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Abstract

Background
and aims

The red algae are an evolutionarily ancient group of predominantly marine organisms with
an estimated 6000 species. Consensus higher-level molecular phylogenies support a basal
split between the unicellular Cyanidiophytina and morphologically diverse Rhodophytina,
the later subphylum containing most red algal species. The Rhodophytina is divided into six
classes, of which five represent early diverging lineages of generally uninucleate species,
whose evolutionary relationships are poorly resolved. The remaining species compose the
large (27 currently recognized orders), morphologically diverse and typically multinucleate
Florideophyceae. Nuclear DNA content estimates have been published for ,1 % of the
described red algae. The present investigation summarizes the state of our knowledge and
expands our coverage of DNA content information from 196 isolates of red algae.

Methodology The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and RBC (chicken ery-
throcytes) standards were used to estimate 2C values with static microspectrophotometry.

Principal results Nuclear DNA contents are reported for 196 isolates of red algae, almost doubling the number
of estimates available for these organisms. Present results also confirm the reported DNA
content range of 0.1–2.8 pg, with species of Ceramiales, Nemaliales and Palmariales contain-
ing apparently polyploid genomes with 2C ¼ 2.8, 2.3 and 2.8 pg, respectively.

Conclusions Early diverging red algal lineages are characterized by relatively small 2C DNA contents while
a wide range of 2C values is found within the derived Florideophyceae. An overall correlation
between phylogenetic placement and 2C DNA content is not apparent; however, genome size
data are available for only a small portion of red algae. Current data do support polyploidy and
aneuploidy as pervasive features of red algal genome evolution.

Introduction
The Second Plant Genome Size Workshop and Discussion
Meeting (hosted by the Royal Botanic Gardens, Kew, 8–
12 September 2003) identified major gaps (systematic,
regional and plant type) in our knowledge of plant
DNA amounts (Bennett and Leitch 2005a, b). It was

noted that no database was available for algae. This
major gap was addressed with a compilation of
genome size estimates for 247 species of macroscopic
marine algae, including data for 95 isolates and
species of red algae (Kapraun 2005). These data have
been incorporated into a database of plant genome
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sizes (Kapraun et al. 2004) compiled and hosted by the
Royal Botanic Gardens (RBG) Kew web page (http://
data.kew.org/cvalues/). A subsequent investigation of
green algae resulted in an expansion of coverage and
characterization of the ancestral land plant flagellate
genome (Kapraun 2007). More recently, efforts to
expand coverage of DNA contents in brown algae
were published (Phillips et al. 2011). This final report in
the series summarizes nuclear DNA content data for
red algae, both from our continuing investigations
and from the literature. Results are updated at
http://people.uncw.edu/kapraund/DNA (see links to
‘Rhodophyta’). The present paper provides nuclear
genome size estimates for 77 additional isolates of red
algae and compiles all available data (196 species/iso-
lates) into a single resource [see Additional Information].
Of this new list, 40 resulted from our ongoing research.
Unicellular microalgae and freshwater red algae, which
were previously under-represented (Kapraun 2005), are
emphasized here.

Inclusion of published nuclear DNA content data for
red algae in the present report was sometimes problem-
atic. The Second Plant Genome Size Workshop and Dis-
cussion Meeting (Bennett and Leitch 2005b) identified
‘best practice’ methodology for nuclear genome size es-
timation in plant tissues. Virtually none of the published
genome size data for algae resulted from investigations
adhering to all of the best practice recommendations,
primarily because measurement of the relatively small
algal nuclear genomes requires standard species differ-
ent from those specified as appropriate for vascular
plants (Doležel et al. 1998; Kapraun 2005). A comprehen-
sive discussion on standard species and methods is
included in the section ‘Notes on Appendix I’.

The red algae (Rhodophyta) are predominantly marine
organisms with .700 genera and 6000 species
described in 38 orders (Guiry and Guiry 2011). The
Rhodophyta are characterized by unstacked thylakoids
in plastids, plastids containing the accessory pigments
phycoerythrin, phycocyanin and allophycocyanin
arranged in phycobilisomes, the lack of plastid endoplas-
mic reticulum, the presence of pit connections between
cells in filamentous genera and the absence of flagel-
lated cells in the life history (Woelkerling 1990). There
are a variety of current higher-level classification
schemes for red algae (Saunders and Hommersand
2004; Yoon et al. 2006; Guiry and Guiry 2011). Molecular
analyses (Oliveira and Bhattacharya 2000; Yoon et al.
2002a, b, 2006) and organelle ultrastructure (Pueschel
1989; Scott and Broadwater 1990) support an early
divergence for the Cyanidiales, which are resolved as a
sister group to other red algae and classified as a
separate subphylum (Cyanidiophytina). The remaining

Rhodophyta are divided into six classes that are
grouped as a single subphyllum (Yoon et al. 2006) or
multiple subphyla (Saunders and Hommersand 2004;
Guiry and Guiry 2011). Five of these classes, Porphyridio-
phyceae, Stylonematophyceae, Compsopogonophyceae,
Rhodellophyceae and Bangiophyceae, are early diver-
ging lineages of generally uninucleate species, whose
evolutionary relationships are poorly resolved (Yoon
et al. 2006; Verbruggen et al. 2010). These five classes
represent about 1 % of the total number of described
red algal species. The remaining species are typically
multinucleate and classified within the Florideophyceae,
a large class of 27 currently recognized orders falling
within five subclasses represented by clades that
terminate long, basally positioned branches in molecular
phylogenies with specific synapomorphic pit plug
characteristics (Saunders and Bailey 1997; Le Gall and
Saunders 2007; Verbruggen et al. 2010).

