daily and fertilized weekly with a standard
solution (15 mL per 4.4 L) of 20-20-20 fertilizer, and monthly with
slow-release Osmocote (The Scotts Company, Marysville, OH,
USA). In August, plants were clipped to �5 cm to promote tiller-
ing, propagated into four ramets per genet and placed into 5 �
5 cm peat pots (Plantation Products, Norton, MA, USA) in
September. Genets were completely randomized within blocks
and were transplanted into spaced plant nurseries in a random-
ize complete block design (RCBD) with two blocks at the
University of Minnesota Agricultural Experiment Station in St.
Paul, MN, USA (1-m centers; STP hereafter) using a mechanical
transplanter on 30 September, and at The Land Institute in
Salina, KS (0.9-m centers; TLI hereafter) using a jab-type planter
on 16 October. The genets, or spaced plants, were considered the
experimental units. Several clones of each donor parent (�3 per
block) and the common parent (�25 per block) were included and
a two-plant border was established to limit edge effects.
Transplants were watered once after transplanting to promote

successful establishment. Plots were hand weeded and cultivated
with a multivator (Ford Distributing, Marysville, OH, USA) as nec-
essary to control weeds. In addition, a pre-emergent herbicide,
Dual II Magnum (S-metolachlor, Syngenta US), was applied at
STP in April 2017 and May 2018 at a rate of 1.75 L ha�1. Herbicides
were not used at TLI. At both locations, plots were mowed to
15 cm height after harvest and fertilized with urea (56.0 kg ha�1

at STP; 78.5 kg ha�1 at TLI) in fall 2017. Forty-four ramets died be-
tween transplanting and the end of the 2017 harvest season at
TLI, and 25 additional ramets died in the 2018 field season. An
additional 203 ramets at TLI were deemed not worth harvesting
in 2018 due to drought conditions. In St. Paul, 76 ramets were lost
between transplanting and harvesting in 2017, and an additional
2 in 2018.

Growing degree days
Weather data for St. Paul was obtained from National Oceanic
and Atmospheric Administration (NOAA, RRID: SCR_011426)
from the St. Paul Agricultural Experiment Station (Station ID:
USC00218450). Weather data for Salina, KS was obtained from
the TLI Weather Station. Growing degree days (GDDs) were calcu-
lated in degrees Celsius using the following equation, where Tmax

and Tmin are the maximum and minimum daily temperatures,
and Tbase is 0�C, or the base temperature for growth used in IWG
(Frank 1996; Jungers et al. 2018):

½ðTmax þ TminÞ =2� � Tbase

A maximum threshold of 37�C was set for Tmax, which is the
predicted maximum temperature for growth in wheat (Porter and
Gawith 1999), and GDD accumulation began and ended after 5
consecutive days where the average daily temperature exceeded
Tbase (Frank and Hoffman 1989).

Phenotypic data collection
Two measures of reproductive growth stage were recorded: spike
emergence percent and anthesis stage. IWG spike length is vari-
able both within and among genets, making it challenging to vi-
sually estimate the proportion of the spike that has emerged
from the boot as is done in a traditional maturity rating scale

Table 1 Families of the intermediate wheatgrass nested association mapping population, their family sizes separated by maternal
parent, and their phenotypic characteristics as recorded in historical breeding program data from St. Paul, MN, which served as the
basis of their initial selection

Family sizea and maternal parent Phenotypic characterization

Parent Parent type Common Donor Total Heading
date (1–5)b

Height (cm) Seed size (mg) Shattering
(0–4)c

Threshability
(1–9)d

WGN07 Donor 59 62 121 3 75 6.83 1 7
WGN15 Donor 60 60 120 5 130 8.88 0 6
WGN26 Donor 62 59 121 3 135 12.52 3 1
WGN36 Donor 51 63 114 3 103 10.1 0.5 4
WGN38 Donor 66 29 95 2 77 9.1 1 0.5
WGN39 Donor 59 63 122 3 131 9.5 3 3
WGN45 Donor 54 64 118 — 120 10.58 0.5 5
WGN46 Donor 58 63 121 — 108 8.28 3 6
WGN55 Donor 61 62 123 — 111 10.48 3 6
WGN59 Common — — — — 131 10.56 0.5 7
WGN63 Donor 57 56 113 — 126 9.18 3 1

a Determined by samples for which there is both phenotypic and genotypic data.
b Historical data on the heading date was not available for all parents, where one is late and five is early heading.
c Shattering scale, where zero is low and four is high.
d Threshability scale, where zero is low and nine is high.
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such as BBCH, Feekes, or Zadoks (Large 1954; Zadoks et al. 1974;
Lancashire et al. 1991). Thus, to more precisely capture variation
in emergence time, when spikes were approximately 50%
emerged on average across the population, the length of the spike
emerged from the boot (from the tip of the most apical spikelet to
the base of the flag leaf) was measured in cm on one spike per
plant. As maturity within a plant can vary, especially in the first
year, larger, more uniform spikes were chosen for measurement
to minimize experimental error (DeHaan et al. 2018). In cases of
high within-plant variability (e.g., �5 cm), the mean of two spikes
was recorded. Harvesting procedures were previously outlined in
Altendorf et al. (2020). After harvest, three spikes were aligned
end-to-end (from tip of most apical spikelet to base of the most
basal spikelet, a spikelet defined as having glumes and at least
one floret) along a measuring tape and total length was recorded
and divided by three to obtain the mean. Length emerged divided
by final spike length represents percent spike emergence. In
cases where the spike was completely emerged, the length of the
emerged peduncle was included, resulting in some estimates ex-
ceeding 100%. Early spike emergence is not always coupled with
early anthesis in IWG (personal observation). Thus, Feekes flow-
ering time was also recorded for each plant on one occasion per
environment when anthers were showing (approximately
1600–1800 hour) and when approximately 50% of the plants were
in anthesis (Large 1954). Categories were coded as ordinal varia-
bles for data analysis and included: (1) boot stage where no spike
is visible; (2) heads emerging or < 25%; (3) heading 25%; (4) head-
ing 50%; (5) heading 75%; (6) heading complete but no anthers
visible; (7) beginning flowering, where yellow anthers are begin-
ning to emerge at the center of the spike; (8) flowering 50%, where
anthers are visible through the center and top of spike; (9) flower-
ing 100% where anthers (possibly white or dehiscing) are visible
throughout the entirety of the spike including the most basal
spikelets; and (10) kernels watery ripe, where anthers are likely
dehisced and florets appear plump. The same person recorded
anthesis across all locations and years. Dates of data collection
events are reported in Supplementary Figure S1.

