
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Qunzhou Zhang,
University of Pennsylvania,
United States

REVIEWED BY

Mariusz Z. Ratajczak,
University of Louisville Physicians,
United States
Liang Yang,
Nankai University, China

*CORRESPONDENCE

Andrzej Eljaszewicz
andrzej.eljaszewicz@umb.edu.pl
Marcin Moniuszko
marcin.moniuszko@umb.edu.pl

†These authors share senior authorship

SPECIALTY SECTION

This article was submitted to
Immunological Tolerance
and Regulation,
a section of the journal
Frontiers in Immunology

RECEIVED 12 June 2022

ACCEPTED 25 August 2022
PUBLISHED 16 September 2022

CITATION

Tynecka M, Janucik A, Niemira M,
Zbikowski A, Stocker N, Tarasik A,
Starosz A, Grubczak K, Szalkowska A,
Korotko U, Reszec J, Kwasniewski M,
Kretowski A, Akdis C, Sokolowska M,
Moniuszko M and Eljaszewicz A (2022)
The short-term and long-term
effects of intranasal mesenchymal
stem cell administration to
noninflamed mice lung.
Front. Immunol. 13:967487.
doi: 10.3389/fimmu.2022.967487

COPYRIGHT

© 2022 Tynecka, Janucik, Niemira,
Zbikowski, Stocker, Tarasik, Starosz,
Grubczak, Szalkowska, Korotko, Reszec,
Kwasniewski, Kretowski, Akdis,
Sokolowska, Moniuszko and Eljaszewicz.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 16 September 2022

DOI 10.3389/fimmu.2022.967487
The short-term and long-term
effects of intranasal
mesenchymal stem cell
administration to noninflamed
mice lung

Marlena Tynecka1, Adrian Janucik1, Magdalena Niemira2,
Arkadiusz Zbikowski3, Nino Stocker4, Agnieszka Tarasik5,
Aleksandra Starosz1, Kamil Grubczak1, Anna Szalkowska2,
Urszula Korotko6, Joanna Reszec5, Miroslaw Kwasniewski6,
Adam Kretowski2,7, Cezmi Akdis4, Milena Sokolowska4,
Marcin Moniuszko1,8*† and Andrzej Eljaszewicz1*†

1Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok,
Bialystok, Poland, 2Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland,
3Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland, 4Swiss Institute
of Allergy and Asthma Research, University of Zurich, Davos, Switzerland, 5Department of Medical
Pathomorphology, Medical University of Bialystok, Bialystok, Poland, 6Centre for Bioinformatics and
Data Analysis, Medical University of Bialystok, Bialystok, Poland, 7Department of Endocrinology,
Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland, 8Department
of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
Mesenchymal stem cells (mesenchymal stromal cells; MSC)-based therapies

remain a promising approach to treat degenerative and inflammatory diseases.

Their beneficial effects were confirmed in numerous experimental models and

clinical trials. However, safety issues concerning MSCs’ stability and their long-

term effects limit their implementation in clinical practice, including treatment

of respiratory diseases such as asthma, chronic obstructive pulmonary disease,

and COVID-19. Here, we aimed to investigate the safety of intranasal

application of human adipose tissue-derived MSCs in a preclinical

experimental mice model and elucidate their effects on the lungs. We

assessed short-term (two days) and long-term (nine days) effects of MSCs

administration on lung morphology, immune responses, epithelial barrier

function, and transcriptomic profiles. We observed an increased frequency of

IFNg- producing T cells and a decrease in occludin and claudin 3 as a long-term

effect of MSCs administration. We also found changes in the lung

transcriptomic profiles, reflecting redox imbalance and hypoxia signaling

pathway. Additionally, we found dysregulation in genes clustered in pattern

recognition receptors, macrophage activation, oxidative stress, and
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phagocytosis. Our results suggest that i.n.MSCs administration to noninflamed

healthy lungs induces, in the late stages, low-grade inflammatory responses

aiming at the clearance of MSCs graft.
KEYWORDS

mesenchymal stem cell, noninflamed lung, stem cell-based therapy, epithelial barrier,
transcriptomic profiles
Introduction