The traditional view that the Acrochaetiales are the
most primitive and the Ceramiales are the most highly
derived of the florideophycidean red algal orders (Kylin
1956; Dixon 1973) is not supported by molecular data
(e.g. Le Gall and Saunders 2007; Verbruggen et al.
2010). A more complex phylogenetic model is emerging
for red algae, characterized by ancient lineages often
terminating in modern radiations (Yoon et al. 2006; Le
Gall and Saunders 2007; Verbruggen et al. 2010).

New availability of both a DNA C-values database
(Kapraun et al. 2004) and consensus higher-level phylo-
genies has opened the way for determining evolutionary
trends in DNA amounts for other red algae (Kapraun
2005). The present static microspectrophotometric
investigation of additional species of red algae was
initiated to determine the extent of nuclear DNA
content variation, to identify any correlation between
genome size and phylogenetic relationships, and to
corroborate an alternation of haploid and diploid
nuclear DNA contents in gametophyte and sporophyte
tissue, respectively, of selected species.

Materials and methods
Species collection data and/or source of cultures for
newly reported data are summarized at http://people.
uncw.edu/kapraund/DNA (see links to ‘Rhodophyta’).
Algal material was fixed in Carnoy’s solution (Kapraun
2005) and stored in 70 % ethanol at 4 8C. Selected speci-
mens were rehydrated in water and softened in 5 % w/v
ethylenediaminetetraacetic acid (Goff and Coleman
1986, 1987, 1990) for 12–48 h. Algal specimens
were transferred to coverslips treated with subbing solu-
tion, and then air dried and stained with DAPI
(4′,6-diamidino-2-phenylindole) (0.5 mg mL21) (Sigma
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Chemical Co., St Louis, MO, USA) as previously described
(Goff and Coleman 1986, 1987, 1990; Kapraun and
Nguyen 1994). Nuclear DNA contents were based on
estimates from both microspectrophotometry and
image analysis. Microspectrophotometry with DAPI
followed procedures published previously (Kapraun and
Nguyen 1994; Kapraun et al. 2007) using a protocol
modified after Goff and Coleman (1990). Nuclear DNA
content estimates based on image analysis of
DAPI-stained specimens followed a procedure modified
from Kapraun and Dunwoody (2002) and Choi et al.
(2004), using a Cooled CCD Miramax RTE 782-Y high-
performance digital camera placed on a Leica DMRB
fluorescence microscope and analysed with MetaMorph
software (Molecular Devices, Toronto, Ontario, Canada)
(Gómez et al. 2010). For a comprehensive review of the
theory and practice of DNA quantification by densitom-
etry, see Hardie et al. (2002).

Nuclear DNA contents of algal specimens were
estimated by comparing their If values with those of
chicken erythrocytes (RBC) (Kapraun 1994; Kapraun
and Dunwoody 2002). The rationale for accepting 2C
DNA ¼ 2.4 pg as the standard is included in ‘Notes on
Appendix I, Section (f)’ [see Additional Information].
4′,6-Diamidino-2-phenylindole binds by a non-
intercalative mechanism to adenine- and thymine-rich
regions of DNA that contain at least four A-T base
pairs (Portugal and Waring 1988). Consequently,
chicken erythrocytes can be used directly as standards
for determining amounts of DNA only when the A–T
contents of both standard and experimental DNA are
equivalent (Coleman et al. 1981). Chicken has a
nuclear DNA base composition of 42–43 mol% G + C
(Marmur and Doty 1962). Limited published data for
the Rhodophyta indicate values in the range of 35–
42 mol% G + C (Freshwater et al. 1990; Le Gall et al.
1993; Kapraun et al. 1993a, 1996). Members of the
Rhodophyta investigated in this study are assumed to
have a similar range of base pair compositions, and
the linearity is accepted between DAPI–DNA binding in
both RBC and algal samples (Le Gall et al. 1993).

The Rhodophyta include taxa with some or all of their
cells being multinucleate or endopolyploid (Kapraun and
Nguyen 1994; Kapraun 2005) as well as taxa that exhibit
a nuclear ‘incremental size decrease associated with a
cascading down of DNA contents’ (Kapraun 1994). Meth-
odologies were developed for specific specimens to
permit assignment of C level and interpretation of If

data. However, assignment of estimated nuclear DNA
contents to specific C-values in the present study is
presumptive in that no karyological investigations were
conducted on the algal samples used for nuclear DNA
content estimates.

Previously unpublished nuclear DNA content data in
Appendix I are indicated by (8). Supplementary materials
and methods, information for collection locations
and data for number of algal nuclei examined in each
sample and estimates of nuclear genome size (pg)+SD
are available at http://people.uncw.edu/kapraun/DNA.
Nuclear DNA content data are also incorporated into
a database of plant genome sizes (Kapraun 2005;
Gregory et al. 2007) hosted by the RBG Kew web page
(http://data.kew.org/cvalues/).

Results and discussion

DNA content by group

Red algal DNA contents are presented following the two
subphylum classification schemes of Yoon et al. (2006)
and florideophycean classification of Saunders and
Hommersand (2004) and Le Gall and Saunders (2007).