Phenotypic data analysis
All phenotypic data analyses were conducted in R v3.6.1 (R Core
Team 2020). In a separate analysis of yield component traits, we
previously reported the calculation of estimated marginal means
(“emmeans”) for each genet nested within family for both spike
emergence percent and anthesis, as well as correlations between
traits, and both broad and narrow sense heritability estimates
(Lenth 2018; Altendorf et al. 2020). Because an initial linear model
analysis across environments revealed highly significant interac-
tions, we analyzed all unique year by location combinations (n¼
4; environments hereafter) separately. This decision was further
supported by differences in plant age between 2017 and 2018, as
well as major differences in climate and GDD accumulation be-
tween STP and TLI, and a severe drought in 2018 at TLI (Altendorf
et al. 2020). Parental means were calculated and plotted alongside
emmeans for progeny genotypes using ggplot2 (Wickham 2016).
To test whether divergent parental phenotypes produced variable
progeny, a correlation analysis was conducted between the dif-
ferences in parental phenotypes and the standard deviation
among the progeny on an individual environment basis. To test
for a maternal effect, a t-test was conducted between progeny de-
rived from the common and donor parents as the mother within
a cross. The relationship between the two forms of flowering
time data were tested using linear and quadratic model fits.

Genotyping-by-sequencing
Young leaf tissue was harvested from each genet prior to plant-
ing, freeze dried, and genomic DNA was extracted using the
BioSprint 96 Plant DNA Kit (QIAGEN, the Netherlands). DNA was
quantified using QuantiFluor dsDNA System (Promega
Corporation, WI, USA) and normalized to 10 ng/ml. Genotyping by
sequencing libraries were developed using PstI/Msp I enzymes fol-
lowing Zhang et al. (2016) with two barcodes per sample. Every 96
samples were pooled, creating a total of fifteen 96-plex libraries.
The common parent was sampled eight times and the donor
parents six each to achieve higher sequencing depth. Libraries
were amplified and cleaned using the QIAquick PCR Purification
Kit (QIAGEN, the Netherlands), quality control was done using
Picogreen (ThermoFisher Scientific, MA, USA), Agilent
Bioanalyzer (Agilent, CA, USA) and Kapa qPCR, and subjected to
size selection of 160–240bp using PippinHT (3% agarose). Each
pool was sequenced in a single lane of a 100 bp single read run on
the Illumina HiSeq 2500 HO using v4 chemistry at the University
of Minnesota Genomics Center.

Variant detection and filtering
Fastq files from the sequencer were demultiplexed using the
Barcode Splitter tool from the FastX-Toolkit (RRID: SCR_005534)
where barcodes were matched at the beginning of reads and no
mismatches were allowed. Read quality was assessed using
FastQC (RRID: SCR_014583). Adapter sequences, designed accord-
ing to (Poland et al. 2012), were removed using CutAdapt (Martin,
2011; RRID: SCR_011841). The Quality Trimmer tool from FastX-
Toolkit was used to trim reads with a quality score less than 30
(phredþ 33 scale) and a minimum read length of 30 (-Q 33 -t 30 -l
50 -v). After adapter removal and read trimming, quality was
confirmed by re-running FastQC. Bowtie2 (Langmead and
Salzberg, 2012; RRID: SCR_055476) was used to align reads to v2
of the draft IWG reference genome (access provided by The
T. intermedium Genome Sequencing Consortium), which was
indexed prior to analysis. Options were set to require reads to
align entirely and the very-sensitive preset was used, with zero
ambiguous reference characters. Reads were filtered to include
only those that mapped uniquely to the reference, and files were
sorted and indexed using SAMtools (Li et al. 2009; RRID:
SCR_002105). Within each lane, fastq files with barcodes corre-
sponding to the same sample were concatenated using a custom
BASH script. The Genome Analysis Toolkit (GATK) v4.1.2
(McKenna et al. 2010; RRID: SCR_001876) was used to call var-
iants, beginning with the HaplotypeCaller tool, which was set to
eliminate the duplicate read filter, run in GVCF mode and with
an expected heterozygosity rate of 0.01. GATK required a dictio-
nary and an “fai” index of the reference genome; these were cre-
ated using the GATK “CreateSequenceDictionary” and the
SAMtools “faidx” commands, respectively. The CombineGVCF
tool was used to merge individual sample gvcf files in a hierarchi-
cal manner. GVCF files from 18 samples were small in size (�4%
of the average), indicating low coverage, and because they caused
significant computational delays in the CombineGVCF stage they
were removed. The GenotypeGVCF tool was used to perform joint
genotyping. The program GNU Parallel (Tange 2011) facilitated
parallel calculations throughout the pipeline.

SNP filtering was done using VCFTools v0.1.16 (Danecek et al.
2011; RRID: SCR_001235) to include only bi-allelic SNPs with a
maximum of 20% missing data, a minimum allele depth of 5, and
a MAF greater than 0.005. A low MAF filter was used to allow rare
alleles to segregate in any single family at a rate of 0.05, divided
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by 10 families. Missingness on an individual basis was calculated,
and those that exceeded 70% were removed from the population.
The program Cervus v3.0 (Kalinowski et al. 2007) was used to
identify unintended outcrosses and progeny derived from self-
pollination using 2,500 markers (larger number of markers can
exceed program limitations) with the lowest percent missing
data. Fathers were predicted using the known mothers, then the
analysis was rerun using predicted fathers as known and predict-
ing mothers. Progeny derived from self-pollination or outcrosses
(those with unexpected parents resulting from stray pollen or
seed contamination) were removed from the population.

Marker imputation, population structure and
linkage disequilibrium
LinkImpute was used for marker imputation on progeny only
(Money et al. 2015). The LD-kNNi method chooses k-nearest
neighbors based on LD between SNPs and is specifically designed
to handle data from highly heterozygous species (Money et al.
2015). Imputation accuracy was tested by masking and imputing
10,000 random known genotypes. The program STRUCTURE v
2.3.4 (Pritchard et al. 2000) was used to assess population struc-
ture using K¼ 1 through 10, with five replicates each with a
length of 25,000 for a burn-in period, followed by 75,000 MCM
reps. Optimum K values were assessed using Structure Harvester
(Earl and vonHoldt 2012) based on the maximum Delta K value
using the Evanno method. The selected K CLUMPP “indfile” was
imported into CLUMPP v1.1.2 (https://rosenberglab.stanford.edu/
clumpp.html) to develop an optimal Q matrix over the 5 repli-
cates. In general, LD is expected to decay as the genetic or physi-
cal distance increases and as the number of generations or cycles
of recombination increases. Pairwise LD was estimated using the
squared correlation coefficient r2 for pairs of markers within a
chromosome and family using the makeGenotypes and LD com-
mands in the “genetics” package (Warnes et al. 2019). Pooled r2

values across all families were plotted over cM distance and the
relationships were modeled using a spline approach (Vos et al.
2017) in the “segmented” package (Muggeo 2008). The extent of
LD was estimated when the fitted line intersected with r2 ¼ 0.2
(Zegeye et al. 2014). Principal components analysis (PCA) was con-
ducted using the “rrblup” package a.mat function (Endelman
2011).