Since the 90s mesenchymal stem cells (also known

as mesenchymal stromal cel ls , MSCs) have gained

considerable interest in the scientific community due to

their immunomodulatory properties and regenerative

potential. To date, the MSC-mediated beneficial effect has been

confirmed in numerous preclinical models, medical

experiments, and clinical trials (1–5). In fact, the perspective

of MSC-based therapy implementation holds a promise for, to

date, uncurable or poorly controlled chronic inflammatory and

degenerative diseases. According to clinicatrial.gov, MSCs have

been tested in multiple respiratory system diseases, such as acute

respiratory distress syndrome, COVID-19, chronic obstructive

pulmonary disease, idiopathic pulmonary fibrosis, and asthma.

MSCs are adult multipotent stem cells, initially identified and

isolated from the bone marrow (6, 7). Currently, they are replaced

by counterparts derived from more accessible sources, such as

adipose tissue, Wharton’s jelly, and cord blood (2, 5, 8–12).

Notably, differentially sourced MSCs may slightly differ in

functional properties and phenotype. Therefore, minimal criteria

for their definition have been proposed, namely: i) plastic

adherence; ii) surface expression of CD29, CD71, CD73, CD90,

CD105, CD271, and simultaneous lack of CD14, CD34, CD45, and

HLA-DR; iii) ability to differentiate into at least osteoblasts,

adipocytes, and chondrocytes in vitro (1). Accumulating evidence

shows that their immunoregulatory properties need to be activated

by the pro-inflammatory microenvironment. Thus, MSC’s anti-

inflammatory potential depends on the local milieu. MSCs have

been shown to exert immunoregulatory function by i) reduction of

monocyte and CD34+ cell maturation towards classically activated

pro-inflammatory M1 macrophages and dendritic cells (DCs); ii)

reduction of adaptive immune responses; iii) recruitment of

regulatory T cells (Treg) and induction of effector T cell plasticity

towards anti-inflammatory properties; and iv) reduction of

cytotoxic innate lymphoid cell activity (1, 8, 13). Unfortunately,

MSCs fate in non-inflamed tissue remains elusive.

To date, safety issues concerning the long-term effects of MSCs

administration and their stability are raised, limiting their usage in

the clinical practice (1, 2, 14). To better understand the effects of

MSCs administration on the airway microenvironment, here we
02
aimed to investigate the longitudinal changes in the lung

morphology, epithelial barrier function, immune responses, and

transcriptomic profiles of the normal non-inflamed lung in the

mouse model. In our model, we used MSCs derived from adipose

tissue, representing an attractive and highly available source of

these cells.
Materials and methods

Experimental mouse model

Female 6-8-week-old C57BL/6 mice were divided into three

groups (n=5 per group). Mice were sacrificed after 2 (short-

term) and 9 (long-term) days after intranasal (i .n .)

administration of the adipose-tissue-derived MSCs (Figure 1A;

for detailed method description please see Supplementary

Materials – methods). Biological material was collected and

biobanked for further analyses.
Histochemical staining’s

The presence of inflammatory infiltration and mucus

production in the lung was assessed by histochemical stainings.

First, lungs were fixed in 4% paraformaldehyde and paraffin-

embedded. Next, 4mm microtome sections were placed on the

glass slides (Thermofisher Scientific) and stained with

hematoxylin-eosin (H+E) and Periodic acid-Shiff (PAS)

according to the standard protocols. The slides were visualized

using a digital slide scanner Nanozoomer SQ (Hamamatsu). Both

H+E and PAS staining’s were quantified in ImageJ software.
Quantification of hematoxylin-eosin
(H+E) and periodic acid-shiff
(PAS) staining

Inflammatory infiltration within the lung tissue was

quantified using ImageJ software (NIH) in H+E-stained slides.