Cyanidiophyceae The Cyanidiophyceae are small,
unicellular, anciently diverged red algae (Barbier et al.
2005; Coppin et al. 2005) whose evolutionary
relationships remain a subject of controversy (Garbary
et al. 1980; Gabrielson et al. 1985; Seckbach 1999; Müller
et al. 2001a; Yoon et al. 2006). Molecular data support
their placement as sister to the other Rhodophyta
(Saunders and Hommersand 2004; Yoon et al. 2006), but
the unique attributes of these organisms (Coppin et al.
2005) provide a sense that the cyanidiophytes are as
distinct from other red algae as are phyla in the plant
and animal kingdoms relative to one another (Saunders
and Hommersand 2004; Yoon et al. 2004, 2006).
Putative synapomorphies of the cyanidiophytes include
a blue-green colour resulting from the presence of
a-chlorophyll and C-phycoerythrin, complete lack of the
red phycoerythrins (De Luca et al. 1978) and an ability to
inhabit hot, acidic waters (acidothermophilic) (Seckbach
1999). The cyanidiophytes are reported to have the
smallest known genomes of any phototrophic eukaryotes
(Matsuzaki et al. 2004). Pulse-field gel electrophoresis
(PFGE) and Feulgen microspectrophotometry with
Saccharomyces cerevisiae Meyen ex Reess standard have
yielded 1C nuclear genome size estimates of 10–16 Mbp
(Suzuki et al. 1992; Maleszka 1993; Matsuzaki et al. 2004;
Barbier et al. 2005) and 1.35–2.25 × 1022 pg (Muravenko
et al. 2001) in eight isolates and species of these
extremophile algae [see Additional Information]. The
size of the nuclear genome in Cyanidioschyzon reported
in the last decade has doubled as a result of progress in
measuring techniques (Matsuzaki et al. 2004). It is
assumed that these recent values are more accurate.
Consequently, earlier nuclear genome size estimates
listed here should be treated with caution.

AoB PLANTS 2012: pls005; doi:10.1093/aobpla/pls005, available online at www.aobplants.oxfordjournals.org & The Authors 2012 3

Kapraun and Freshwater — Red algal DNA content

http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/pls005/-/DC1
http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/pls005/-/DC1


Porphyridiophyceae, Stylonematophyceae, Compsopo-
gonophyceae and Rhodellophyceae These classes were
traditionally included with the Bangiophyceae in a
group variously classified as a subphylum or subclass.
Early molecular studies indicated that this was a
polyphyletic grouping of distinct lineages (e.g.
Freshwater et al. 1994; Müller et al. 2001b), and recent
studies have assigned these lineages to separate
classes (e.g. Saunders and Hommersand 2004; Yoon
et al. 2006). The Porphyridiophyceae consists solely of
unicellular forms including Porphyridium and Flintiella,
while unicellular and pseudofilamentous taxa such as
Rhodosorus, Stylonema and Goniotrichopsis make up
the Stylonematophyceae (West et al. 2005; Yoon et al.
2006). The Compsopogonophyceae includes taxa of
various morphologies that have been treated as
separate families (Rintoul et al. 1999) or orders (Silva
et al. 1996), but which form a monophyletic lineage in
most analyses (e.g. Yoon et al. 2006; Verbruggen et al.
2010). The Rhodellophyceae is another group of
primarily unicells such as Dixoniella and Rhodella.
Relationships among these lineages are similar in the
concatenated multilocus DNA sequence analyses of
Yoon et al. (2006) and Verbruggen et al. (2010), but
these relationships are poorly supported.

Few nuclear DNA content estimates are available for
members of these early diverging lineages, and the
current values are all relatively small (Fig. 1). Two
species exemplifying these low values are Compsopogon
caeruleus (Balbis ex C. Agardh) Montagne (Compsopogo-
nales, Compsopogonophyceae) with a 2C DNA content of
0.2 pg and a reported chromosome complement of 1n ¼
7+1 (Nichols 1964), and Erythrotrichia carnea (Dillwyn)
J. Agardh (Erythropeltidales, Compsopogonophyceae)
with a 2C DNA content of 0.7 pg. These data are consist-
ent with a basal (ancestral) red algal genome character-
ized both by small genome sizes and small chromosome
complements. In addition, the small range of the
nuclear DNA content values in these early diverging
lineages (0.1–0.7; Fig. 1) suggests that the long evolu-
tionary separation of these lineages was not accompan-
ied by substantial changes in DNA content [see
Additional Information].

Bangiophyceae This class, as presently understood is
monophyletic and includes 15 currently recognized
extant genera (some still unnamed) (Sutherland et al.
2011). The chief characteristic used to separate the
familiar genera Bangia and Porphyra, e.g. filament
vs. blade, lacks taxonomic significance as these
morphologies arose independently several times
throughout the evolutionary diversification of the
Bangiales (Oliveira et al. 1995; Müller et al. 2001a, b;

Broom et al. 2004; Jones et al. 2004; Milstein and de
Oliveira 2005). Molecular data do not support the
distinction of Bangia and Porphyra as monophyletic
genera, and analyses of these data have resulted in
the transfer of a majority of species previously placed
in Porphyra, including species of commercial value, to
new genera (e.g. Nelson et al. 2006; Sutherland et al.
2011). DNA sequence analyses also suggest that the
simple morphology of these organisms obscures
significant levels of genetic diversity, including the
presence of morphologically cryptic species (Klein et al.
2003; Müller et al. 2003; Nelson et al. 2003; Sutherland
et al. 2011). Recently, two species of Porphyra were
transferred to two new genera, Pyrophyllon and
Chlidophyllon, which are included in the Erythropeltidales
(Compsopogonophyceae) (Nelson et al. 2003). In
addition to clarifying taxonomic classifications and
identifying cryptic species, molecular data have been
useful in recognizing the conspecific status of some
widely distributed species (Broom et al. 2002; Neefus and
Brodie 2009), including Pyropia suborbiculata (Kjellm.) J.E.
Sutherl., H.G. Choi, M.S. Hwang et W.A. Nelson and
Pyropia elongata (Kylin) Neefus et J. Brodie, which we
investigated previously as Porphyra carolinensis Coll et
J. Cox and Porphyra rosengurtii Coll et J. Cox, respectively
(Kapraun and Freshwater 1987; Kapraun et al. 1991;
Kapraun 2005). Transfer of the Pyropia spiralis (E.C.
Oliveira et Coll) M.C. Oliveira, D. Milstein et E.C. Oliveira
variety previously studied as Porphyra spiralis var.
amplifolia E.C. Oliveira et Coll is needed after the generic
reclassification of Sutherland et al. (2011) and is effected
here:

Pyropia spiralis (E.C. Oliveira et Coll) M.C. Oliveira,
D. Milstein et E.C. Oliveira var. amplifolia (E.C. Oliveira
et Coll) Freshwater et Kapraun comb. nov.