Genetic map creation
We created a consensus map for each of the 21 chromosomes of
the NAM using JoinMap v5 (Van Ooijen 2011; RRID: SCR_009248).
Because parents were genotyped 6–8 times each, the mode call
across all samples was selected for the parental genotype at each
locus using a custom R script and the “vcfR” package (Knaus and
Grünwald 2017). Families were separated, a MAF filter of mini-
mum 0.05 was applied, and loci with greater than 20% missing
data were removed. Markers were filtered within each family to
include only those that segregated as two heterozygous parents
(hkxhk), or as heterozygous in the common parent only (lmxll) or
heterozygous in the donor parent only (nnxnp) (Van Ooijen 2009).
In highly heterozygous species, genotyping by sequencing data is
susceptible to false homozygous calls because both alleles are re-
quired to randomly anneal with an adapter, amplify, sequence,
align, and pass quality filters to correctly call the locus. JoinMap
does not tolerate these low frequency sequencing or calls errors
(e.g., an nnxnp locus with a progeny genotype pp). We calculated
the genotype frequency at each locus; if an “impossible” genotype
(pp in this example) persisted at a frequency of less than 0.05, it
was assumed to be an erroneous homozygous call and was

changed to a heterozygote. If the erroneous calls persisted at a
rate of greater than 0.05 at a specific locus, the locus was re-
moved. JoinMap .loc files were created on a per family and per
chromosome basis, allowing chromosomes from the physical se-
quence map to serve as anchors for grouping markers. Within
each family, locus genotype frequency was calculated and any
markers that displayed a significant level (a¼ 0.1) of segregation
distortion were excluded. The groupings tree was calculated and
a single group with the highest number of markers was selected
at a minimum LOD of 4. Each family group was selected, and con-
sensus maps were calculated using Combine Groups for Map
Integration with the Regression Mapping option which conducts
three attempts, or rounds, of map creation. More than 250
markers per map proved to be computationally intensive, and
thus when more were present, Calculation Options were set to
exclude the third round of mapping. If insufficient linkages were
detected, the LOD threshold in calculation options was lowered
by increments of 0.1. To extract phased marker data for each
family, all previously excluded markers were unselected, geno-
type frequency was recalculated and only markers with highly
significant (a¼ 1.0 � 10�6) distortion were excluded. Groups were
created using the map node from Round 3 (or Round 2 in cases
with 250þmarkers) maps, the Maximum Linkages tab was calcu-
lated to phase the loci, allowing markers that were initially ex-
cluded to phase if they were present on the consensus map. The
quality and order of the chromosome map was assessed by corre-
lating cM positions of markers shared with another IWG consen-
sus map (Kantarski et al. 2016). Several linkage groups were
created in JoinMap in reverse order and to maintain consistency
across other studies in IWG, maps from these LGs were inverted.
The final result of this process was one .map file comprised of a
list of marker names and marker positions in 21 linkage groups,
herein referred to as the NAM Consensus Map (or NAM
Consensus .map file).

Genome wide associations
Genomewide association mapping was conducted using GAPIT
software (Lipka et al. 2012) with the default kinship matrix calcu-
lation and a MAF of 0.005. STRUCTURE results indicated optimal
K¼ 8 (Supplementary Figure S2). Results in GAPIT with and with-
out the Q matrix had very similar results (r¼ 0.965) and therefore
Q was not used. No additional PCs were added as the model selec-
tion feature within GAPIT showed PC ¼ 0 to have the highest BIC
for all traits and environments. Markers with p-value threshold
of 0.00025 (LOD ¼ 3.6) were considered significant. QTL within
clusters or peaks were resolved using the mmer function in the R
package “Sommer” (Covarrubias-Pazaran 2016). A multi-locus
model was fitted by including significant markers from the
genomewide scan as fixed effects and genets as random effects;
the covariance between genets was modeled using the realized
additive kinship matrix. Markers clustered on a chromosome
within significant QTL peaks were iteratively removed from the
model if they were insignificant (p> 0.001) or within a 21 cM win-
dow of a more significant or frequently detected marker.
Variance explained by significant QTL was calculated from the
model output. Allele frequencies and effects were obtained from
the GAPIT output.

QTL linkage mapping
Using a custom R script, Round 2 (as recommended in the
JoinMap v5 program manual) consensus maps for each chromo-
some and locus files, described above, were utilized in MapQTL
v6 (Van Ooijen 2009; RRID: SCR_009284). A full analysis of the
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cross-pollinated (CP) populations yielded excessive singularity
errors, which can occur when there are regions of the map con-
taining markers only from one parent [i.e., common parent lmxll
markers, or donor parent nnxnp markers (Van Ooijen 2009)]. In
our analysis, this was likely due to long stretches of markers
from the common parent. Therefore, the two-way pseudo test-
cross model (TWPT) was used to analyze QTLs within families
and combined over all families for each location and year (envi-
ronment, n¼ 4) separately. The TWPT approach simplified the
analysis by splitting each linkage group into a common parent
linkage group and a donor parent linkage group and using a
single-parent Doubled Haploid model for QTL analysis (Van
Ooijen 2009). In this case, 21 linkage groups from the NAM
Consensus .map file (.map list of markers and positions) were di-
vided into a second map, herein referred to as the TWPT Map (or
TWPT .map file) containing 21 linkage groups for the common
parent (lmxll markers only) and 21 linkage groups for the donor
parent (nnxnp markers only). The hkxhk markers were removed
and heterozygous genotypes (lm & np) were converted to A and
homozygous genotypes (ll & nn) to B. The maximum likelihood
mixture analysis procedure was used with maximum 20 itera-
tions, with a maximum number of neighboring markers of 10. For
each analysis, a permutation test with 1,000 iterations was con-
ducted to determine within-family and combined genome-wide
significance thresholds. Each LOD threshold for each family or
combined analysis within environment was applied accordingly.
Interval mapping was conducted first, and significant LOD peaks,
a maximum of one per LG, were selected as cofactors. The
Automatic Cofactor Selection procedure was used to determine
the final set of cofactors which were used in a single round of re-
stricted multiple QTL mapping (rMQM). A two-LOD drop off inter-
val was used to establish QTL intervals (Van Ooijen 2009) and
was determined using a custom R script.

Visualization of results and proximity to
orthologous genes
Marker position, both physical from the reference genome and
genetic from the NAM consensus map across all linkage groups,
were normalized and visualized using “LinkageMapView”
(Ouellette et al. 2018). Markers in common between both the
physical and the NAM genetic map were connected with a line
using the posonleft function. As IWG linkage groups have shown
high collinearity with barley (Kantarski et al. 2016; Zhang et al.
2016) known flowering time orthologs were selected
(Supplementary Table S1) and aligned to the IWG draft reference
genome using BLASTN 2.6.0þ (Altschul et al. 1997) with the online
BLAST resource (https://phytozome-next.jgi.doe.gov/blast-
search). Significant (1e�30) hits typically corresponded to a known
homeologous group (Kantarski et al. 2016). Two-LOD intervals for
linkage mapping were plotted from the combined analysis only
and overlapping intervals that were significant across traits and
years within an environment were collapsed into a single QTL for
visualization purposes.

Pedigree relationships between NAM parents
Pedigree records from the UMN Breeding Program were used to
identify maternal grandmothers and mothers to the NAM
Parents. As these generations were completed with random,
uncontrolled mating, the male parents were initially unknown.
Using historical GBS sequencing data from UMN Cycle 2 com-
bined with GBS data from this study, we identified male parents
using Cervus (Kalinowski et al. 2007). The TLI Breeding program

pedigrees were used to trace the origin of maternal parents to the
initial breeding cycles at TLI (Zhang et al. 2016).

