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Abstract
Background: Many common diseases arise from an interaction between environmental and genetic factors. Our 
knowledge regarding environment and gene interactions is growing, but frameworks to build an association between 
gene-environment interactions and disease using preexisting, publicly available data has been lacking. Integrating 
freely-available environment-gene interaction and disease phenotype data would allow hypothesis generation for 
potential environmental associations to disease.

Methods: We integrated publicly available disease-specific gene expression microarray data and curated chemical-
gene interaction data to systematically predict environmental chemicals associated with disease. We derived chemical-
gene signatures for 1,338 chemical/environmental chemicals from the Comparative Toxicogenomics Database (CTD). 
We associated these chemical-gene signatures with differentially expressed genes from datasets found in the Gene 
Expression Omnibus (GEO) through an enrichment test.

Results: We were able to verify our analytic method by accurately identifying chemicals applied to samples and cell 
lines. Furthermore, we were able to predict known and novel environmental associations with prostate, lung, and 
breast cancers, such as estradiol and bisphenol A.

Conclusions: We have developed a scalable and statistical method to identify possible environmental associations 
with disease using publicly available data and have validated some of the associations in the literature.

Background
The etiology of many diseases results from interactions
between environmental factors and biological factors [1].
Our knowledge regarding interaction between environ-
mental factors, such chemical exposure, and biological
factors, such as genes and their products, is increasing
with the advent of high-throughput measurement modal-
ities. Building associations between environmental and
genetic factors and disease is essential in understanding
pathogenesis and creating hypotheses regarding disease
etiology. However, it is currently difficult to ascertain
multiple associations of chemicals to genes and disease
without significant experimental investment or large-
scale epidemiological study. Use of publicly-available

environmental chemical factor and genomic data may
facilitate the discovery of these associations.

We desired to use pre-existing datasets and knowledge-
bases in order to derive hypotheses regarding chemical
association to disease without upfront experimental
design. Specifically, we asked what environmental chemi-
cals could be associated with gene expression data of dis-
ease states such as cancer, and what analytic methods and
data are required to query for such correlations. This
study describes a method for answering these questions.
We integrated publicly available data from gene expres-
sion studies of cancer and toxicology experiments to
examine disease/environment associations. Central to
our investigation was the Comparative Toxicogenomics
Database (CTD) [2], which contains information about
chemical/gene/protein interactions and chemical/gene/
disease relationships, and the Gene Expression Omnibus
(GEO) [3], the largest public gene expression data reposi-
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tory. Information in the CTD is curated from the peer-
reviewed literature, while gene expression data in GEO is
uploaded by submitters of manuscripts.

Most approaches to date to associate environmental
chemicals with genome-wide changes can be put into 2
categories. These approaches either 1.) have tested a
small number of chemicals on cells and measured
responses on a genomic scale, or 2.) used existing knowl-
edge bases, such as Gene Ontology, to associate anno-
tated pathways to environmental insult.

The first method involves measuring physiological
response on a gene expression microarray. This approach
allows researchers to test chemical association on a
genomic scale, but the breadth of discoveries is con-
strained by the number of chemicals tested against a cell
line or model organism. These experiments are not
intended for hypothesis generation across hundreds of
potential chemical factors with multiple phenotypic
states. Only a few chemicals can be tractably tested for
association to gene activity [4,5], or disease on cell lines
[6], or on model organisms, including rat and mouse [7].
In rare cases, this approach has reached the level of a
hundred or thousand chemical compounds, such as the
Connectivity Map, developed by Lamb, Golub, and col-
leagues [8], which attempts to associate drugs with gene
expression changes. After measuring the genome-wide
effect on gene expression after application of hundreds of
drugs at various doses, drug signatures are calculated and
are then queried with other datasets for which a potential
therapeutic is desired. While this has proven to be an
excellent system to find chemicals that essentially reverse
the genome-wide effects seen in disease, the approach of
measuring gene expression and calculating signatures
across tens of thousands of environmental chemicals is
not always feasible or scalable. Although other data-
driven approaches have been described [9], few have
given insight into external causes of disease.

A second approach has been to use knowledge bases,
such as Gene Ontology [10] to aid in the interpretation of
genomic results. For example, Gene Ontology analysis of
a cancer experiment might elucidate a molecular mecha-
nism related to an environmental chemical. Unfortu-
nately, there is still a lack of methodology to derive
hypotheses for environmental-genetic associations in dis-
ease pathogenesis, as Gene Ontology and general gene-
set based approaches have limited information on envi-
ronmental chemicals.

In contrast to the previous approaches, we claim that
the integration of pre-existing data and knowledge bases
can derive hypotheses regarding the association of chem-
icals to gene activity and disease from multiple datasets in
a scalable manner. Gohlke et al have proposed an
approach to predict environmental chemicals associated
with phenotypes also using knowledge from the CTD

[11]. Their method utilizes the Genetic Association Data-
base (GAD) [12] to associate phenotypes to genetic path-
ways and the CTD to link pathways to environmental
factors. This method has proved its utility, allowing for
production of hypotheses for chemicals associated with
diseases categorized as metabolic or neuropsychiatric
disorders. However, in its current configuration, their
method is dependent on the GAD, which contains stati-
cally annotated phenotypes in relation to genes contain-
ing variants; such DNA changes are not likely to be
reflective of molecular profiles of tissues being suspected
for environmental influence. Unlike this method, our
proposed approach is tissue- and data-driven in that the
phenotype is determined by the individual measurements
of gene expression in cells and tissues, allowing for the
dynamic capture of phenotypes.