Basionym: Porphyra spiralis var. amplifolia E.C. Oliveira
and Coll (1975: p. 196, Figs 3, 10).

In the eight isolates of Bangia, Porphyra and Pyropia
investigated, neither estimates of 2C nuclear DNA
contents, which range from 0.6 to 1.2 pg, nor published
chromosome complements, which range from
1n ¼ 3–5, appear to be genus specific (Kapraun 2005).
The representation of these species and isolates in
current phylogenetic studies (e.g. Sutherland et al.
2011) is insufficient to determine whether there is any
relationship between nuclear DNA content and evolu-
tionary patterns of the various Bangiophyceae lineages.

Florideophyceae—Nemaliophycidae The Florideophyceae
includes five currently recognized subclasses (Saunders
and Hommersand 2004; Le Gall and Saunders 2007).
DNA content estimates are available for representatives
of the Nemaliophycidae, Corallinophycidae and

4 AoB PLANTS 2012: pls005; doi:10.1093/aobpla/pls005, available online at www.aobplants.oxfordjournals.org & The Authors 2012

Kapraun and Freshwater — Red algal DNA content

http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/pls005/-/DC1


Rhodymeniophycidae. The remaining two subclasses,
Ahnfeltiophycidae and Hildenbrandiophycidae, while
evolutionarily distinct, include only a small number of
species. Genome size estimates are available for six of
the nine currently recognized Nemaliophycidae orders,
and the group is characterized by a nuclear 2C DNA
content range of 0.2–2.8 pg (Fig. 1).

Acrochaetiales, Palmariales, Colaconematales,
Nemaliales. Molecular systematic investigations have
resolved a close relationship among members of the
Acrochaetiales, Palmariales, Colaconematales and
Nemaliales (Saunders et al. 1995; Harper and Saunders
2002; Huisman et al. 2004), which are considered to
represent early lineages of florideophytes. The transfer
of Rhodothamniella floridula (Dillwyn) Feldmann from

the Acrochaetiales (Saunders et al. 1995) and
segregation of the Colaconematales (Harper and
Saunders 2002) has resulted in a monophyletic
Acrochaetiales that is sister to the Palmariales (e.g.
Clayden and Saunders 2010). Although the
relationships of the Colaconematales and Nemaliales
are poorly resolved in large red algal phylogenies (Le
Gall and Saunders 2007; Verbruggen et al. 2010), the
more specific analysis of Clayden and Saunders (2010)
indicates a sister relationship between these orders.

Nuclear DNA content data have been published for only
one species of the Colaconematales, Colaconema daviesii,
with 2C DNA ¼ 0.6 pg, and are limited to two species of
Audouinella in the Acrochaetiales [see Additional Infor-
mation]. Data available for species of the Nemaliales
suggest that this order is characterized by one of the

Fig. 1 Estimated 2C nuclear DNA contents superimposed on a consensus red algal phylogeny. Phylogeny based on the analyses of
Yoon et al. (2006), Le Gall and Saunders (2007) and Verbruggen et al. (2010) with unsupported nodes in these analyses collapsed to poly-
tomies. Branch labels follow the two-subphylum classification of Yoon et al. (2006) and florideophycean classification of Saunders and
Hommersand (2004) and Le Gall and Saunders (2007). Dots represent individual DNA content estimates; lines represent the range of
values for multiple species.
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largest ranges of DNA contents (2C ¼ 0.5–2.5 pg) of any
of the florideophytes (Fig. 1). The Palmariales, as present-
ly delimited (Clayden and Saunders 2010), includes three
genera for which nuclear DNA content estimates are
available: Devaleraea (Guiry 1982), Palmaria (Guiry
1974) and Rhodothamniella (Saunders et al. 1995). A 2C
range of 1.5–2.8 pg gives the Palmariales the largest
mean nuclear DNA size in the florideophytes.

Batrachospermales/Thoreales. Until recently, freshwater
red algae belonging to the genera Thorea and
Nemalionopsis were included in the order
Batrachospermales (Kumano 2002). Small subunit
ribosomal DNA and rbcL sequence analyses indicate that
the Thoreaceae has been misclassified in the
Batrachospermales and should be placed in its own
order, the Thoreales (Müller et al. 2002). Species in
this order are characterized by having freshwater
representatives with multiaxial gametophytes, a uniaxial
chantransia stage and pit plugs with two cap layers, the
outer one of which is usually plate like. Nuclear DNA
content estimate data are available for only one species
in this order, Thorea riekei, with 2C ¼ 0.28 pg [see
Additional Information]. The Batrachospermales is
distinguished from other freshwater rhodophyte orders
based on a heterotrichous life history phase, lack of
tetraspore production, and a two-layered pit plug, the
outer layer of which is domed (Vis et al. 1998).

The Batrachospermales and the Thoreales are of par-
ticular interest as they are exclusively freshwater (Vis
and Sheath 1997) in the Nemaliophycidae clade, which
includes several additional orders that are primarily or
at least partially freshwater: Acrochaetiales, Balbiniales,
Balliales (Harper and Saunders 2001; Müller et al.
2001a, b; Le Gall and Saunders 2007). As members of
the distantly related Compsopogonales (Compsopogo-
nophyceae) are primarily freshwater as well (Sheath
1984; Müller et al. 2002), it is likely that adaptation to
freshwater habitats involved multiple, independent
events in the evolution of red algae.

The genus Batrachospermum appears to be polyphyl-
etic, comprising many morphologically similar but dis-
tantly related taxa (e.g. Chiasson et al. 2007; Kapraun
et al. 2007). Species of Batrachospermum, Sirodotia and
Tuomeya (Batrachospermaceae) investigated in the
present study have 2C nuclear DNA contents of about
0.2–0.6 pg, while species of Lemanea and Paralemanea
(Lemaneaceae) have noticeably larger 2C genome sizes
of 1.0–1.6 pg [see Additional Information]. Results of
this study suggest a possible correlation between poly-
ploidy and the expression of the Batrachospermum or
Lemanea morphological phenotypes.