Results
We developed a NAM population of IWG with 10 donor lines and
one common parent plant with a total of 1,168 genets. To enable
replicated observations, these heterozygous plants (genets) were
cloned with two replications planted in two contrasting IWG
growing environments, MN and KS. Phenotypic observations for
flowering time, including spike emergence percent and anthesis
timing were recorded in 2017 and 2018.

Growing degree days
GDD began accumulating earlier at TLI compared with STP
(Supplementary Figure S1). Spike emergence data were collected
when a visual inspection of the field suggested that spikes were
on average approximately 50% emerged from the boot, which oc-
curred on June 1 (GDD: 1567) and June 7 (1599) at TLI and June 8
(854) and 7 at STP (794) in 2017 and 2018, respectively. Anthesis
notes were taken when approximately 50% of the plants were be-
ginning anthesis on June 10 (1785) and June 6 (1574) at TLI and
June 26 (1219) and June 21 (1111) at STP in 2017 and 2018, respec-
tively. TLI had a severe drought in 2018, which began towards the
end of 2017 and lasted through anthesis in 2018. In combination
with high temperatures, this drought resulted in plant stress and
highly variable maturity where emergence and anthesis occurred
simultaneously in many cases.

Phenotypic data
Rankings of family means were mostly consistent across environ-
ments and traits (Figure 1, A and B), with families 39, 63, 26, and
36 being the latest, and 55 being the earliest. The common parent
(WGN59) was typically earlier to emerge and similar for anthesis
timing relative to the other parents. The maximum difference be-
tween parental phenotypes averaged 0.40 for spike emergence
(40% of spike emerged), and 1.75 growth stages for anthesis (dif-
ference between a few anthers showing and �75% of anthers
showing). The donor parent with the most divergent phenotype
varied depending on the environment and trait, and by and large,
divergence in parental phenotypes of a cross was not a significant
predictor variation among progeny, with the exception of anthe-
sis score in TLI 2017 (r¼ 0.84; P¼ 0.002; Supplementary Table
S2). Furthermore, in every case, the range of progeny phenotypes
within families was much greater and exceeded that of the
parents, providing evidence for transgressive segregation
(Figure 1, A and B). Emergence and anthesis were positively asso-
ciated in all environments (Supplementary Figure S3). In STP
2017 and 2018, where emergence percent data were recorded
around 50% emerged, the trend between the two traits was linear
(P< 0.0001). At TLI in 2017 and 2018, when data were recorded
later, around 75%–100% emerged, the relationship was best de-
scribed by a quadratic fit (P< 0.0001). In all environments, but es-
pecially at TLI, within each category of anthesis stage, spike
emergence varied widely, suggesting that early emergence is not
always associated with early anthesis. There were no notable sig-
nificant maternal effects for either trait, with the exception of
one instance, where progeny derived from WGN38 showed a sig-
nificantly lower anthesis score than progeny derived from the
common parent in 3 of 4 environments (Supplementary Tables
S3 and S4). Progeny derived from self-pollination tended to be sig-
nificantly later maturing according to both measures
(Supplementary Figure S4).
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Marker data and SNP filtering
Initial SNP marker count was 444,023 which was reduced to 8,003
after filtering. Two genets were removed because they had
greater than 70% missing marker data. The common parent had
a high propensity for self-pollination with a rate of 8.3% (range of
1.5%–15.9%, depending on the family), while the donor parents
averaged 2.9% (range of 0%–11.4%, depending on the family). A
total of 74 individuals were removed from the final analysis be-
cause they were identified as progeny derived from self-
pollination or unintended outcrosses. Final family size on aver-
age was 117 individuals. Imputation accuracy for LinkImpute
was 95.3%. Linkage disequilibrium, as defined by r2 ¼ 0.2, varied
across linkage groups with a range of 14.5 cM for LG 20, and 53.5
cM for LG 18 with a median of 21.08 cM (Supplementary Figure
S5). The first two principal components of the genotype matrix
explained 22.2% and 15.5% of the variation (Figure 2). The

distribution of individuals, with the common parent in the cen-
ter, and progeny distributed approximately mid-way between
parents, demonstrated the expected relationship (either half- or
full-sibs) between individuals in the population.

Consensus linkage map creation
After filtering for MAF and missing data within families, an aver-
age of 3,003 markers per family (average 143 per LG) were used
for initial linkage mapping analysis. Across families, 40% (range:
36%–43%) of markers displayed significant segregation distortion
at a¼ 0.1, and were excluded from the map making step
(Supplementary Figure S6). A greater proportion of the hkxhk
type markers (average 71%) exhibited distortion, followed by
lmxll (28%), and nnxnp (24%). In the case of LG 18, there was an
insufficient number of undistorted lmxll (common parent,
WGN59) markers to contribute to the map and thus the map for
LG 18 only includes nnxnp markers. The final map length aver-
aged 161 cM per LG with a total length of 3,385 cM (Haldane’s
mapping units) and a density of one marker per 0.93 cM
(Figure 3). Pearson correlation was used to assess the quality of
the map order using markers in common with the consensus ge-
netic map (Kantarski et al. 2016) and 17 LGs were above r¼ 0.95,
with four having lower correlations (Supplementary Figure S7).
Markers that exhibited distortion in one family, but were in-
cluded in map making in another, were allowed to phase in the
creation of the .loc files for use in MapQTL. There were approxi-
mately 1,652 markers per family in common between the consen-
sus and the final NAM map with an average of 78 per LG
(Supplementary Figure S8). To implement the TWPT, hkxhk
markers were excluded which reduced this number to an average
of 994 markers per family and 47 markers per LG.

Genome wide association
Nineteen and twenty-six marker-trait associations were detected
for the emergence percent and anthesis score respectively across
the four environments using GWAS (Figure 3; Table 2). Seven

Figure 1 Distribution of progeny emmeans within the 10 IWG NAM families for emergence percent (A) and anthesis score (B) at St. Paul (STP) and the
Land Institute (TLI) in 2017 and 2018. Black horizontal lines within boxplots are progeny means. Horizontal gray dotted line indicates common parent
mean and colored dots indicate parent means. Families are ordered based on their ranking for STP 2017.

Figure 2 Principal components (PC) analysis of the intermediate
wheatgrass nested association mapping population families, where large
dots indicate parents, small dots indicate progeny and colors indicate
family identity. Axis labels include percent variance explained for the
two PCs.
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were significant in two trait environment combinations, and two
in three environment trait combinations. Markers generally
explained a small percent of the variation for a trait, for a median
of 1.7 and 1.9 for emergence and anthesis, respectively. Allele
effects corresponded to a median absolute difference of 6.5%
spike emerged, or a 0.35 fraction of a growth stage. Most QTL
were detected on chromosomes 5, 2, 6, 21, 9, and 16. Most QTL
were detected at STP 2018 (15) and fewest were detected at TLI
2018 (7).