The default thresholding method and the HSB model for color
frontiersin.org

https://doi.org/10.3389/fimmu.2022.967487
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tynecka et al. 10.3389/fimmu.2022.967487
B

C

D

E F

A

FIGURE 1

Induction of low-grade inflammation is a long-term effect of intranasal administration of adipose-tissue-derived mesenchymal stem cells.
(A) Experimental mice model used in the study. Female C57BL/6 mice were sacrificed directly after two days (short-term), and nine days (long-
term) after mesenchymal stem cells (MSCs) intranasal (i.n.) administration. Saline (vehicle)-treated mice were used as control. (B) Representative
Hematoxylin & Eosin (H&E) and Periodic Acid-Shiff (PAS) staining in the lung sections. (C) Summary of flow cytometry analyses of IFNg, IL-4,
IL-17, or IL-10 producing T cell frequency after MSCs administration in the long-term model. U Mann-Whitney test was used to evaluate
differences between groups, *p < 0.05; ns, not significant; n=5. (D) Representative confocal staining of occludin, claudin 3, and zonula
occludens-1 (ZO-1) in the alveoli after MSCs i.n. administration; DAPI – blue; green – positive signal for analyzed proteins. (E) Summary of
transcriptomic profiles of the lung after MSCs i.n. administration. The heatmap shows all (n =853) differentially regulated genes (DEGs)
among the analyzed groups. DEGs were identified based on |Log2FoldChange| > 0.5, and adjusted p value < 0.1. Cutoffs were applied with
matched HGNC identifiers. Complete linkage clustering was applied. (F) Venn diagram of differentially and commonly regulated genes in the
short- (marked red) and long-term model (marked blue). Arrows indicate the up- or down-regulated expression of DEGs.
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space were selected to perform the analysis. The lung tissue

surface was measured using a threshold tool. The slider in the

brightness panel was appropriately adjusted to cover all tissue

areas. Additionally, to evaluate the inflammation surface the

slider in the hue panel was acquired to imply the dark pink-

purple colors. Three independent measurements were

performed and the mean was calculated. The results were

presented as inflammation area to tissue (slide) area ratio.

Additionally, all the values were normalized to the mean of

control group measurements. To evaluate the mucus production

in PAS-stained slides, the quantification was restricted only to

bronchi. To maximize the relevance of the results two different

bronchioles within one tissue slide were taken into

consideration. Similarly, to assess the mucus area, the slider

was adjusted to incorporate pink-red colors. Additionally, the

surface inside all bronchi was measured. To simplify the

calculations, the bronchi shape was assumed as a circle and

the perimeter was calculated. Three measurements for all

bronchioles were performed and the mean was calculated. The

results were presented as a ratio of mucus area and bronchioles

perimeter score.
Flow cytometry

Lung tissue dissociation was performed using Lung

Dissociation Kit (Miltenyi Biotec). Next, cells were stimulated

with Leukocyte Activation Cocktail with Golgi Plug (BD

Pharmingen) for 3 hours. Extracellular and intracellular

staining was performed according to the standard protocol

using a panel of fluorochrome-labeled monoclonal antibodies

(Supplementary Materials – Supplementary Table S2). Cells

were acquired using the FACSAria system (BD Biosciences)

and analyzed with the FlowJo v.10 software (BD Biosciences). A

representative gating strategy has been presented in the

Supplementary Materials – Supplementary Figure S2A.
Immunofluorescence staining

Snap-frozen lung tissues were cryosectioned (Leica CM3050

S) at 8mm, and subsequently fixed with 4% paraformaldehyde.