Published karyological studies for Batrachosperm-
aceae indicate that most species have chromosome
numbers in the range of 1n ¼ 3–5 or 10–12, while
Lemaneaceae species have chromosome complements
of 1n ¼ 15–20 (Kapraun et al. 2007). Both the larger
genome sizes and chromosome complements in
Lemanea and Paralemanea are consistent with poly-
ploidy events in their common ancestry.

A unique pattern of somatic meiosis has been
described in members of this order associated with
development of haploid gametophytes from vegetative
branches of the microscopic, diploid sporophyte phase
(Necchi and Carmona 2002). The sporophyte phase has
been described variously as ‘Chantransia’ (Chiasson
et al. 2005), Audouinella (Necchi and Zucchi 1997) and,
possibly, Balliopsis (Saunders and Necchi 2002).
Support for this life history comes from both cytological
(von Stosch and Theil 1979; Necchi 1987) and microspec-
trophotometry (Sheath et al. 1994, 1996) investigations.
In the present study, DAPI and microspectrophotometry
demonstrated in isolates of three species (Batrachosper-
mum gelatinosum, Batrachospermum vagum and
Lemanea torulosa) If (fluorescence) levels in 2C nuclei
in presumptive gametophytes that closely approximate
50 % of the 4C values in presumptive sporophytes.

Florideophyceae—Corallinophycidae Past molecular
systematic investigations resolved the Corallinales as a
lineage within the larger group of taxa that share the
presence of pit plugs with two cap layers and were
classified as the Nemaliophycidae (Saunders and Bailey
1997; Harper and Saunders 2002; Saunders and
Hommersand 2004). The recent multigene study of
Le Gall and Saunders (2007) demonstrated that the
Corallinales and Rhodogorgonales represented a
separate evolutionary lineage from the Nemaliophycidae,
and established the Corallinophycidae. The analyses of
Verbruggen et al. (2010) supported this classification and
the inclusion of the Sporolithales in this subclass as
suggested by Le Gall and Saunders (2007).

Nuclear DNA content data are only available from
species in the Corallinales where 2C DNA contents
range from 0.1 to 1.3 pg (Fig. 1) [see Additional Informa-
tion]. Coralline algae can be divided into two types:
geniculate (with alternating calcified internodes and
uncalcified nodes) and non-geniculate (which usually
grow as crusts) (e.g. Woelkerling et al. 1993). Recently,
molecular studies demonstrated that genicula are non-
homologous structures that evolved independently in
several families (Bailey and Chapman 1996, 1998).
When DNA content data are superimposed on this
molecular phylogeny, it becomes apparent that genicu-
late clades are represented by species with larger
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nuclear genomes (0.6–1.3 pg) while non-geniculate
clades contain species with relatively small nuclear
genomes (0.1–1.0 pg) (Kapraun 2005). Analysis of add-
itional species will be required to determine whether
these observations reflect a sampling artefact.

Florideophyceae—Rhodymeniophycidae Ordinal
classification within the Rhodymeniophycidae continues
to be refined, in large part as a result of distinct
evolutionary lineages being recognized within the large,
polyphyletic Gigartinales (e.g. Withall and Saunders
2006). The subclass currently includes 12 orders
(Saunders and Hommersand 2004; Guiry and Guiry
2011), with DNA content estimates available for species
in nine of these (Fig. 1). While the overall 2C DNA
content range of 0.2–2.8 pg is relatively wide, five of
the orders (Gelidiales, Gigartinales, Gracilariales,
Halymeniales and Rhodymeniales) have particularly
narrow ranges of DNA contents [see Additional
Information].

Gelidiales. The relatively narrow range of small DNA
content values but substantial range of chromosome
numbers (Kapraun and Bailey 1989; Freshwater 1993;
Kapraun et al. 1993b, 1994), and the absence of a
correlation between nuclear genome size and
chromosome number suggest a significant role of
aneuploidy in Gelidialean evolution (Kapraun and
Dunwoody 2002). Analyses of DNA sequence data from
a variety of loci have resulted in a consistent molecular
phylogeny for the Gelidiales (e.g. Freshwater and Bailey
1998; Shimada et al. 1999; Thomas and Freshwater
2001; Tronchin and Freshwater 2007). This
well-circumscribed order includes only a handful of
genera, but is particularly species rich (e.g. Millar and
Freshwater 2005), and it would be very interesting to
explore the possible role of aneuploidy in their
evolution by obtaining additional chromosome and
genome size data for representative species.

Bonnemaisoniales. This order was separated from
the Nemaliales on the basis of their then known
alternation of generations (Feldmann and Feldmann
1942). It is now known that this life history pattern
lacks taxonomic significance as some Nemaliales
are heteromorphic and some Bonnemaisoniales
are isomorphic (Womersley 1996). For example,
Bonnemaisonia asparagoides (Woodward) C. Agardh is
monoecious and has a direct life history with no
tetrasporophyte, while Bonnemaisonia clavata G. Hamel
is dioecious and has an alternation of heteromorphic
generations with ‘Hymenoclonium serpens’ representing
the tetrasporophyte (Salvador Soler et al. 2008). The

Bonnemaisoniales are currently recognized at the ordinal
level on the morphological basis of their apical
development pattern and direct development of the
gonimoblast. Ultrastructural details of pit plugs and caps
(Pueschel 1989) and plastids (Chihara and Yoshizaki
1972), as well as molecular studies (e.g. Saunders et al.
2004; Le Gall and Saunders 2007), appear to support
retention of this order.