QTL linkage mapping
In the combined analysis, 24 and 8 QTL intervals detected for
emergence percent and anthesis score, respectively. Of these, five
were identified in more than one trait or environment (Figure 3;
Table 3), and the majority (62.5%) were identified as segregating
in the donor parent. In the individual family analyses, the most
QTL were detected in families 15 (10), 26 (10), and 36 (10). A QTL
detected in the combined analysis typically overlapped anywhere
between zero and five significant within-family QTL (Table 3).
Allele effects and variance explained are only calculated in the
within family analyses. The median variance explained for a QTL
was 14.8% (range 8.6%–73.3%). The most QTL were found on LG 6
(12 in unique analysis by trait by environment combinations), LG
17 (11), and LG 12 (10).

Pedigree relationships
Using pedigree records and historical genotype data from the
breeding program, we determined multiple shared relationships
between the NAM parents, which were initially selected based on
phenotype alone (Supplementary Figures S9 and S10; Zhang et al.

2016). Importantly, we determined that the common parent,
WGN59, was derived from a mating of at least half-siblings (male
parents are unknown), leading to a minimum inbreeding coeffi-
cient for that individual of F � 1=8. Parent WGN26 is a half-sibling
to WGN59 (coefficient of coancestry, fWGN26, WGN59 � 1=8). Parents
WGN36 and WGN38 were full siblings, and along with WGN15,
they share a common grandmother (C3-3471) with WGN59
(fWGN36, WGN59 ¼ fWGN38, WGN59 ¼ fWGN15, WGN59 � 1/16). Parent C3-
3471 was the first nonshattering, 90% free-threshing plant de-
rived from The Land Institute’s breeding program and has been
used in numerous crosses in the UMN program and in the crea-
tion of the consensus genetic map (Kantarski et al. 2016). We also
identified interrelatedness among six donor parents that are
half-sibs, sharing either a mother or father in common, includ-
ing: WGN39 and WGN63, WGN07 and WGN46, WGN45 and
WGN55.

Discussion
IWG is currently undergoing domestication as a perennial grain
crop for human consumption. Selection targets for this crop are
numerous and the understanding of the genetic control of impor-
tant traits remains relatively unknown. NAM as a method for
marker-trait dissection has proven useful in other crops but has
not been tested before in a species with this mating system, one
that is self-incompatible and requires the use of F1 progeny. We
examined a 10-family F1 NAM of IWG developed with phenotypi-
cally diverse parents from Cycle 2 of the University of Minnesota
breeding program. Considering the importance of variation in
flowering time for optimizing yield and performance in new

Figure 3 For each chromosome, the physical map (unpublished, access provided by the Thinopyrum intermedium Genome Sequencing Consortium) is on
the left, and linkage maps developed in the present study are on the right. Markers that were used in both mapping approaches are connected with a
line. Physical distances in megabase pairs (mbp) and genetic distances in centimorgans (cM) are normalized to comparable lengths. Included on the
physical map (left), are the significant markers from GWAS and possible candidate orthologous genes (black italic). Included on the linkage map (right)
are the 2-LOD drop off intervals for the combined analysis across populations (bars indicate interval length), for STP (light blue) and TLI (dark blue) for
emergence percent (EMP) and anthesis (ANT) followed by the years (17 and 18 for 2017 and 2018) in which the marker interval was detected.
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environments, we sought to increase our understanding of the
genetic control of flowering time in IWG and determine the utility
of this population for genetic mapping.

Two methods were used to detect QTL for flowering time,
GWAS and two-way pseudo testcross linkage mapping using both
a combined and within population analysis and a genetic map
created specifically for the NAM. In most cases, regions with
many GWAS QTL coincided with significant linkage mapping
intervals that were consistent across multiple trait and environ-
ment combinations (Figure 3). Furthermore, these regions, specif-
ically on chromosomes 6, 17, 14, 5, and 21, were in supported by
BLAST hits and corresponding gene models to orthologous barley
flowering time genes. On chromosome 6, GWAS marker
Chr06_27073072, which was detected in in both STP years for
emergence percent and for anthesis in STP 2018 is 23.9 kb away
from a significant BLAST hit and corresponding gene model for
the well-characterized Ppd-H1 gene in barley that delays flower-
ing time (Turner et al. 2005; Figure 3). This QTL region is further

supported by the QTL linkage mapping results, which was signifi-
cant in three analyses in STP. In GWAS, the allele segregated in
all ten families, and explained on average 3.23% of the variation
(Table 2). In linkage mapping, this region was detected in the
combined analysis and in families 15 and 55 where it explained
on average 19% of the variation, suggesting that this marker may
have family specific effects (Table 3). A TLI-specific QTL on chro-
mosome 17 was detected in GWAS (Chr17_317374690) in three of
four TLI analyses and was supported by an overlapping QTL in-
terval (peaking around an average of 127 cM) that was detected
in two of four analyses at TLI and one at STP. The GWAS QTL was
within 66 mpb and 57 kb from significant BLAST hits for the
orthologous genes Constans 2 and PHYB, respectively (Griffiths
et al. 2003; Sz}ucs et al. 2006). Though only detected using linkage
mapping in emergence percent at STP in 2018, a QTL interval on
LG 14 aligned closely with a hit for PHYC and VRN1 (Fu et al. 2005;
Nishida et al. 2013). On chromosome 5, we detected, across both
approaches and in multiple environments, QTL that aligned near

Table 2 Results from genomewide association mapping results for all environments organized by trait and environment (top row). Instances in which the QTL
was not detected in the present environment are indicated by missing values (“—").

STP 2017 STP 2018 TLI 2017 TLI 2018

Trait SNPa Allelesb MAFc Segregating
Familiesd

2log10(p)e Effectf PVEg �log10(p) Effect PVE �log10(p) Effect PVE �log10(p) Effect PVE

Emergence
Percent

Chr02_163115345 T/C 0.11 15, 63 3.93 –0.07 3.65 — — — — — — — — —
Chr02_178305818 T/C 0.16 26, 38, 39, 45, 55, 63 — — — 3.66 0.05 0.84 — — — — — —
Chr02_245307556h C/T 0.02 38 — — — — — — 5.2 0.18 1.44 — — —
Chr05_327412330 A/G 0.05 36, 39 — — — 3.87 –0.07 1.44 — — — — — —
Chr05_392431630 C/G 0.05 39, 63 3.68 –0.07 1.63 — — — — — — — — —
Chr06_27073072h T/C 0.44 All 4.27 0.03 2.34 9.53 0.06 3.27 — — — — — —

Chr06_445976596h G/T 0.34 07, 15, 38, 45, 46, 55 — — — 7.1 –0.06 1.05 — — — — — —
Chr09_131144770 A/G 0.26 07, 36, 39, 45, 46, 63 — — — — — — — — — 4.36 –0.06 2.41
Chr11_193858632h G/A 0.05 39, 55 — — — 3.87 –0.07 0.58 — — — — — —
Chr12_347517636 A/G 0.13 26, 39, 45, 55, 63 — — — 3.75 0.05 0.91 — — — — — —
Chr13_347308338 C/T 0.13 15, 38, 39 — — — — — — 3.66 –0.08 0.82 — — —
Chr16_326253169 G/C 0.47 All — — — — — — 3.82 –0.05 1.67 — — —
Chr17_317374690h G/C 0.36 All — — — — — — 4.25 –0.05 2 3.81 –0.04 2.01
Chr18_112460873h G/A 0.05 36, 38 — — — 4.79 –0.08 1.7 — — — — — —
Chr18_550223545h G/C 0.16 07, 36, 38, 39, 45, 55 — — — — — — 5.17 0.07 1.76 — — —
Chr21_75063069h T/A 0.19 07, 36, 38, 46, 63 — — — 3.7 –0.05 2.46 — — — — — —
Chr21_121306193 C/T 0.02 07, 15 — — — — — — — — — 4 0.1 0.78