The approach we propose here is agnostic to experi-
ment protocol, such as cell line or chemical agent tested,
and provides for a less resource-intensive screening of
chemicals to biologically validate. Our methodology
essentially combines the best features of these current
approaches. We start by compiling "chemical signatures"
in a scalable way using the CTD. These chemical signa-
tures capture known changes in gene expression second-
ary to hundreds of environmental chemicals. In a manner
similar to how Gene Ontology categories are tested for
over-representation, we then calculate the genes differen-
tially expressed in disease-related experiments and deter-
mine which chemical signatures are significantly over-
represented. We first verified the accuracy of our meth-
odology by analyzing microarray data of samples with
known chemical exposure. After these verification stud-
ies yielded positive results, we then applied the method to
predict disease-chemical associations in breast, lung, and
prostate cancer datasets. We validated some of these pre-
dictions with curated disease-chemical relations, war-
ranting further study regarding pathogenesis and
biological mechanism in context of environmental expo-
sure. Our method appears to be a promising and scalable
way to use existing datasets to predict environmental
associations between genes and disease.

Methods
Method to Predict Environmental Associations to Gene 
Expression Data
The Comparative Toxicogenomics Database (CTD)
includes manually-curated, cross-species relations
between chemicals and genes, proteins, and mRNA tran-
scripts [13]. We downloaded the knowledge-base span-
ning 4,078 chemicals and 15 461 genes and 85 937
relationships between them in January 2009. An example
of a relationship in the CTD is "Chemical TCDD results
in higher expression of CYP1A1 mRNA as cited by
Anwar-Mohamed et al. in H. sapiens" (demonstrated in
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Figure 1 Prediction database creation based on the Comparative Toxicogenomics Database (CTD). A.) The CTD contained 85,937 total unique 
chemical-gene relations over 4,078 chemicals and 15,461 genes. Each relation had one or more citations of support. An example hypothetical relation, 
"TCDD lead to higher expression of CYP1A1 mRNA in H. sapiens as shown in Anwar-Mohamed et al" is seen on the right panel. B.) Creation of chemical-
gene set relations. Each chemical-gene relation had a number of citations of support, xi. For each chemical, we constructed a gene set, or "signature" 
from the individual chemical-gene relations. We filtered out signatures that had at least 5 genes in the set, leaving a total of 1,338 chemical-gene sets. 
An example of one chemical-gene set is seen on the right panel of B: the genes CYP1A1, AHR, AHR2 are shown to have multiple citations for the relation, 
60, 40, and 9 respectively.
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Figure 1A). The median, 70th, and 75th percentile of the
number of genes related to a chemical is 2, 5, 7 respec-
tively.

With the single gene, single chemical relationships, we
created "chemical signatures", or gene sets associated
with each chemical (Figure 1B). Gene sets were created
from gene-expression relations spanning 249 species, but
most relations came from H. sapiens, M. musculus, R.
norvegicus, and D. rerio. We eliminated chemical-gene
sets that had less than 5 genes in the set. This step yielded
a total of 1,338 chemical-gene sets.

The CTD also contains curated data regarding the asso-
ciation of a diseases to chemicals. These associations are
either shown in an experimental model physiological sys-
tem or through epidemiological studies. We used these
curated associations to validate our predicted factors
associated to disease. There are 3,997 diseases-chemical
associations in the CTD, consisting of 653 diseases
(annotated by unique MeSH terms) and 1,515 chemicals
(Figure 1C). The median, 70th, and 75th , and 80th percen-
tile of the number of curated chemicals per disease is 2, 3,
4, and 5 respectively.

We built a system to test whether genes significantly
differentially expressed within a gene expression dataset
could be associated with our calculated chemical signa-
tures (Figure 2A). We conducted two phases of analysis in
this study. The first phase was a verification one, testing
whether the method could accurately predict known
chemical exposures applied to samples (Figure 2B). Our
input for this first phase were gene expression datasets of
chemically-exposed samples and unexposed control sam-
ples, and our output were lists of chemicals predicted to
be associated with each dataset. The second investigation
phase involved predicting chemicals associated with can-
cer gene expression datasets (Figure 2C). Our input for
this second phase were gene expression datasets of can-
cer samples and control samples, and our output were
lists of chemicals predicted to be associated with the
dataset. We attempted to validate these findings further
by using curated disease-chemical relations (Figure 2D).
Finally, we attempted to group our chemical predictions
associated with cancer dataset by PubChem-derived Bio-
Activity similarity measures, seeking further evidence of
potential underlying mechanism or similar modes of
action between chemicals.

We used Significance Analysis of Microarrays (SAM)
software to select differentially expressed genes from a
microarray experiment [14]. The FDR for SAM for all of
our predictions were controlled up to a maximum of 5 to
7% in order to reduce false associations.

We mapped microarray annotations to other corre-
sponding representative species, H. sapiens, M. musculus,
and R. norvegicus using Homologene [15]. In the CTD,
gene identifiers were commonly associated with H. sapi-
ens; however, some are mapped to specific organisms,

such as M. musculus and R norvegicus. Most mappings in
the CTD are among these 3 organisms. By mapping our
expression annotation to these organisms, we ensured
gene compatibility with a large portion of the CTD.