In a recent study (N. Salvador Soler, University of Bar-
celona, Barcelona, Spain, unpubl. res.) and the current
study, nuclear DNA content data for ‘Falkenbergia rufola-
nosa’, the diploid sporophyte phase of the heteromorph-
ic species Asparagopsis armata, and for the isomorphic
species Delisea plumosa and Ptilonia willana, suggest
2C values for members of this order of 0.5–0.6 pg.
Nuclear DNA content data for both phases of the hetero-
morphic species in the Bonnemaisoniales are needed to
confirm that ploidy level shifts (2n/4n) are associated
with the gametophyte and sporophyte phases,
respectively.

Ceramiales. The Ceramiales is the largest red algal order,
with close to 400 genera and 1500 species described
(Kraft and Woelkerling 1990; Schneider and Wynne
2007; Wynne and Schneider 2010). Genome size data
are available for fewer than 2 % of these species [see
Additional Information]. Members of this order have
both the largest DNA contents and the greatest range
of DNA content values (0.26–2.8 pg). Past molecular
systematics investigations indicate that the traditional
ceramialean families, Dasyaceae, Delesseriaceae and
Rhodomelaceae, evolved from a paraphyletic
Ceramiaceae (de Jong et al. 1998; Phillips 2000; Lin
et al. 2001; Choi et al. 2002; Zuccarello et al. 2002;
Barros-Barreto et al. 2006). Choi et al. (2008) proposed
a new taxonomy for the Ceramiales that split the
paraphyletic traditional Ceramiaceae into the
Ceramiaceae sensu stricto and three new families,
Callithamniaceae, Spyridiaceae and Wrangeliaceae
(Fig. 2). When nuclear DNA content data are
superimposed on a consensus molecular phylogeny for
the order, each family is seen to have at least one
(ancestral?) species with a 2C DNA content of ,1.0 pg
as well as species with elevated (polyploid?) DNA
contents (Fig. 2). The simplest explanation is that
polyploidy, characterized by even number multiple
increases in chromosome complements as well as
increase in nuclear genome size, accompanied
speciation in each of these lineages. A strong
correlation between chromosome complements and
nuclear genome size in many Ceramiales investigated
is consistent with this explanation, although analysis of
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additional species will be required to eliminate the
possibility that our observations reflect sampling error.
Conspicuous exceptions include Acanthophora spicifera
with 2n ¼ 64 and 2C ¼ 1.1 pg, and Antithamnion
villosum with 2n ¼ 48 and 2C ¼ 2.0 pg. Clearly, in some
genera, polyploidy events were followed by chromosome
reorganization, including fission/fusion processes
ultimately resulting in aneuploidy as described for
species of the Rhodomelaceae genus Polysiphonia
(Kapraun 1993a).

Molecular systematic investigations have demon-
strated the paraphyly of Polysiphonia sensu lato (e.g.
Choi and Kim 2001; Stuercke and Freshwater 2010;
Mamoozadeh and Freshwater 2011), especially in relation
to the recently described genus Neosiphonia (Kim and Lee
1999). The currently available data are insufficient to
explore any relationships of genome size and species evo-
lution (Fig. 3). However, now that a more accurate

understanding of phylogenetic relationships is emerging,
it would be of interest to determine whether nuclear
genome sizes and chromosome complements have diag-
nostic value in delimiting the monophyletic species
groups being revealed within Polysiphonia sensu lato.

Recent data suggest that Ceramiales are an ancient
lineage relative to other Rhodymeniophycidae (Le Gall
and Saunders 2007; Verbruggen et al. 2010), yet on
average they have larger nuclear genome contents
than most of the taxa that are believed to have diverged
after them. Unless an assumption is made that the other
taxa in the Rhodymeniophycidae lineage have experi-
enced nuclear genome size decrease, an explanation is
required to account for the larger genome sizes in the
Ceramiales.

Although the existence of mechanisms for decreasing
DNA amounts have been proposed (Wendel et al. 2002),
it is more probable that polyploidy and transposable

Fig. 3 Estimated 2C nuclear DNA contents superimposed on a phylogeny of Neosiphonia and Polysiphonia species. Phylogeny based
on the analyses of Mamoozadeh and Freshwater (2011).

Fig. 2 Estimated 2C nuclear DNA contents superimposed on a family phylogeny for the Ceramiales. Phylogeny based on analyses of
Choi et al. (2008) with unsupported nodes collapsed to polytomies. Dots represent individual DNA content estimates; lines represent the
range of values for multiple species.

8 AoB PLANTS 2012: pls005; doi:10.1093/aobpla/pls005, available online at www.aobplants.oxfordjournals.org & The Authors 2012

Kapraun and Freshwater — Red algal DNA content



element amplification will result in genome size increase
through time (Bennetzen 2002), ultimately resulting in
genomic ‘obesity’ (Bennetzen and Kellogg 1997). Since
the Ceramiales are arguably the oldest members of
the Rhodymeniophycidae lineage, they would have
accumulated the largest genomes and may have been
subject to a predictable genomic expansion. Although
data are severely limited, there appears to be a correl-
ation between antiquity of these red algal lineages and
their mean nuclear DNA contents.

Gigartinales. The Gigartinales is a large and diverse order
(Fredericq et al. 1996; Hommersand et al. 1999; Tai et al.
2001; Saunders et al. 2004) including commercially
important carrageenophytes such as Eucheuma,
Kappaphycus and Chondrus (Craigie 1990; Kapraun
1999). Present results confirm previous studies
(Kapraun et al. 1992; López-Bautista and Kapraun
1995; Kapraun and López-Bautista 1997), suggesting
that members of this order are characterized by a wide
range of chromosome numbers (2n ¼ 10–70) and a
narrow range of small nuclear DNA contents (2C ¼
0.2–0.9 pg) [see Additional Information]. The genome
size (1C) of Chondrus crispus was estimated as
150 Mbp using flow cytometry of haploid nuclei (Le Gall
et al. 1993), but recent complete sequencing of this
genome indicates a size of only 105 Mbp (Collén 2011)
concordant with previous estimates using static
microspectrophotometry (Kapraun 2005). This relatively
small size and the species’ economic importance made
Chondrus an ideal candidate among carrageenophytes
for genome sequencing.