Anthesis
Score

Chr02_245307556h C/T 0.02 38 — — — — — — 5.47 0.79 2.82 — — —
Chr02_391596222 G/A 0.15 07, 38, 45, 46 — — — — — — 3.93 0.3 2.03 — — —
Chr04_266676626 T/C 0.15 26, 39, 45, 46, 55, 63 — — — 3.81 0.26 1.53 — — — — — —
Chr05_152472752 T/C 0.12 45, 46, 55 — — — — — — 4.48 –0.35 3.15 — — —
Chr05_269372528 C/T 0.02 26 5.96 0.75 2.91 — — — — — — — — —
Chr05_426524999 G/C 0.25 15, 26, 36, 38, 39, 45, 46 — — — 4.11 –0.25 1.77 — — — — — —
Chr06_27073072h T/C 0.44 All — — — 10.02 0.32 4.08 — — — — — —

Chr06_445976596h G/T 0.34 07, 15, 38, 45, 46, 55 — — — 6.37 –0.32 0.76 — — — — — —
Chr06_470381731 G/T 0.45 All — — — — — — — — — 5.58 0.28 2.07
Chr06_507506304 C/T 0.40 All — — — — — — — — — 3.65 0.28 0.54
Chr07_315344031 C/T 0.05 39, 55 — — — 4.25 –0.44 0.08 — — — — — —
Chr08_202486528 T/C 0.05 07, 46 — — — — — — 4.12 –0.49 0.93 — — —
Chr09_183303350 C/T 0.02 46 — — — — — — 4.48 0.65 0.99 — — —
Chr09_265159585 C/T 0.03 07 — — — — — — — — — 3.67 0.72 0
Chr11_193858632h G/A 0.04 39, 55 — — — 4.94 –0.46 0.52 — — — — — —
Chr16_34501928 T/C 0.05 26, 55 3.76 0.36 0.4 — — — — — — — — —

Chr16_397627839 G/A 0.39 All — — — — — — 3.89 0.2 2.37 — — —
Chr17_317374690h G/C 0.36 All — — — — — — 5.32 –0.24 1.9 — — —
Chr18_112460873h G/A 0.05 36, 38 4.05 –0.41 1.78 — — — — — — — — —
Chr18_550223545h G/C 0.16 07, 36, 38, 39, 45, 55 — — — — — — 4.85 0.27 1.95 — — —
Chr19_484430789 T/C 0.03 07 — — — — — — — — — 4.27 0.78 1.85
Chr19_762292265 C/T 0.07 15, 39, 45 4.78 0.38 1.98 — — — — — — — — —
Chr20_193202832 C/T 0.11 15, 45, 55 3.73 0.35 0.5 — — — — — — — — —
Chr21_33179355 G/A 0.12 26, 36, 38, 55, 63 3.98 –0.28 2.52 — — — — — — — — —
Chr21_75063069h T/A 0.19 07, 36, 38, 46, 63 — — — 4.76 –0.34 3.06 — — — — — —
Chr21_131911561 G/C 0.3 07, 36, 38, 39 4.36 0.33 3.8 — — — — — — — — —

a SNP, single nucleotide polymorphism, including chromosome number followed by position in base pairs.
b Reference and alternate alleles.
c Minor allele frequency within the entire 10-family NAM population.
d NAM families in which the allele segregates above a frequency of 0.05.
e Level of significance.
f Allele effect in trait units, associated with the alternate allele.
g PVE, percent variance explained by the QTL.
h Indicates a SNP detected in both traits.
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Table 3 Results from linkage mapping analyses combined across families and within families for emergence percent and anthesis,
including two-LOD drop off intervals, peak loci, maximum LOD, variance explained and allele effects.

Trait Location Year LGa Parentb Leftc Peakd Righte Peak locusf Max
LOD

Analysisg r2 lh ai cj

Emergence
Percent

STP 2017 6 Donor 0 18.6 31.9 DP_Chr06_27073118 11.3 combined — — — —
9 Common 116.8 122.5 140.2 CP_Chr09_130411564 3.93 WGN15 0.10 0.49 –0.05 —
9 Common 120.8 134 140.2 CP_Chr09_95651880 8.19 combined — — — —

12 Common 62.2 75.1 80.8 — 9.6 combined — — — —
15 Donor 28.4 36.5 51.5 DP_Chr15_158935699 9.09 combined — — — —
15 Donor 37.9 43.8 60.4 DP_Chr15_407790725 5.65 WGN15 0.15 0.49 — 0.06
18 Donor 58.4 76.8 93.3 DP_Chr18_170459443 3.85 WGN36 0.12 0.42 — 0.05
18 Donor 69.6 72.7 79.2 DP_Chr18_120939654 9.2 combined — — — —
20 Common 67.1 67.1 89.2 CP_Chr20_276537892 3.24 WGN36 0.10 0.41 0.04 —
21 Donor 58 65.4 67 DP_Chr21_87225445 9.87 combined — — — —

2018 4 Common 140.6 155.3 155.3 CP_Chr04_261391029 3.79 WGN38 0.13 0.47 0.05 —
6 Donor 0 24.9 28.9 — 19.25 combined — — — —
6 Donor 0 26.1 33.6 — 5.05 WGN15 0.18 0.54 — 0.07
6 Donor 0 25.1 30.9 DP_Chr06_445976596 6.65 WGN55 0.21 0.57 — 0.07
8 Common 61 87.4 130.7 CP_Chr08_191903001 3.93 WGN36 0.13 0.46 –0.06 —
8 Common 83.4 87.4 93.8 CP_Chr08_191903001 11.86 combined — — — —

11 Donor 52.2 56.9 59.3 DP_Chr11_90001198 8.57 WGN45 0.28 0.64 — 0.08
11 Donor 54.9 56.9 58.9 DP_Chr11_90001198 14.47 combined — — — —
11 Common 85.6 87.4 96.6 CP_Chr11_223223131 10.02 combined — — — —
12 Common 34.9 36.2 41.2 CP_Chr12_51058733 4.7 WGN26 0.15 0.45 0.04 —
12 Common 44.7 55.7 73.1 CP_Chr12_147552391 4.06 WGN15 0.12 0.55 –0.06 —
12 Common 56.3 59.9 61.8 CP_Chr12_305515847 4.99 WGN36 0.15 0.46 0.06 —
12 Common 63.6 68.8 88.8 CP_Chr12_332128678 3.84 WGN07 0.10 0.57 0.05 —
12 Common 68.2 69.2 71.7 CP_Chr12_262720774 19.06 combined — — — —
14 Donor 121.5 136.6 151.1 DP_Chr14_409417450 8.43 combined — — — —
17 Common 57.9 70.1 75.2 CP_Chr17_97190635 12.7 combined — — — —
17 Donor 86.7 103.5 135.7 DP_Chr17_315762187 8.82 combined — — — —
20 Common 106 114 121.7 CP_Chr20_537718179 3.99 WGN26 0.14 0.44 –0.04 —
20 Common 107 114 116.9 CP_Chr20_537718179 11.03 combined — — — —
21 Donor 45.5 60.6 70.3 DP_Chr21_113736059 8.23 combined — — — —
21 Donor 70.3 87.3 92 — 4.86 WGN63 0.19 0.38 — –0.06