We checked for enrichment of differentially expressed
genes among our 1,338 chemical-gene sets with the
hypergeometric test. To account for multiple hypothesis
testing, we computed the q-value, or false discovery rate
for a given p-value, by using 100 random resamplings of
genes from the microarray experiment and testing each
of these random resamplings for enrichment against each
of the 1,338 chemical-gene sets. This methodology is
similar to the q-value estimation method described in
"GoMiner", a gene ontology enrichment assessment tool
[16]. We assessed a positive prediction for those that had
exceeded a certain p-value and q-value threshold in our
list of 1,338 tested associations. All analyses were con-
ducted using the R statistical environment [17].

Method Verification Phase
For our verification phase, we surveyed publicly available
data from the Gene Expression Omnibus (GEO) for
experiments in which sets of samples exposed to chemi-
cals were compared with controls. We found and used six
datasets in the validation phase. Set 1 included GSE5145
(3 study samples and 3 controls) in which H. sapiens mus-
cle cell samples were exposed to Vitamin D [18]. Set 2 was
GSE10082 (6 study samples and 5 controls) in which
wild-type M. musculus were exposed to tetradibenzo-
dioxin (TCDD) [19]. Set 3 was GSE17624 in which H.
sapiens Ishikawa cells (4 study samples and 4 controls)
were exposed to high doses of bisphenol A (no reference).
Set 4 was GSE2111 in which H. sapiens bronchial tissue (4
study samples and 4 controls) were exposed to zinc sul-
fate [20]. The CTD had some chemical-gene relations
based on this dataset; we removed these relations prior to
computing the predictions for this dataset. Set 5 was
GSE2889 in which M. musculus thymus tissues (2 study
samples and 2 controls) were exposed to estradiol [21].
Finally, set 6 was GSE11352 in which H. sapiens MCF-7
cell line was exposed to estradiol at 3 different time
points [22]. In all cases except for set 6, we treated SAM
analysis as unpaired t-tests; for set 6, we used the time-
course option in SAM. See Additional File 1 for the num-
ber of differentially expressed genes found for each data-
set along with their median false discovery rate
(Additional file 1, Supplementary Table S1).

Predicting Environmental Factors Associated with Disease-
related Gene Expression Data Sets: Prostate, Lung, and 
Breast Cancer
We found previously measured cancer gene expression
datasets to identify potential environmental associations
with cancer. We used measurements from human pros-
tate cancer from GSE6919 [23,24], lung cancer from
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GSE10072 [25], and breast cancer from GSE6883 [26].
We conducted all SAM analyses using an unpaired t-test
between disease and control samples. Additional File 1
shows the number of differentially expressed genes mea-
sured for each dataset along with the level of FDR control
(Additional file 1, Supplementary Table S2).

We deliberately chose cancer datasets that used a dif-
ferent population of controls rather than normal tissues
from the same patients. The prostate cancer dataset
(GSE6919) consisted of 65 prostate tissue cancer samples
and 17 normal prostate tissue samples as controls.

The lung cancer dataset (GSE10072) consisted of two
patient groups: non-smokers with cancer (historically
and currently), and current smokers with cancer. We con-
ducted the predictions on these groups separately. The
cancer-non smoker group consisted of 16 samples and
the cancer-smoker group had 24 samples. The control
group consisted of 15 samples.

The breast cancer dataset (GSE6883) consisted of two
distinct cancer sub-groups: non-tumorigenic and tumori-
genic. As with the lung cancer data, we conducted our
predictions on these groups separately. The non-tumori-
genic group consisted of three samples and the tumori-
genic group had six samples. The control group
contained three samples.

We then validated our highly ranked factor predictions
with disease-chemical knowledge from the CTD. In par-
ticular, we determined if the highly significant chemicals
in our prediction list included those that had curated
relationship with cancer in the CTD (disease-chemicak
relation). This step was similar to measuring association
to chemicals via enriched gene sets using the hypergeo-
metric test as described above. We used curated factors
associated with Prostatic Neoplasms (MeSH ID:
D011471), Lung Neoplasms (D008175), and Breast Neo-
plasms (D001943), to validate our predictions generated
with the prostate cancer, lung cancer, and breast cancer
datasets respectively. Further, we assessed the validation
by computing the actual number of false positives and
true negatives. To compute this number, we assessed
whether the prediction list was enriched for chemicals
associated with any of the other diseases in the CTD at a
higher significance level than the true disease; for this
test, we chose diseases that had at least 5 chemical associ-
ations, a total of 141 diseases. As an example, to assess
the false positive rate for the prostate cancer (MeSH ID:
D011471) predictions, we determined the curated enrich-
ment of our predictions for all 140 other disease-chemi-
cal sets and counted the number of diseases that had a
lower p-value than that computed for D011471.

Figure 2 Predicting environmental chemical association to gene expression datasets. A.) A representation of the 1338 chemical-gene sets in 
our prediction database. B.) For the validation step, we conducted SAM to find genes whose expression was altered in each of our datasets. We then 
mapped the differentially expressed genes to corresponding extra-species genes in our database by using Homologene. For each chemical-gene set 
signature, we conduct a hypergeometric test for enrichment and ranked each result by p-value. C.) We applied the approach used in B to predict 
chemical association to prostate, breast, and lung cancer data and validated these results with curated disease-chemical annotations from the CTD 
represented in D.). D.) Representation of the curated disease-chemical associations in the CTD.
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Clustering Significant Predictions By PubChem-derived 
Biological Activity
Chemical-gene sets derived from the CTD are but one
representation of how a chemical might affect biological
activity. Biological activity of chemicals may also be
derived from high-throughput, in-vitro chemical screens
such as those archived in PubChem [27,28]. Specifically,
the PubChem database provides a large number of phe-
notypic measurements (or "BioAssays") for many of the
chemicals we predicted for cancer. In addition, PubChem
provides tools to compare BioAssay measurements for
different chemicals. Quantitative and standardized Bio-
Assay measurements (normalized "scores") allow com-
parison of biological activities of chemicals and
derivation of biological activity similarity between chemi-
cals. For example, PubChem represents the biological
activity of a compound through a vector of BioAssay
scores and assembles a bioactivity similarity matrix
between each pair of chemicals with this data.