Cryosections were submerged in blocking solution (10% goat

serum, 1% bovine serum albumin, and 0,2% TritionX100) prior

to incubation with polyclonal rabbit anti- ZO- 1 antibody

(Invitrogen), monoclonal mouse anti-occludin (Invitrogen) at

1:200, and polyclonal rabbit anti-claudin 3 (Invitrogen) at 1:100

in 1% BSA in PBS, followed by incubation with Alexa Fluor 488

Goat anti-Rabbit IgG (Invitrogen) or Goat anti-Mouse IgG

(Invitrogen) at 1:1000. Specimens were analyzed using a Zeiss

LSM780 microscope (Zeiss). The detailed information on used

antibodies has been presented in the Supplementary Materials –

Supplementary Table S2.
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Statistical analysis

Statistical analysis was performed using GraphPad Prism

v.9. Statistical significance was evaluated by the U Mann-

Whitney test; p<0.05 was considered significant.
RNA isolation and next-generation
sequencing (NGS)

Lung lobes were stored in RNA later solution (Invitrogen)

for 48 hours to stabilize RNA. Next, tissues were disrupted using

TissueRuptor II (Qiagen) in RNeasy Lysis Buffer (Qiagen). Total

RNA was isolated by using the RNeasy Mini Kit according to the

manufacturer’s protocol (Qiagen). 1 µg of total RNA with RNA

integrity number (RIN) > 8, was subjected to the cDNA library

preparation according to TruSeq Stranded Total RNA protocol

(Illumina), followed by the quality confirmation by TapeStation

2200 (Agilent, CA, USA). Next-generation sequencing

(RNAseq) was performed using the Illumina HiSeq 4000

platform generating 150 bp paired-end reads (2 x 75 bp).

Subsequently, transcriptomic profiling and analysis were

performed. The entire data set has been submitted to the

NCBI GEO database: accession number GSE200028 (The

datasets are currently private and available under access token:

“ovivksgmxdgzhcz”, and will be released immediately after

manuscript acceptance).
Transcriptome profiling and analysis

Sequencing quality was evaluated by FastQC version 0.11.5.

Reads were mapped to the reference genome of Mus musculus

(GRCm38) using STAR aligner version 2.5.3a. The obtained read

counts were used to differential expression analysis (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/; https://

qubeshub.org/resources/fastqc) (15). Differential gene

expression analysis was performed using DESeq2 (16). To

adjust the Wald test p-value, the procedure of Benjamini &

Hochberg was applied. Additionally, the count matrix was

transformed into Transcripts Per Milion (TPM) to normalize

gene expression. Differentially expressed genes (DEGs) with

matched HGNC symbols were identified based on adjusted p-

values < 0.1, and absolute Log2FoldChange > 0.5. To visualize

the expression of DEGs, Venn Diagram, Volcano Plots, and

heatmap with complete linkage clustering was generated in “R”.

Gene Set Enrichment Analysis was performed to reveal Gene

Ontology terms present in the dataset. Subsequently, the top 20

terms according to the Benjamini & Hochberg adjusted p<0.05

were plotted on the graphs. Moreover, based on The Mouse

Genome Database (MGD; http://www.informatics.jax.org;

access date: 29th June 2022), individual branches of Gene

Ontology terms were selected for further analysis. Commonly
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regulated genes were analyzed using string. db and Ingenuity

Pathway Analysis (IPA, QIAGEN Inc., https://digitalinsights.

qiagen.com/IPA). The STRING gene networks were generated

concerning all commonly regulated genes, including the

predicted and RIKEN genes (n=104). Nodes without any

connections were excluded from the network on set medium

confidence levels. Using IPA generated pathways with altered z-

score, commonly regulated genes for two investigated models

were analyzed individually. A two-tailed Mann U Whitney test

was applied to assess the difference in the expression of

mentioned genes. The delta of the expression was presented

using the R package ggplot2 (https://ggplot2.tidyverse.org). The

expression datasets were analyzed in IPA with the cutoff points

for absolute Log2FoldChange > 0.5 and adjusted p-value < 0.1

with additional lung tissue filters applied.
Results

Administration of the adipose tissue-
derived mesenchymal stem cells induces
low-grade inflammation and reduces
epithelial barrier integrity

First, we aimed to confirm that adipose tissue-derived cells

fulfill the criteria of mesenchymal stem cells established by the

International Society for Cellular Therapy. We expanded plastic

adherent cells and confirmed the surface expression of MSCs

characteristic markers, namely CD73, CD90, and CD105, with

simultaneous lack of lineage marker CD45 and human leukocyte

antigen (HLA-DR) expression (Supplementary Figure S1A).