Halymeniales. The Halymeniales is a relatively large
order of 270+ species classified in 26 currently
recognized genera (Guiry and Guiry 2011). Currently, 2C
DNA content data are only available for two species,
Grateloupia filicina (Lamouroux) C. Agardh and
Halymenia floridana J. Agardh, with both having
identical values (Fig. 1) [see Additional Information].

Nemastomatales and Sebdeniales. Recent studies have
reinstated the Nemastomatales and established the
Sebdeniales for species previously part of the
Gigartinales (Saunders and Kraft 2002; Withall and
Saunders 2006). Although the orders are represented
by relatively few species, molecular and morphological
analyses reveal additional diversity (e.g. Schneider
et al. 2006). Currently, estimates of 2C DNA content
are only available for two Predaea (Nemastomatales)
and one Sebdenia (Sebdeniales) species (Fig. 1) [see
Additional Information].

Gracilariales. This order includes relatively few genera,
but some of them, e.g., Gracilaria, are species rich
(Fredericq and Hommersand 1990). No new nuclear
DNA content estimates are available for this order, but
previous data indicate that nuclear genome sizes are
small (0.3–0.5 pg) (Kapraun 1993b, 2005). The
Gracilariales, unlike the Gelidiales, is noted for genome
size constancy, with all species of Gracilaria
investigated having identical 2C DNA contents of 0.4 pg
and chromosome complements of 2n ¼ 48 (Kapraun
and Dutcher 1991; Kapraun 1993a). Species of the
closely related Gracilariopsis (Bird et al. 1994; Bellorin
et al. 2002; Gurgel et al. 2003) exhibit some variation
in both 2C DNA contents (0.3–0.5 pg) and 2n
chromosome complements with values of 2n ¼ 48 and
64 reported.

Rhodymeniales. Nuclear DNA content estimates from
previous (Kapraun 2005) and present studies are now
available for nine species representing three families of
the Rhodymeniales (Saunders et al. 1999) [see
Additional Information]. This order, along with the
Gelidiales and Gracilariales, has both a narrow range
and a small mean nuclear genome size (2C ¼ 0.3–
0.6 pg).

Range of DNA contents

The size of the red algal genomes reported here and pre-
viously (Kapraun 2005) is best appreciated when com-
pared with the minimum amount of DNA estimated for
specifying the mRNA sequences required for angiosperm
development. Specifically, the genomes of Genlisea
margaretae Hutchinson and Arabidopsis thaliana (L.)
Heynhold, with 2C ¼ 126 and 314 Mb, respectively,
(Riechmann et al. 2000; Bennett et al. 2003; Greilhuber
et al. 2006), are among the smallest found in angio-
sperms (Bennett and Smith 1976), but still have 1.5–
2 times the estimated 15 000 genes per haploid
genome required for development (Flavell, 1980). Simi-
larly, the genome of the green alga Volvox carteri
F. Stein, with 138 Mbp, has an estimated coding poten-
tial for 14 500 proteins (Prochnik et al. 2010). Even the
smallest rhodophyte genome reported (e.g. 1C ¼ 98 Mb
in Compsopogon coerulus), with its probable genomic
redundancy (Kapraun 2005, 2007), has the genic cap-
acity for morphologically complex development.

Polyploidy

Polyploidy has been reported widely in the Rhodophyta
(Cole 1990; Kapraun 2005), especially in the Ceramiales,
which have both the largest nuclear genomes and the
highest chromosome numbers (Kapraun 1993a, 2005;
Kapraun and Dunwoody 2002). For a recent review of
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concepts associated with adaptations and genetic vari-
ability associated with hybridization and polyploidy in
algae, see Coyer et al. (2006). Comparison of 2n chromo-
some numbers and 2C nuclear DNA contents shows a
poor relationship (r2 ¼ 0.188, Fig. 4), consistent with a
high occurrence of aneuploidy, i.e. chromosomal fusion
and/or fission events (Kapraun et al. 1993b; Kapraun
2005). Present results support previous suggestions
(Kapraun 1989) that polyploidy and aneuploidy are
pervasive features of red algal genomics. The extent of
both species-level and intraplant ploidy-level variation
(including endopolyploidy) remains to be determined
(Goff and Coleman 1986, 1987), but represents an
exciting area for future research.

Correlation between DNA content and phylogenetic
placement

Although no correlation is apparent between phylogen-
etic placement and genome size, groups considered to
be basal (Cyanidiophytina, Porphyridiophyceae, Stylone-
matophyceae, Compsopogonophyceae, Rhodellophy-
ceae) generally have genome sizes ≤0.5 pg, while
derived groups (Bangiophyceae, Florideophyceae) gener-
ally have genome sizes ≥0.5 pg, with values up to 2.8 pg
reported. DNA contents may be diagnostic, synapo-
morphies in both the Corallinales and Batrachosper-
males. In the Corallinales (Kapraun 2005), geniculate
clades are represented by species with larger nuclear
genomes (0.6–1.3 pg) while non-geniculate clades
contain species with relatively small nuclear genomes
(0.1–1.0 pg), the overlap in these ranges is a result of

single outlier species. Similarly, in the Batrachosper-
males, species of Batrachospermum, Sirodotia and
Tuomeya have 2C nuclear DNA contents of 0.2–0.6 pg
while species of Lemanea and Paralemanea have notice-
ably larger 2C genome sizes of 1.0–1.6 pg (Kapraun et al.
2007) [see Additional Information]. More definitive
trends may be revealed as data for nuclear genome
size and our understanding of red algal evolutionary
relationships increase.