We sought further external evidence of the relevance of
the predicted chemicals though comparison of their pat-
terns of PubChem-sourced biological activity (Figure 3).
First, we produced a list of chemical predictions for each
cancer dataset as described above (Figure 2, 3A, and 3B)
and submitted our list of chemicals to PubChem for
activity comparison (Figure 3C). Finally, we observed pat-
terns of correlation between PubChem-derived biological
activities of the compounds to their chemical-gene set
association significance by clustering the chemicals in the
prediction list by their biological activity.

Results
We implemented a method to predict a list of environ-
mental factors associated with differentially expressed
genes (Figure 2). The method is centered on chemical-
gene sets that are derived from single curated chemical-
gene relationships in the CTD. We determine whether
the differentially expressed genes are associated to a
chemical by assessing if the expressed genes are enriched
for a chemical-gene set, or contain more genes from the
chemical-gene set than expected at random using the
hypergeometric test. We applied this method in two
phases, the first a verification phase in which we sought
to rediscover known exposures applied to samples, and a
query phase, in which we sought to find factors associ-
ated with cancer gene expression datasets. We refer to
significant chemical-gene set associations to gene expres-
sion data as "associations" or "predictions" in the follow-
ing.

Verification Phase
We first applied our method to gene expression data from
experiments in which samples were exposed to specific
chemicals, reasoning that if our method could identify

these known chemical exposures, we could use the
method to predict chemicals that may have perturbed
gene expression in unknown experimental or disease
conditions. Our goal was to determine where a gene
expression-altering chemical might lie in the range of sig-
nificance rankings applied by the prediction method.

We applied our method on datasets that measured gene
expression after exposure to vitamin D, tetrachlorodiben-
zodioxin (TCDD), bisphenol A, zinc, and estradiol (2
datasets) on different tissue types (Additional File 1, Sup-
plementary Table S1). Table 1 shows the results of our
predictions along with a subset of genes in the chemical-
gene set that were differentially expressed.

We were able to satisfactorily predict the exposures
applied to the gene expression datasets. We ascertained a
positive prediction if the exposure had a relatively high
ranking (low p-value for enrichment) and if the q-value
was lower than 0.1. For the datasets measuring expres-
sion after exposure to Vitamin D, calcitriol, a type of vita-
min D, was ranked first in the list (p = 10-23, q = 0).
Similarly, TCDD was predicted third in its respective list
(p = 10-15, q = 0). The other exposures ranked within the
top percentile, ranging from 15 to 19; the lower bound of
p-values were between 10-6 and 0.01 and q-values less
than 0.1. We reasoned that we could detect true associa-
tions between environmental chemicals and gene expres-
sion phenotypes provided they met these significance
thresholds.

Predicting Environmental Chemicals Associated with 
Cancer Data Sets
We applied our prediction methods to datasets measur-
ing the gene expression for prostate, breast, and lung can-
cers. In particular, we computed predictions for prostate
cancer from primary prostate tumor tissue, lung adeno-
carcinomas from lung tissue from non-smoking individu-
als, and non-tumorigenic breast cancer cells grown in
mouse xenografts. Additional File 1 shows predictions for
related data on tumorigenic breast cancer and smoker
lung cancer samples (Additional file 1, Supplementary
Tables S3 and S4). To validate and select specific predic-
tions from our ranked list of 1,338 environmental chemi-
cals, we measured how enriched top-ranking chemicals
were for annotated disease-chemical citations in for dis-
eases of interest ("Prostate Neoplasms", "Breast Neo-
plasms", and "Lung Neoplasms"). To call a positive
chemical association or prediction to disease phenotype,
we used p-value thresholds similar to what we observed
during the verification phase (α ≤ 10-4, 0.001, 0.01) along
with q-values as low as possible, specifically less than 0.1.
For comparison, we also used the typical p-value thresh-
old of 0.05.

Figure 4 shows the result of the disease validation
phase. In all cases, the signficant chemicals contained
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many of the specific curated disease-chemical relations.
For example, if we call chemicals with p-values less than
0.01 as positive predictions, then we were able to capture
18%, 16%, and 7% of all of the curated relationships for
prostate, lung, and breast cancers respectively (p = 10-7,
10-4, and 4 × 10-5). We assessed specificity of our list by
computing how many curated chemicals we found for all
other diseases in the CTD (Figure 4, offset points in
orange and black). We achieved false positive rates
between 1 to 4% for prostate cancer, 8 to 20% for lung
cancer, and 2 to 10% for breast cancer. However, most all
of the "false positives" were other types of neoplasms or
cancers (Figure 4, examples annotated in italics/arrows).
For example, for the lung and prostate cancer predictions
at α = 0.001 only 1 disease other than neoplasm or carci-
noma was detected: Liver Cirrhosis, Experimental
(MeSH ID: MESH:D008325).