Moreover, we successfully differentiated the cells in vitro into

adipocytes, osteocytes, and chondrocytes (Supplementary

Figure S1B).

Having confirmed that cells isolated from adipose tissue

fulfill the criteria of MSCs, next, we wished to investigate the

effects of their i.n. administration on the induction of

inflammation in the lower airways (Figure 1A). We found no

signs of increased cellular infiltration and mucus production

within the lungs both directly (two days, short-term) and

extendedly (nine days, long-term) after MSCs transfer

(Figure 1B, Supplementary Materials - Figure S2A). However,

we observed an increase in the frequency of INFg producing, but
not IL-4, IL-17, and IL-10 producing, CD3+CD4+ T cells in the

lungs as an effect of the long-term MSCs administration

(Figure 1C; Supplementary Materials - Figure S2B). Moreover,

occludin and claudin 3, but not ZO-1 were decreased in the long-

term model (Figure 1D). To better understand the effects of

MSCs administration on the non-inflamed lungs, we next aimed

to investigate MSC-mediated effects on the transcriptomic

profiles of the lungs. We observed dynamic changes in the

lung gene expression profiles after MSCs administration

(Figure 1E). We found 674 differentially regulated genes
Frontiers in Immunology 05
unique for the short-term model, while only 75 genes were

unique for the prolonged observations (Figure 1F), suggesting

waning of the low-grade inflammation and active resolution in

the longer time point. In addition, a total of 104 genes were

common for both analyzed time points.
Gene set enrichment analysis indicated
changes in the activation of innate and
adaptive immune responses after MSCs
administration

Having found significant changes in the transcriptomic profiles, we

next wished to elucidate whether differentially regulated genes may be

functionally related, integrated, and referred to the specific genes

clusters and interaction nodes. Thus, we evaluated the enrichment of

DEGs in the gene ontologies, signaling pathways, and mapped

predicted interactions using clusterProfiler v.4.0.0 (17). In the top 20

most significant gene ontology terms we found changes in

immunological pathways. The normalized enrichment score (NES)

analysis indicated activation of the innate and adaptive immune

responses. We found upregulation in phagocytosis and engulfment

processes and B cell receptor signaling in both analyzed time-points

(Figure 2). Moreover, we found an increase in the ribosome function,

and biogenesis in MSC-treated mice, longitudinally (Figure 2). More

precisely, the analysis of canonical pathways activation revealed the

increase in IL-7 signaling, T and B cell signaling in the short- and long-

term models compared to controls. Moreover, we found changes

reflecting redox imbalance, such as an increase in HIF1a signaling

and superoxide radicals degradation in the short-term model

(Figure 3A). In addition to this observation, we noted the gradual

downregulation inHIF1a signaling, IL-17 signaling, and B cell receptor

signaling in the longer time point (Figure 3A). Furthermore, the

analysis of the expression of genes clustered to the terms and

processes related to airway inflammation, namely Th1-, Th2-, Th17-

driven immune responses development, tight junction molecules, and

mucins, revealed a relatively low number of significantly changed genes

(Figure 3B), which stay in line with our ex vivo observations of effector

T cells, epithelial barrier integrity, and histochemical staining’s.
Pattern recognition receptors,
macrophage activation, oxidative stress,
and phagocytosis related genes are
differentially expressed in the lungs after
MSCs administration

Next, we analyzed deeper the expression profiles of genes

related to oxidative stress and immune responses, macrophage

activation and phagocytosis. We noted the dysregulated

expression of pattern recognition receptors (PRRs, Figure 4A),

macrophage activation (Figure 4B), oxidative stress (Figure 4C),

phagocytosis (Figure 4D), and inflammation of the respiratory
frontiersin.org
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system (Figure 4E). Importantly, clustered genes present a trend to

be downregulated in the latter time point towards the level observed

in the untreated controls. However, in the short-term model, we

noted an upregulated expression of most analyzed genes. However,

a relatively low number of genes were significantly upregulated

(FDR < 0.05) in analyzed models in the cluster reflecting

inflammation within the respiratory system (9 upregulated genes

among 50 defined in the cluster, Figure 4E).
Commonly regulated genes form a low
number of interactions

Having found longitudinal changes in the gene expression

profiles among MSCs-treated groups, next, we aimed to focus on
Frontiers in Immunology 06
the common genes for both short-term and long-term models.