TLI 2017 6 Donor 74.4 91.5 106.8 DP_Chr06_367267076 4.21 WGN36 0.13 0.81 — –0.06
6 Donor 78.9 92.5 104.8 — 11.74 combined — — — —
6 Donor 85 114 144.8 DP_Chr06_490834190 3.52 WGN15 0.13 0.69 — 0.07
9 Donor 39.4 47.1 52 DP_Chr09_59953210 8.26 combined — — — —

12 Common 34.9 49.2 52.5 — 11.59 combined — — — —
12 Common 61.8 62.4 67.6 CP_Chr12_208165297 5.72 WGN36 0.16 0.82 0.07 —
13 Donor 134.9 151.5 165.3 DP_Chr13_328372421 9.82 combined — — — —
13 Donor 134.9 157.3 166.3 — 6.52 WGN38 0.22 0.87 — –0.10
15 Donor 33.2 58.1 86 — 5.19 WGN15 0.16 0.68 — 0.08
17 Donor 99.5 126.3 135.7 — 3.45 WGN38 0.09 0.88 — –0.07
17 Donor 105.5 126.3 135.7 — 10.41 combined — — — —
17 Common 106.2 117.4 135.7 CP_Chr17_321627070 4.67 WGN55 0.15 0.74 0.08 —
17 Common 115.3 125.8 135.7 — 14.8 combined — — — —

2018 9 Donor 46.1 52 58.1 — 8.14 combined — — — —
13 Common 35.6 59.2 70.4 CP_Chr13_104225517 3.68 WGN26 0.13 1.00 0.06 —
13 Common 35.6 92.1 150 — 3.84 WGN55 0.24 0.91 0.11 —
13 Common 38.2 48.6 69.4 — 9.69 combined — — — —
14 Donor 25.9 25.9 47.2 DP_Chr14_2538957 3.62 WGN36 0.14 1.09 — 0.06
21 Donor 52.4 61.4 71.5 DP_Chr21_90120652 3.44 WGN36 0.13 1.08 — –0.06

Anthesis
Score

STP 2017 5 Donor 38.2 101.8 125.8 — 9.8 WGN26 0.73 7.00 — –0.69
5 Donor 80.1 109.2 120.8 DP_Chr05_385257903 14.89 combined — — — —
6 Donor 0 27.1 39.5 — 5.06 WGN55 0.17 8.10 — 0.27

15 Donor 37.9 39.3 67.7 DP_Chr15_357630002 4.69 WGN15 0.17 7.08 — 0.33
21 Donor 33.7 64.8 85.3 — 3.69 WGN07 0.13 7.30 — 0.31

2018 5 Donor 6.1 96.9 122.8 — 7.1 WGN26 0.66 7.16 — –0.65
6 Donor 0 24.9 29.9 — 14.46 combined — — — —
6 Donor 0 24.9 33.6 — 5.44 WGN15 0.19 7.48 — 0.41
6 Donor 0 22 31.9 — 4 WGN55 0.15 8.00 — 0.28

12 Common 50.5 56.3 60.9 CP_Chr12_203098219 14.05 combined — — — —
TLI 2017 2 Common 12.1 65.3 114.8 — 3.31 WGN26 0.16 6.35 0.31 —

2 Donor 33.2 58.9 65.2 DP_Chr02_274704624 3.45 WGN36 0.13 7.00 — –0.39
3 Donor 0 0 20 DP_Chr03_42742623 5.4 WGN46 0.66 7.42 — –0.91
5 Donor 7.1 92.9 118.8 — 6.35 WGN38 0.61 7.08 — –0.91
5 Donor 48 60.6 118.8 DP_Chr05_153821474 9.44 combined — — — —
9 Common 118.8 134 140.2 CP_Chr09_95651880 2.88 WGN15 0.10 6.09 –0.18 —

12 Donor 103.8 139.8 139.8 — 5.62 WGN46 0.66 7.42 — 0.90
13 Donor 129.7 129.8 130.1 DP_Chr13_337044446 5.04 WGN38 0.21 7.03 — –0.50
15 Donor 93.5 102.6 102.6 DP_Chr15_521971228 3.97 WGN26 0.13 6.31 — –0.28

(continued)
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orthologs of Constans4 and Ppd-H1 (Griffiths et al. 2003; Turner
et al. 2005), and QTL on chromosome 21 near Constans1 and
Constans8 (Figure 3; Griffiths et al. 2003). These results are the first
to provide evidence that the well-described flowering time path-
ways in barley may also play a role in determining flowering time
in IWG. We also identified regions that aligned closely previously
described maturity QTL in IWG on chromosomes 12 and 17
(Larson et al. 2019). The fact that the NAM population revealed
new QTL, previously described QTL, and newly identified QTL
that align closely with likely orthologs, suggests that the NAM ap-
proach was effective at mapping flowering time in IWG.

It is important to note, however, that there was some discrep-
ancy between the two mapping methods. For example, GWAS
QTL on chromosomes 2, 16, and 18 (Figure 3) were not found in
linkage mapping, and vice versa for QTL on chromosomes 8, 12,
17, and 20. The IWG reference genome is still in development and
thus it is likely that sequences may be out of place, as is evi-
denced by some discrepancy in marker order from the genetic
and physical maps (Figure 3). Furthermore, mapping resolution
may have been limited due to few recombination events in the
development of the population. The severe segregation distortion
and high LD identified in the population may have also limited
mapping resolution in the linkage mapping method, which we
describe in further detail below.

The results also differed in some cases across environments,
which suggests that different pathways or genes influence flow-
ering time in different environments. For example, the QTL on
chromosome 6 in the region of Ppd-H1 were only detected in STP,
and those on chromosome 17 were found primarily at TLI. This
finding is supported by the vast differences in GDD accumulation
across the two sites (Supplementary Figure S1). Furthermore, pre-
vious work in IWG has also shown that the presence and location
of QTL can vary depending on whether phenotypic data are
tested on an individual environment basis or averaged across
environments (Larson et al. 2019; Mortenson et al. 2019).