Correlation between DNA content and habitat

It is likely that adaptation to freshwater habitats
involved multiple, independent events in the evolution
of red algae. In the present study, no correlation
between nuclear genome size and adaptation to fresh-
water habitats is apparent in the Compsopogonales,
Thoreales and Batrachospermales.

Correlation between nuclear genome size
and reproductive parameters

In a previous investigation of the relationship of nuclear
genome size to reproductive cell parameters in the
Rhodophyta (Kapraun and Dunwoody 2002), three
general trends regarding carpospore production were
noted: (i) increase in genome size was positively corre-
lated with increase in carpospore volume; (ii) species
with larger genome sizes produced fewer carpospores;
and (iii) species that produced larger carpospores
produce fewer carpospores. Members of the Ceramiales,
with their larger genome sizes, typically produce fewer,
but larger carpospores and generally behave as pre-
dicted in a K-selection model. In contrast, members of
the Gelidiales, Gigartinales and Gracilariales, with their
smaller genome sizes, typically produce large numbers
of small carpospores as predicted in an r-selected
model (Kapraun and Dunwoody 2002). The conspicuous
limitation of this ecological model is that the Ceramiales
generally produce small, structurally simple, short-lived
plants (associated with r-selection), while the other
orders generally produce large, structurally complex,
long-lived plants (associated with K-selection).

Characteristics of an ancestral red algal genome

In the present study, cyanidophytes represent the
earliest diverging red algal lineage and have reported
genome sizes of 1C ¼ 0.02–0.1 pg (1C ¼ 10–55 Mbp)
and 2n chromosome numbers between 4 and 20 [see
Additional Information]. These genomic characteristics
recommend this group for further investigations that
could possibly help characterize the nuclear genome in
unicellular organisms prior to the transition to multicel-
lularity seen in other red algae. Among the basal Rhodo-
phytina, members of the Compsopogonophyceae,

Fig. 4 Comparison of 4C nuclear DNA contents and 2n
chromosome complements for 33 species of Florideophy-
ceae. DNA content values from the present study and previ-
ously published data (Kapraun 2005; Kapraun et al. 2007;
Salvador Soler et al. 2009), and 2n chromosome complements
from Cole (1990) and Kapraun (2005).

10 AoB PLANTS 2012: pls005; doi:10.1093/aobpla/pls005, available online at www.aobplants.oxfordjournals.org & The Authors 2012

Kapraun and Freshwater — Red algal DNA content

http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/pls005/-/DC1
http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/pls005/-/DC1


Porphyridiophyceae and Stylonematophyceae may
represent appropriate candidates for investigations
of nuclear genomes in extant, basal red algae. For
example, Compsopogon caeruleus has a 2C DNA
content of 0.25 pg (1C ¼ 98 Mb) and a reported chromo-
some complement of 1n ¼ 7+1 (Nichols 1964). Small
genome size and chromosome complements have been
reported in Porphyridium aerugineum Geitler (n ¼ 2) and
P. purpureum (Bory de Saint-Vincent) K.M. Drew & R. Ross
[as P. cruentum (S.F. Gray) Nägeli] (n ¼ 2; 2C DNA
content ¼ 0.1 pg) (Sommerfeld and Nichols 1970),
although it remains unclear whether these represent
haploid or diploid values.

Candidates for genomic studies

DNA C-value remains a key character in biology, biodiver-
sity and molecular investigations as genome size has
many important practical implications (Bennett et al.
2000). Genome size directly influences the cost and dif-
ficulty of sequencing projects, and was a primary consid-
eration in choosing subjects for early whole-genome
analyses (Gregory 2001, 2005), including those of
algae where small DNA content (haploid genomes
�100 Mbp) has been a major criterion (Peters et al.
2004; Waaland et al. 2004). Despite major improvements
in sequencing cost and efficiency provided by current
next-generation sequencing technology, genome size is
still a consideration for coverage and de novo assembly.
Many red algal species have haploid genomes in the
range of 127–300 Mbp [see Additional Information],
and the present study provides a list of target species
with small genome sizes for whole-genome sequencing
studies. Many of these species (e.g. Gelidiales and
Gracilariales) are also amenable to culture and are of
significant ecological and/or commercial importance
(López-Bautista and Kapraun 1995; Kapraun and
López-Bautista 1997; Kapraun 1999).

Conclusions and forward look
Early diverging red algal lineages are characterized by
relatively small 2C DNA contents while a wide range of
2C values is found within the derived Florideophyceae.
An overall correlation between phylogenetic placement
and 2C DNA content is not apparent; however, genome
size data are available for only a small portion of
red algae. Current data do support polyploidy and aneu-
ploidy as pervasive features of red algal genome
evolution.

Red algae that warrant further investigation include the
Nemaliales, Acrochaetiales and Colaconematales. Phylo-
genetic analyses indicate that these three orders are
part of early diverging florideophycean lineages (e.g. Le

Gall and Saunders 2007), are widely distributed and
contain many genera that are species rich (Saunders
et al. 1995; Harper and Saunders 1998), yet published in-
formation about their genome sizes is very limited. It
would be of interest to determine whether the relatively
wide range of DNA contents found in the Nemaliales
occurs in these other related orders.

Another group of red algae that warrant attention is
the Ceramiales, especially the Rhodomelaceae, which
may include more species than all other red algae com-
bined. Continuing molecular phylogenetic investigations
provide us with evolutionary schemes (e.g. Martin-
Lescanne et al. 2010; Mamoozadeh and Freshwater
2011) upon which genome size data can be superim-
posed to reveal the extent that speciation was accom-
panied by nuclear transformations.

Additional information
The following additional information is available in the
online version of this article –

File 1. Appendix I—Chromosome numbers and nuclear
DNA content estimates in isolates and species of red
algae.

File 2. Notes on Appendix I.
File 3. Numbered references for chromosome comple-

ments and DNA content estimates in the Rhodophyta
cited in Appendix I.
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