First, we found a low number of interactions among analyzed

genes (Figure 5). The observed ones mainly reflect dysregulation

of immune responses, namely dendritic cell, T cell, and B cell

function (Cd7, Cd37, Cd72, Cd79a, Spib, and Il-21r, Cxcr5, Ccl5,

Zbp1). In addition, we observed interactions for ribosome

biogenesis, function, and cell cycle (Rrs1, Gpatch4, Trp35, Ncl,

Rasl11a, Rbm38, Hist1h1b), shock proteins (Cirbp, Hspb6), and

circadian rhythm (Dbp, Arntl, Npas2, Nfil3) (Figure 5A).

Furthermore, we analyzed the most significant genes with

altered z-scores at the investigated time-points according to

the Ingenuity Pathway Analysis. We found Rap2b relative

expression as the one of most changed compared to the other

delta expression of genes (Figure 5B). According to the

Pathcards and Reactome database (https://pathcards.genecards.
FIGURE 2

Mesenchymal stem cell administration to non-inflamed lungs induces the expression of genes associated with immunological pathways.
Summary of gene set enrichment analysis for gene ontology. Top 20 most significant GO terms are listed according to the adjusted p-value.
Ontologies are presented using lollipop charts with normalized enrichment scores. The percentage values represent the coverage of DEGs in
each group to the theoretical size of an analyzed term. Blue and yellow refer to biological processes (BP) and cellular components (CC) of gene
ontology, respectively.
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org; https://reactome.org; access date: 4th July 2022), Rap2b is

predicted to be involved in the neutrophils degranulation

pathway, which is linked with the reactive oxygen species

production (18). Moreover, we also noted a relatively relevant

change in Trp53 (Figure 5B), which is also recognized as an

important contributor to oxidative stress-induced necrosis (19).
Frontiers in Immunology 07
Additionally, a significant change in Gpr132 relative expression

was observed, which is highly specific to infiltrating

macrophages (20). Finally, we also observed a trend in a

longitudinal decrease in the expression of the analyzed

common genes (Figures 6A, B), which may indicate lung

homeostasis reestablishment.
B

A

FIGURE 3

MSCs administration to noninflamed lungs causes changes in signaling pathways, and innate and adaptive immune gene clusters. (A) Changes in
canonical and non-canonical signaling pathways after MSCs administration. A bar chart representing signaling pathways was generated using Ingenuity
Pathway Analysis (IPA) Software. The top 15 most significant pathways in each group were presented. The gene cutoffs were adjusted on p-value<0.1, |
Log2FoldChange|>0.5. Specific tissue filters restricting the analysis to pathways related to lungs were applied. Bars marked as red indicate pathway
upregulation, while blue bars indicate downregulation. Grey bars refer to no activity pattern was available. White bars correspond to the pathways with a
z-score = 0. (B) Heatmaps represent genes related to Th1-, Th2-, and Th17- driven immune response, differentiation of T regulatory cells, tight junction
molecules, and mucins. The ratios considering significantly regulated genes to the total number of genes were equaled as follows: 11/67 for Th1-
(Biological Process; GO:0042088), 8/62 for Th-2 (Biological Process; GO:0042092), 6/59 for Th17- driven immune response (Biological Process;
GO:0072538), 9/42 for regulatory T cell differentiation (Biological Process; GO:0045066), 4/47 tight junctions (Tan et al. Allergy 2018), and 0/16 for
mucins (Tan et al. Allergy 2018); S – short-term model; L – long-term model; L/S – long-term model vs short-term model; FDR<0.05; n=5; Wald test
with Benjamini-Hochberg correction was used; *p<0.05; ** p<0.01; ***p<0.001.
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Discussion

Despite significant progress in understanding MSCs biology

and their therapeutic potential, MSC-based therapy approaches for

respiratory tract diseases remain not available routinely (1). Initially,

it was believed that MSCs can integrate within the airways (21–23).