For the prostate cancer dataset, we chose a chemical
signature association threshold of 0.001 (q ≤ 0.01). Of
1,338 chemicals tested, 50 total were found under this
threshold. Of these 50 chemicals predicted, 10 had a
curated relation with the MeSH term "Prostate neo-
plasms". This amounted to prediction of 15% of all CTD
curated disease-chemical relations for the Prostatic Neo-
plasms term (p = 3 × 10-7). These chemicals are seen in
Table 2 and include estradiol, sodium arsenite, cadmium,
and bisphenol A. Also predicted were known therapeu-
tics, including raloxifene, doxorubicin, genistein, diethyl-
stilbestrol, fenretinide, and zinc. We observed that many
of the genes detected were well-studied, additional sup-
port to our predictions. For example, ESR2, PGR, and
MAPK1 had 37, 34, and 14 references respectively citing
their activity in the context of estradiol exposure (Table 2,
second-to-right column). Second, we observed common

Figure 3 Clustering chemical prediction lists by biological activity archived in PubChem. A.) A representation of the CTD and chemical-gene 
sets as shown in detail in Figure 2. B.) Prediction of the chemicals associated to each cancer dataset using chemical-gene sets from the CTD. We se-
lected highly significant chemical predictions for each cancer and clustered these chemicals by their "Bioactivity" similarity as defined and computed 
in PubChem. C.) Within PubChem, each of these chemicals has a vector of standardized BioAssay scores. PubChem had 790 BioAssay scores for 66 of 
our significant predictions. The PubChem BioActivity similarity tool uses these vectors of scores to computes the biological activity similarity for each 
pair of chemicals and similarity is represented as a matrix.
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occurrence of genes such as ESR2, BCL2, and MAPK1,
among some of the gene sets associated with chemicals
such as estradiol, raloxifene, sodium arsenite, doxorubi-
cin, diethylstilbestrol, and genistein.

For the lung cancer dataset, we also chose a threshold
of 0.001 (q ≤ 0.004). Of 1,338 chemicals tested, 42 were
found under this threshold. Of these 42 chemicals, 7 had
a cited relation with "Lung neoplasms", 14% of all curated
disease-chemical relations for the term (p = 1 × 10-5).
These chemicals are seen in Table 3. For lung cancer, we
observed cited chemicals such as sodium arsenite, vana-
dium pentoxide, dimethylnitroamine, 2-acetylamino-
flourene, and asbestos. Therapeutics observed included
doxorubicin and indomethacin. We did not observe com-
mon genes represented for different chemical-gene sets,
unlike the prostate cancer predictions. Predictions for the
smoker-lung cancer samples were similar, resulting in
sodium arsenite, dimethylnitrosamine, and vanadium
pentoxide, albeit through different differentially

expressed genes (Additional File 1, Supplementary Figure
S1 and Table 3).

For the breast cancer dataset, we chose a threshold of
0.01 (q ≤ 0.08). Of 1,338 chemicals tested, 28 were found
under this threshold. Of these 28 chemicals, 7 had a cited
relation with "Breast neoplasms", 7% of all curated dis-
ease-chemical relations for the disease. These chemicals
are seen in Table 4 (p = 4 × 10-5). The chemicals predicted
included progesterone and bisphenol A. Therapeutics
found included indomethacin and cyclophosphamide.
There was evidence for both a harmful chemical and a
therapeutic for chemicals such as estradiol, genistein, and
diethylstilbestrol for breast cancer. Unlike the predictions
shown for prostate and lung cancer, the genes utilized in
the predictions for breast cancer were not as well studied,
with 1 to 3 references for the gene and environment asso-
ciation. We observed some commonality in chemical-
gene sets, such as the presence of IL6 and CEBPD in sev-
eral of the top chemicals predicted in association to the
disease. Similar chemicals were predicted for the tumori-

Table 1: Chemical Prediction Results from the Verification Phase.

Actual Chemical 
Exposure (GEO 

accession)

Chemicals 
Predicted

Hypergeometric 
P-value

Rank (Percentile) q-value Relevant Genes 
Expressed

Vitamin D3 on H. 
sapiens muscle 
cells (GSE5145)

Calcitriol 1 × 10-23 1 (100) 0 VDR (25), 
CYP24A1 (14)

TCDD on M. 
musculus 

(GSE10082)

TCDD 2 × 10-15 3 (99) 0 CYP1A1 (59), 
CYP1B1 (15), 

AHRR(6), CYP1A2 
(14)

Bisphenol A on H. 
sapiens Ishikawa 
cells (GSE17624)

Bisphenol A 1 × 10-6 15 (99) 0 ESR1(31), ESR2(7), 
S100G (6)

Zinc sulfate on H. 
sapiens bronchial 
tissue (GSE2111)

Zinc sulfate 3 × 10-3 15 (99) 0.04 SLC30A1 (3), 
MT1F(2), MT1G(2)

Estradiol on M. 
musculus thymus 

(GSE2889)

Estradiol 5 × 10-3 17 (99) 0.08 C3(6), LPL (4), 
CTSB (2)

Estradiol on H. 
sapiens MCF7 cell 
line (GSE11352)

Estradiol 5 × 10-3 19 (99) 0.08 ISG20 (2), MGP (2), 
SERPINA1 (2)