While the NAM population showed promise for its ability to
dissect the genetic control of an important agronomic trait, it
also had several challenges. First, the parents were selected ini-
tially based on their divergent phenotype, but this alone proved

to be an inadequate way to select for genetically divergent
parents. The purpose of identifying genetically divergent parents
would be to maximize the variation observed in the progeny.
However, for the purposes of genetic mapping in an F1 outcross-
ing species it is more important to identify parents that are highly
heterozygous so their segregations are effective and can be ob-
served. In the case of this NAM, this was hindered by the fact
that the common parent, being a progeny of a cross between a
minimum of half-siblings likely resulted in increased identity by
descent (IBD) and potentially masked recombination. This be-
came apparent in the map making step when certain families
and LGs could not be phased, additionally there was severe segre-
gation distortion which reduced the markers that could be used
and limited the number of markers that could be tested within
the common parent using the TWPT method. This can also likely
be observed in high LD that was identified across chromosomes.
Previous work in IWG has determined LD to decay to an r2 ¼ 0.20
at 1–5 cM (Zhang et al. 2016; 2017; Bajgain et al. 2019a), which is
much lower than the present estimate of 21 cM. This LD is also
higher than one would expect in an outcrossing species (Flint-
Garcia et al. 2003). This is due in large part to the population de-
sign, where the individuals are all related to one another (as op-
posed to a traditional, diverse GWAS population where only
historical recombination is detectable), the inbred nature of the
common parent, and the shared pedigree with several of the do-
nor parents (Supplementary Figure S1). LG 18 had the highest LD,
indicating that in either recombination could not be detected due
to homozygosity within the parents, or that recombination rates
were very low. Recombination rates have shown to be highly vari-
able across chromosomes (e.g., Bauer et al. 2013). Thus, it is not
surprising that LG 18 would not phase for the common parent in
JoinMap.

Difficulty in creating genetic maps in IWG due to inbreeding
has also been reported (Kantarski et al. 2016), and thus it is sug-
gested that future work in IWG ensures high levels of heterozy-
gosity within the chosen phenotypically diverse parents for
linkage mapping, which can be achieved through assessing geno-
type data of the parents. Kantarskiet al. (2016) also reported seg-
regation distortion in all component maps in the IWG consensus

Table 3 (continued)

Trait Location Year LGa Parentb Leftc Peakd Righte Peak locusf Max
LOD

Analysisg r2 lh ai cj

17 Donor 104.5 126.3 135.7 — 4.29 WGN36 0.16 6.94 — –0.44
17 Common 107.2 121 135.7 — 4.33 WGN55 0.16 6.48 0.40 —
17 Common 109.3 133.8 135.7 CP_Chr17_324713190 3.76 WGN26 0.15 6.33 0.30 —
17 Donor 113.9 135.7 135.7 DP_Chr17_314914761 15.19 combined — — — —
17 Common 121 131.8 135.7 — 21.58 combined — — — —
21 Donor 63 70.4 83.5 DP_Chr21_203177933 3.71 WGN26 0.12 6.30 — –0.28

2018 6 Donor 122.1 144.8 144.8 — 4.28 WGN26 0.17 5.81 — –0.44
9 Donor 44.2 49.2 70.7 DP_Chr09_165133955 3.82 WGN07 0.14 6.23 — –0.42
9 Donor 44.4 47.1 56.3 DP_Chr09_59953210 9.51 combined — — — —

10 Common 25.4 41.4 75.4 — 3.8 WGN55 0.16 5.21 –0.43 —
15 Donor 34.7 36.7 42.1 DP_Chr15_118317427 10.94 combined — — — —
15 Donor 47.7 64.7 74.9 DP_Chr15_428831151 4.01 WGN15 0.14 5.05 — 0.30
15 Common 122.1 131.9 131.9 CP_Chr15_571603230 3.66 WGN07 0.11 6.28 0.39 —
19 Donor 100.8 119 125.3 DP_Chr19_555538398 3.95 WGN63 0.15 5.02 — 0.25

a LG, linkage group.
b Map used in linkage mapping.
c–e Genetic positions in centimorgans (cM) of the 2-LOD drop-off interval.
f Peak locus of the QTL interval where“-“indicates that the peak was between two markers.
g Analysis whether the QTL was detected in the combined (including all families) analysis or within the analysis of a specific family. Allele effects are not

reported in the combined analysis.
h Overall mean.
i Difference between alleles in the common parent.
j Difference between alleles in the donor parent.
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genetic map with presence in variable LGs. One of their maps,
C3-3471 x S, was derived from self-fertilization of one individual
and exhibited distortion across 11 of 21 groups. Interestingly, an-
other population, M26 x M35, which was derived from a mating
of half-siblings also exhibited high rates of distortion in groups 1,
3, 4, 6, 7, 8, 10, 13, 14, and 20 (Kantarski et al. 2016), but was effec-
tive in terms of its mapping potential both using the CP and
TWPT approaches (Larson et al. 2019). The populations used in
the present population represent a later breeding cycle and thus
there have since been additional opportunities for inbreeding and
shared pedigree. Kantarski et al. (2016) also reported bias in the
segregated markers towards the hkxhk types, which was also
found in this case (Supplementary Figure S8) and suggests the
presence of lethal or deleterious alleles.

Two methods of measuring reproductive development, spike
emergence and anthesis, were assessed in two distinct environ-
ments over 2 years. The methods exhibited a positive association
with one another (Supplementary Figure S3). Recording anthesis
can be challenging in IWG since anthers are on display typically
in the evening (�15:00 hours) and can quickly dehisce with in-
clement weather such as wind or rain. Once anthers are gone, it
becomes very difficult to accurately and efficiently discern be-
tween different stages of anthesis. Emergence percent is more
time consuming as it involves measuring at least one spike in the
field and sometimes more in cases with high variability, as well
as spike length after harvest. If spike length is already routinely
collected, spike emergence may be an easier method for assess-
ing flowering time, but caution should be taken to measure it
around 50% emergence so that a linear relationship exists be-
tween the two events. We previously reported that the two meas-
ures of flowering time appear to have a slightly different
influence on grain yield in spaced plants (Altendorf et al. 2020),
but no QTL regions detected in the present study appeared to be
completely unique to one trait or the other.

In this study, we developed an IWG NAM and investigated re-
productive development of IWG. This resulted in the identifica-
tion many QTL that are located near known orthologous gene
models or other previously identified regions. We expect that the
QTL detected in this study can be used as fixed effects in genomic
selection to alter flowering time in IWG to maximize adaptation
to specific environments, or to identify allelic combinations that
may lead to more uniformly flowering stands as a way to in-
crease successful pollination. This is especially important as low-
floret site utilization has been described as a major barrier to
seed yield in IWG (Altendorf et al. 2020). In the TLI breeding pro-
gram, early flowering has been selected as a way of reducing heat
and drought stress during seed fill and has provided a yield ad-
vantage over later maturing genets. In addition, manipulation of
flowering time may be useful in reducing disease pressure such
as ergot (Claviceps purpurea) which develops in the unfertilized
ovaries of cereal crops. In addition to better understanding IWG
growth and development, the methods developed in this study
should be applicable to a broad range of outcrossing species,
where the NAM population design has not been used previously,
as well as species that are undergoing domestication for new
crop development.

Data availability
Supplementary materials and the phenotypic data are available
at figshare: https://doi.org/10.25387/g3.13010273. All code and
supporting files necessary to reproduce the analyses are available
at corresponding author’s GitHub page: https://github.com/kral

tendorf under the project name “IWG_NAM_Introduction”. At the
time of publication, the parental clones were maintained at the
St. Paul Experiment Station in St. Paul, MN, and are available
upon request.
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