Currently, it became clear that MSC therapeutic potential is more

related to their immunomodulatory functions exerted via direct

cell-to-cell mediated interactions or even more by paracrine effects.
Frontiers in Immunology 08
In addition, major safety issues on their stability, long-term effects of

application, and their fate were raised significantly delaying the

implementation of MSCs-based therapies (2, 24–26). Here we

demonstrated the short-term and long-term effects of human

adipose tissue-derived MSC administration on non-inflamed

healthy mice lungs. We showed an increased frequency of IFNg-
producing T cells and a simultaneous decrease in epithelial occludin

and claudin 3 protein expression as a long-term effect of MSCs

administration. In addition, we reported changes in the whole lung
B

E

C DA

FIGURE 4

Innate immune gene clusters are differentially regulated upon mesenchymal stem cell administration. The analysis was performed based on
Mouse Genome Informatics (MGI v.6.17) Gene Ontology Browser; http://www.informatics.jax.org/vocab/gene_ontology/; access 29th June 2022).
Only significant genes in either of the groups were plotted (adjusted p-value < 0.05). Heatmaps represent the changes in gene expression related to
(A) Pattern Recognition Receptor Signaling Pathway (Biological Process; GO:0002221). (B) Macrophage Activation (Biological Process; GO:0042116).
(C) Cellular Response to Oxidative Stress genes (Biological Process; GO:0034599). (D) Phagocytosis (with 4932438a13rik gene excluded due to
unidentified biological role); (Biological Process; GO:0006909). (E) Inflammation of Respiratory System (genes predicated by functional analysis in
Ingenuity Pathway Analysis software). S – short-term model; L – long-term model, L/S long- vs short-term model. Wald test with Benjamini-
Hochberg correction was used; *p<0.05; **p<0.01; ***p<0.001.
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transcriptomic profiles indicating redox imbalance, hypoxia

signaling pathway, and activation of macrophage’s phagocytic

function. Our results indicate induction of low-grade

inflammation as a long-term effect of MSCs transfer associated

with graft clearance.

It was previously shown that allogenic MSCs may preserve

within the airways for up to 72h (12, 27–29). However, more

recently, Ferrini E et al., by using third-generation of lentiviral

vectors, showed that bone marrow-derived MSCs can be detected

within the lung even longer than 14 days post intratracheal and

intravenous administration (30). This observation explains the

reported long-lasting beneficial effects of MSCs transfer to

inflamed lungs. Therefore, in our study, we evaluated the short-

term and long-term effects of MSCs administration.

As mentioned above, upon transplantationMSCs may undergo

differentiation supporting regeneration or healing processes or, in

response to inflammatory stimuli, may act as potent regulators of

inflammation (31–33). Interestingly, MSCs apoptosis has been

acknowledged as a mechanism of their immunosuppressive

function and is believed to be required for their therapeutic

effectiveness (33–36). Chang et al. demonstrated that apoptotic

MSCs effectively downregulate inflammation, oxidative stress, and

histopathological alternations in the lungs and kidneys in the mice

sepsis model (36). These results remain consistent with “the dying

stem cell hypothesis” introduced by Thum T. et al., which shows

modulation of the local immune responses by apoptosis of

transplanted stem cells (33). However, in our model, MSCs were

transferred to the non-inflamed lungs and we observed signs of low-

grade inflammation as the long-term effects. We hypothesized that
Frontiers in Immunology 09
this effect might be associated with apoptotic graft or hetero-