Each row represents a gene expression dataset and relevant prediction and ranking. The first column specifies the gene expression dataset, 
the 2nd column the actual exposure applied to the samples for the gene expression set. The 3rd and 4th columns represent the hypergeometric 
p-value for chemical-gene set enrichment along with the rank of the chemical in the prediction list. The 5th column shows the 5th percentile 
of the ranking derived from 100 random samplings of genes from the gene expression dataset. The 6th column show notable genes expressed 
in the chemical-gene set along with the number of references the chemical-gene relation in the CTD.
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Figure 4 Curated disease-chemical enrichment versus prediction lists for prostate, lung, and breast cancer datasets. For a prediction list, we 
selected chemicals that ranked within α = 10-4, 10-3, 10-2, and 0.05. This -log10(threshold) along with number of total chemicals found (in parentheses) 
for each threshold is seen on the x-axis of each figure. We tested if these highly ranked chemicals found under each threshold were enriched for chem-
icals that had known curated association with the cancer in question. The -log10(p-value) for this enrichment is seen on the y-axis. The solid round 
red marker represents the enrichment test for the actual disease for which the predictions were based; the number underneath represents the total 
number of chemicals found in the prediction list that had a curated association with the disease and the percent found among all curated relations 
for that disease. We estimated accuracy and precision by computing disease-chemical enrichment for all other diseases; false positives are offset in 
black and true negatives are in yellow. The false positive rate is bracketed and in italics. Examples of false positives are annotated in blue italics along 
with the number of chemicals found in the prediction list corresponding to that disease and the percent found among all curated relations for that 
disease. We computed this validation enrichment for A.) prostate cancer, B.) lung cancer from nonsmokers, and C.) non-tumorigenic breast cancers.
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genic breast cancer dataset, such as estradiol and proges-
terone. However, chemicals not highly ranked in the non-
tumorigenic predictions included benzene and the thera-
pies tamoxifen and resveratrol (Additional File 1, Supple-
mentary Figure S2 and Supplementary Table S4).

Some of the chemicals found were common to more
than one type of cancer (Figure 5). For example, we pre-
dicted chemicals such as sodium arsenite for both pros-
tate cancer and lung cancers, and bisphenol A for both
prostate and breast cancers. In some of the cases, the pre-

dicted chemical overlap across different cancers are due
to the expression of distinct genes for each dataset, high-
lighting the potential of many possibilities for interaction
between environmental chemicals and genes.

Clustering Significant Predictions by PubChem-derived 
Biological Activity
We have described a method of generating a list of chem-
ical predictions associated with disease-annotated gene
expression datasets and applied the method on gene

Table 2: Prediction of environmental chemicals associated with prostate cancer samples (GSE6919).

Chemical 
Predicted

Hypergeometric 
P-value

Rank (percentile) q-value Relevant genes 
in set (number of 

references)

Citations

Estradiol 4 × 10-10 5 (99) 0 ESR2(37), PGR(34), 
MAPK1(14)

[37]

Raloxifene 1 × 10-9 6 (99) 0 ESR2(6), IGF1(5), 
BCL2(4)

[38]

Sodium arsenite 1 × 10-8 8 (99) 0 JUN(13), 
MAPK1(9), 

CCND1(8), FOS(6)

[30]

Doxorubicin 7 × 10-7 11 (99) 0 BCL2(23), 
MAPK1(14), 

TNF(10)

[39-42]

Cadmium 6 × 10-6 13 (99) 0 MT2A(14), 
MT1A(12), 

MT3(11), MT1(6)

[43]

Genistein 3 × 10-5 19 (99) 6 × 10-4 ESR2(22), PGR 
(10), MAPK1 (5)

[44-46]

Diethylstilbestrol 3 × 10-5 22 (98) 0.001 ESR2(8), FOS(8), 
HOXA10(4)

[47,48]

Fenretinide 3 × 10-4 40 (97) 0.004 BCL2(3), ELF3(2), 
LDHA(2)

[49]

Bisphenol A 6 × 10-4 47 (96) 0.01 PGR(8), ESR2(7), 
IL4RA(2)

[37]

Zinc 9 × 10-4 53 (96) 0.01 MT3(18), 
MT2A(13), 
MT1A(11)

[50-53]

Shown in the table are a subset of the highly ranked chemicals (p < 0.001) that were predicted to have association with prostate cancer gene 
expression and had evidence of association with the MeSH term "Prostatic Neoplasms" as in the CTD. The 1st column represents the chemical 
predicted and the 2nd and 3rd columns show the hypergeometric p-value and ranking. The 4th column shows q-value derived from random 
samples of genes. The 5th column shows the notable genes in the chemical-gene set that were differentially expressed. The 6th column 
contains references for the prostate cancer and chemical association found from the CTD.
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expression data for several cancers. We have validated a
subset of our predictions with evidence from the litera-
ture as described above (Tables 2, 3, 4).

We sought further evidence of the biological relevance
of our predictions through internal comparison of their
potential activity archived in PubChem. Specifically, we
expected some degree of correlation between "similar"
chemicals and their gene set significance to the cancer
datasets. We opted to use PubChem BioActivity to assess
chemical similarity, assuming this measure of phenotypic
similarity would be representative of underlying biologi-
cal pathways of action. We picked chemicals that were
deemed significant for thresholds used above (p = 0.001,
0.001, 0.01, for the prostate, lung, and breast cancer data-
sets) for all of the cancer datasets. This resulted in a total
of 130 chemicals, 66 of which had BioActivity data in
PubChem. The BioActivity similarity for each of the 66
chemicals was computed through 790 BioAssay scores.

Figure 5 shows the -log10 of significance for the highest
ranked chemical predictions clustered by their BioActiv-
ity similarity.

We found some chemicals with similar biological activ-
ity profiles in PubChem had similar patterns of chemical-
gene set association across the cancer datasets. For exam-
ple, sodium arsenite, sodium arsenate, and doxorubicin
have closely related biological profiles as well as high sig-
nificance of chemical-gene set association for the pros-
tate and lung cancer data (Figure 5, enclosed in orange
box); however, we did not observe other biologically simi-
lar chemicals such as Tetradihydrobenzodioxin. On the
other hand, we also observed correlation between the
biological activity similarity and chemical-gene set asso-
ciation for hormone or steroidal chemicals such as ethi-
nyl estradiol, estradiol, and diethylstilbestrol as well as
progesterone and corticosterone (Figure 5, enclosed in
purple boxes).

Table 3: Prediction of environmental chemicals associated with lung cancer samples (GSE10072).

Chemical Predicted Hypergeometric 
P-value

Rank (percentile) q-value Relevant genes 
in set (number of 

references)

Citations

Doxorubicin 1 × 10-6 16 (99) 4 × 10-4 CASP3(60), 
ABCB1(28), 

BAX(26), BCL2 
(23)

[54]

Sodium arsenite 8 × 10-6 20 (98) 4 × 10-4 JUN(13), NQ01(6), 
EGR1(6)

[55-57]

Vanadium pentoxide 1 × 10-5 24 (98) 6 × 10-4 HBEGF(3), 
CDK7(1), CDKN1B 

(1), CDKN1C(1)

[58]

Dimethylnitrosamine 6 × 10-5 27 (98) 7 × 10-4 TGFB1(23), 
TIMP1(15), 

PCNA(6)

[31]

Indomethacin 2 × 10-4 34 (97) 0.002 BIRC5(3), 
CDKN1B(2), 

MMP9(2)

[59-61]

2-Acetylaminofluorene 3 × 10-4 36 (97) 0.003 ABCB1(4), 
ABCG2(4), 
KRT19(2)

[62]

Asbestos, Serpentine 4 × 10-4 39 (97) 0.004 IL6(2), MMP9(2), 
MMP12(2), 
PDGFB(2)

[63]

Shown in the table are a subset of the highly ranked chemicals (p < 0.001) that were predicted to have association with lung cancer gene 
expression (non-smokers) and had evidence of association with the MeSH term "Lung Neoplasms". Columns have similar definitions as Table 
2.
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Discussion
We have developed a knowledge- and data-driven
method to predict chemical associations with gene
expression datasets, using publicly available and previ-
ously disjoint datasets. To our knowledge, there are few
methods that generate hypotheses regarding environ-
mental associations with disease from gene expression
data. Most current approaches in toxicology have focused
on a small number of environmental influences on single
or small groups of genes, while current approaches in
toxicogenomics have been concentrated on measuring
genome-wide responses for a few chemicals [29]. Our
prediction method enables the generation of hypotheses
in a larger scalable manner using existing data, examining
the potential role of hundreds of chemicals over thou-
sands of genome-wide measurements and diseases.

As an example, we found predicted chemicals such as
sodium arsenite in its association with prostate and lung
cancers, estrogenic compounds such as bisphenol A and
estradiol with prostate and breast cancers, and dimethyl-
nitrosamine with lung cancer. Although each has curated
knowledge behind the association in the CTD, mecha-
nisms for the action are not well known and call for fur-

ther study. So far, Benbrahim-Talaa et al have found
hypomethylation patterns in the presence of arsenic in
prostate cancer cells [30]. Zanesi et al show a potential
interaction role of FHIT gene and dimethylnitrosamine to
produce lung cancers [31]. Evidence of a complex mecha-
nistic action of estrogens, such as estradiol, on breast
cancer carcinogenesis has been established [32]; however
the role of other estrogenic-like compounds have only
recently been studied. For example, bisphenol A has been
shown to invoke an aggressive response in cancer cell
lines [33], possibly by affecting estrogen-dependent path-
ways [34]. It is evident that more experimentation is
required involving the measurements of exposure-
affected proteins and genes and their activation state in
cellular models and their relation to the chemical signa-
tures.

An overlap of activity of the same genes induced by dif-
ferent chemicals would suggest a common physiological
action by these chemicals. For example, the ESR2 and
MAPK1 genes in the prostate cancer prediction, and the
IL6 and CEBPD in the breast cancer predictions, were
associated with several chemicals for each of the diseases.
We also found an overlap between chemicals amongst

Table 4: Prediction of environmental chemicals associated with breast cancer samples (GSE6883).

Chemical 
Predicted

Hypergeometric 
P-value

Rank (percentile) q-value Relevant genes 
in set (number of 

references)

Citations

Progesterone 2 × 10-4 6 (99) 0.01 IL6(3), STC1(3), 
CEBPD(2)

[64,65]

Genistein 6 × 10-4 10 (99) 0.03 CEBPD(1), 
APLP2(1), MLF1(1)

[66-68]

Estradiol 7 × 10-4 11 (99) 0.03 LPL(4), IL6(3), 
CEBPD(2)

[69-73]

Indomethacin 3 × 10-3 17 (99) 0.05 CCDC50(1), 
BIRC3(1), 
DNAJB(1)

[74]

Diethylstilbestrol 3 × 10-3 18 (99) 0.05 IL6(1), MARCKS(1), 
MXD1(1), 
MMP7(1)

[75,76]

Cyclophosphamide 4 × 10-4 19 (99) 0.06 IL6(3), MARCKS(1), 
PSMA5(1)

[77-79]

Bisphenol A 6 × 10-3 21 (99) 0.08 CEBPD(1), 
MLF1(1), DTL(1)

[80]

Shown in the table are a subset of the highly ranked chemicals (p < 0.01) that were predicted to have association with breast cancer gene 
expression (non-tumorigenic) and had evidence of association with the MeSH term "Breast Neoplasms". Columns have similar definitions as 
Table 2.