transplant clearance (37). This was additionally supported by

observed transcriptional signatures in analyzed innate immune

clusters, namely pattern recognition receptor signaling,

macrophage activation, cellular response to oxidative stress, and

phagocytosis. Our findings are partially in agreement with

the recently published study by Preda MB et al., who proposed

the “hit and die” concept indicating transplanted MSCs activate the

hypoxia signaling pathway in the recipient organ, and subsequently

undergo caspase-3/7 mediated apoptosis (35). In correspondence to

the study, Galleu A et al. stated the hypothesis that cytokine-

dependent priming is not required for the generation of apoptotic

MSCs and induction of immunosuppression (31). Consequently,

at the transplantation site, locally recruited macrophages remove

apoptotic MSCs in the phagocytosis process and orchestrate anti-

inflammatory responses (31, 36). Notably, IFNg is a critical agent in
the induction and activation of pro-inflammatory and highly

phagocytic classically activated (M1 polarized) macrophages (38).

These cells were shown previously to play a central role in the MSC

graft removal (12, 35). Graft clearance may be associated with the

cytotoxic effect of immune cells to the differentiating MSCs or be a

consequence of MSCs apoptosis in response to proinflammatory

stimulation, including IFNg-mediated signaling (35). On the other

hand, increased Th1 responses, associated with IFNg release, affect
epithelial barrier integrity by downregulation of the tight junction

protein expression (39, 40). This explains observed in our study,

decreased expression of occludin and claudin 3 in the long-term

model. Furthermore, changes in the expression of analyzed clusters

of genes in the latter time-point resemble the control pattern, which
BA

FIGURE 5

The relative expression of analyzed common genes changed longitudinally. (A) Genes-genes interaction networks corresponding to protein
products were created using the String database. Nodes marked with the same color represent gene clusters. Solid lines show the connections
within the individual cluster, whereas dashed lines refer to the interactions among the nodes. The line weight signifies the confidence of the
relationship. (B) Circular bar plot indicated delta of genes expression with the altered z-scores at the time according to Ingenuity Pathway
Analysis (IPA). The delta was obtained by subtraction between the expression of genes in the long-term and short-term models. The size and
color of the bars represent the magnitude and the direction of change, respectively. A two-tailed Mann U Whitney test was performed to assess
the statistical significance.
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may indicate the gradual impairment of local low-grade

inflammation induced upon MSCs apoptosis execution and

graft removal.
Conclusions

In summary, here, we showed short-term and long-term effects

of i.n. administration of the MSCs to the non-inflamed lungs. Our
Frontiers in Immunology 10
results suggest that in the steady-stateMSCsmay undergo apoptosis

in the non-inflammatory microenvironment. In turn, low-grade

inflammation is induced in the late phases after MSC

administration. Consequently, IFN-producing T cells may activate

innate immune cells to efferocytosis, subsequently leading to the re-

establishment of lung tissue homeostasis (Figure 6C). Thus, our

results partially support “dying stem cells” and “hit and die”

concepts. However, further studies are needed to fully understand

the fate of MSCs within the lung microenvironment.
B

C

A

FIGURE 6

(A) TPM differences of genes altering the z-scores of pathways indicated by IPA. Dots represent the median (n=5) values of TPM in the group,
short-term (S), long-term (L), or control (C). Vertical lines connected to the dots indicate the upper (Q3) and lower (Q1) quantiles. (B)
Distribution of the commonly regulated genes in short-term and long-term models. Commonly regulated genes in short- and long-term
models altering the z-scores of pathways in IPA were marked red. Yellow dots refer to unique DEGs, whereas dark blue indicates no cutoff
criteria met. Dashed horizontal and vertical lines represent the cutoffs for adjusted p-value (BH) < 0.1 and absolute Log2FoldChange > 0.5,
respectively. (C) The proposed hypothesis of MSCs fate in the non-inflammatory microenvironment in the lungs. In non-inflamed lungs, MSCs
undergo apoptosis which induces low-grade inflammation. An increase in IFNg producing CD3+CD4+ cells activates phagocytic M1
macrophages to clear apoptotic MSCs.
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