Patel and Butte BMC Medical Genomics 2010, 3:17
http://www.biomedcentral.com/1755-8794/3/17

Page 13 of 17
different cancers. This result comes as a result of the cor-
relation in the significant pathways shared by these can-
cers; however, it may also indicate a need to explore less
significant associations in order to find unique and spe-

cific gene expression/chemical exposure relationships for
a given disease. Furthermore, this result may also indicate
a bias of gene and chemical relationships cataloged in the
CTD. For example, it could be that genes specific to com-

Figure 5 Chemical predictions for Prostate, Lung, and Breast Cancer datasets clustered by PubChem BioActivity. Highly significant chemical 
prediction p-values for the prostate, lung, and breast cancer datasets (p = 0.001, 0.001, 0.01, for the prostate, lung, and breast cancer datasets) are 
reordered by their BioActivity similarity computed by PubChem. A column represents the cancer analyzed and each cell corresponds to the chemical-
gene set association -log10(p-value). Examples of correlation between BioActivity similarity and chemical-gene set significance include the sodium 
arsenite, sodium arsenate, and Doxorubicin cluster (labeled in orange), the Genistein, Estradiol, Ethinyl Estradiol, and Diethylbisterol and Progesterone, 
Tretinoin, and Corticosterone clusters (labeled in purple). Other examples of BioActivity similarity and chemical-gene set association include chemicals 
vinclozolin, tert-Butylhydroperoxide, and Carbon Tetrachloride (outlined in blue).
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mon cancer-related pathways are those that are well stud-
ied, such as BCL2 or ESR2.

Related to this, we have attempted to show how biolog-
ical activity, as assayed in a high-throughput chemical
screen in PubChem, can be correlated with chemical
gene-set associations. Observing a correlation in both
PubChem-derived bioactivity in addition to a chemical-
gene set association from the CTD provides a way to
identify shared modes of action among groups of similar
or related chemicals. This data serves to both provide
internal validation for list of predicted chemicals acting
through similar pathways (such as those induced by
estrogen) but also to prioritize hypotheses. For example,
we did not find curated evidence in the CTD for associa-
tion of the chemicals vinclozolin, tert-Butylhydroperox-
ide, and Carbon Tetrachloride to prostate or lung
cancers; however, their similar bioactivity profiles (Figure
5, enclosed in blue box) and high chemical-gene set asso-
ciation calls for further review.

We do acknowledge some arbitrariness in our choice of
methods and thresholds; most of these were chosen to
show significance in our methodology without adding
complexity. We could have chosen any of several alterna-
tive approaches to implementing our method; however,
predictions made with the Gene Set Enrichment Analysis
(GSEA) [35] method during the verification phase were
not as sensitive (not shown). Another limitation in our
first implementation is that in calculating the chemical
signatures associating chemicals with gene sets, we
ignored the specific degree of expression change (up or
down) encoded in the CTD. We decided not to use this
information due to the presence of contradictions (some
references may point to an increase of exposure-induced
gene expression while another reference might claim the
opposite), and other preliminary work suggesting that fil-
tering by the degree of change reduced sensitivity (data
not shown). Because of these limitations, direction of
association cannot be inferred. Further still, we acknowl-
edge richer and more refined chemical signatures along
with further integration with resources like PubChem
will need to be built to make the most accurate predic-
tions.

Another issue with querying the microarray data of any
experiment is the lack of full sample information to strat-
ify results; for example, different exposures may be asso-
ciated with a subset of the samples. A related concern
includes small sample sizes of some of the datasets used
to evaluate the method. For example, the best predictive
power was seen the largest dataset (prostate cancer,
GSE6919), and the worst with one of the smallest, (breast
cancer, GSE6883). Despite this heterogeneity and lack of
power, we still arrived at noteworthy and literature-
backed findings warranting further study. We also urge

that more evaluation must occur with datasets that have a
larger number of samples.

Most importantly, we stress that these types of associa-
tion remain as predictions and hypotheses that need vali-
dation and verification. The method presented here is not
a substitute for traditional toxicology or epidemiology.
These studies are required to provide quantitative and
population generalizable estimates of disease risk and
dose-response relationships. However, as the space of
potential environmental chemicals potentially causing
biological effects is large, we suggest that this methodol-
ogy would give investigators at least some clue where to
start the search for environmental causal factors to study
in these other modes. Furthermore, predicting a linkage
between chemicals, genes, and clinically-relevant disease
phenotypes using existing resources falls in agreement
with the National Academies' vision of high-throughput
efforts to decipher genetic pathways to toxicity [36].

Conclusion
We have described a novel and scalable method to associ-
ate changes in gene expression with environmental chem-
icals. While we successfully validated our methodology
here and provide hypotheses regarding the potential
association of chemicals in cancer development, these
hypotheses would need to be carefully studied in con-
trolled cellular experiments. Our method is limited by the
lack of direction of association and effect size as typically
ascertained in traditional toxicological and epidemiologi-
cal studies; however, the vast number of chemicals that
can be tested in silico is only limited by the amount of
available data. This method is just one of potentially
many tools that need to be built to predict environmental
associations between genes and disease.
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