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Hard polymeric porous
microneedles on stretchable
substrate for transdermal drug
delivery
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Microneedles offer a convenient transdermal delivery route with potential for long term sustained
release of drugs. However current microneedle technologies may not have the mechanical properties
for reliable and stable penetration (e.g. hydrogel microneedles). Moreover, it is also challenging

to realize microneedle arrays with large size and high flexibility. There is also an inherent upper

limit to the amount and kind of drugs that can be loaded in the microneedles. In this paper, we
present a new class of polymeric porous microneedles made from biocompatible and photo-curable
resin that address these challenges. The microneedles are unique in their ability to load solid drug
formulation in concentrated form. We demonstrate the loading and release of solid formulation of
anesthetic and non-steroidal anti-inflammatory drugs, namely Lidocaine and Ibuprofen. Paper also
demonstrates realization of large area (6 x 20 cm?) flexible and stretchable microneedle patches
capable of drug delivery on any body part. Penetration studies were performed in an ex vivo porcine
model supplemented through rigorous compression tests to ensure the robustness and rigidity of
the microneedles. Detailed release profiles of the microneedle patches were shown in an in vitro skin
model. Results show promise for large area transdermal delivery of solid drug formulations using
these porous microneedles.

Microneedles have been developed as an effective method for transdermal drug delivery'~. It has received
attention since it avoids degradation of the drugs in the gastrointestinal tract and bypasses the first-pass effects
associated with the liver in case of oral delivery, and the pain and inconvenience of intravenous injection
through the skin**~7. Also using microneedles offers a minimally invasive, less painful and self-administra-
ble approach for drug delivery. Researchers have proposed different manufacturing methods for microneedles
with applications in drug delivery, wearables and implantables®~'!. UV lithography'?-'%, drawing lithography'*-?!,
deep X-ray lithography of Lithographie Galvanoformung Abformung (LIGA)**, micromilling®**, Deep Reac-
tive Ion Etching (DRIE)?*-*!, wet etch technology®?, 2D and 3D printing®*-* have been proposed for their fabrica-
tion. However these methods have an inherent limitation in terms of cost and complexity of fabrication making
microneedles an expensive solution compared to ingestibles or subcutaneous injections. There is a need for a
fabrication process which is more cost-effective and requires less time to make them in a flexible format. Besides
the different methods of fabrication, there are different kinds of microneedles categorized as solid*, hollow**,
dissolving®~*>, merged-tip*® and porous*’~>* microneedles. Solid microneedles can be made from metals or bio-
compatible and stiff polymers. It can be used for creating pores in the outer layers of the skin and then applying
the drug topically. Since pores can heal rapidly, these microneedles cannot be used for long term sustained
release. Another method of using solid microneedles is to coat the drug on the surface of the solid microneedle
arrays®=>. The coating would dissolve, releasing the drug transdermally in the skin tissue. One of the disad-
vantages of this approach is the low quantities of drug that can be coated onto the needles. Solid microneedles
also have safety issues for shattering while inside the skin becoming a biohazard. Hollow microneedles have
microfluidic channels that carry the drug from a separate reservoir into the skin. They provide a mechanism
to hold large quantities of drug but the process to make them is complicated requiring cleanroom processes,
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while there are drawbacks that only drugs in liquid form can be delivered*?. Dissolving microneedles patches
contain drugs in hydrogel or bio-resorbable polymers and are generally safe compared to solid microneedles
where there is potential for bio-hazard from disposal of microneedles. Dissolving microneedles are made from
several bio-absorbable polymers like maltose®, sugar®, salmon sperm DNA (SDNA)®, poly(methylvinylether
maleic anhydride) (PMVE/MA)®, carboxymethyl cellulose (CMC)**** and polyvinylpyrrolidone (PVP)%. One
of the drawbacks is that these unwanted polymers (non-drug) are also released along with the drug and there is
a limit on the quantity of the drug that can be delivered. These microneedles are also less reliable for skin pen-
etration and breakage. Porous microneedles are another alternative which carry a large volume of distributed
drug loaded pores. The surface porosity of the microneedles carries the potential to deliver large quantities of
drug. However it is challenging to make hard porous microneedles that can penetrate skin reliably. There are
different approaches to make porous microneedles utilizing different materials like silicon®®’, colloidal silica®,
polymers®, ceramics’’, gypsum brushite®, alumina®’! and metal®’. In some cases these microneedles are made
partially with porous material such as having only a porous tip*®. Microneedles with a porous polymer have
also been made using polymerization in the presence of a porogen (pore template)”. Although the synthesized
polymer had high mechanical strength, the resultant microneedles had inconsistent geometry, which made them
unsuitable for further applications. Poly lactic acid (PLA) porous microneedles have been used for transdermal
drug delivery but these microneedles also lack the strength and are not able to penetrate to skin*’. We need the
microneedles to be mechanically rigid, and sufficiently sharp to enable easy penetration into the skin. Moreover,
the base substrate should be flexible enough to conformably adapt to the curvature and deformations of the
human body to improve wearer comfort, facilitate effective penetration and sustained release of drug into skin
over wear-time. Finally, we expect the microneedles to be available both in small and large formats to meet dif-
ferent dosing requirements for different parts of the body.

In this paper, we introduce a new kind of polymeric porous microneedle that uses direct solid drug formula-
tion embedded in a UV-curable biocompatible hard polymer. Drugs are distributed in the pores of these solid
and hard microneedles. Use of solid drug formulation allows one to load large quantities of drug compared to
aqueous dispersions of drugs. It also expands the kind and type of drugs that can be loaded. We performed com-
pression tests on these microneedles and showed that they are robust from breakage on skin penetration while
providing excellent and reliable penetration in the epidermis. For proof of concept, these new class of porous
microneedles were used to deliver two important drugs, namely Lidocaine and Ibuprofen. Lidocaine is a popular
local anesthetic and Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) used for pain relief. Injecting
hypodermic needles for delivering Lidocaine and Ibuprofen is painful, it can cause trypanophobia, hypersensitiv-
ity, bruising and bleeding”’. Oral administration does not target the pain area and has a longer time to act. Also,
it can have significant adverse effects, namely gastrointestinal (GI), renal, and cardiovascular damage”. Topical
creams or sprays containing local anesthetics have been developed as a means to avoid needle injections”~". The
use of topical anesthetics is limited due to their slow onset and short duration. Targeted delivery of Lidocaine and
Ibuprofen using microneedles can provide rapid relief. Also, it has a higher efficacy compared to topical patches.

In this paper, we made both small and large area porous microneedle patches with flexible backing for local
pain relief that can be applied on any body part (even elbow or knee) with excellent conformability. Drug release
profile of Lidocaine and Ibuprofen patches has been measured in vitro. Also, we verified the efficacy of Lido-
caine and Ibuprofen drugs after embedding in the polymeric resin matrix of the microneedles. Our research
confirms that Lidocaine and Ibuprofen maintained their molecular structure after being formulated with resin.
The mechanical behavior of the microneedles was also investigated by histological examination and through
compression tests with excellent results as discussed below.

Results

Polymeric porous microneedles. Our proposed polymeric porous microneedles are made by casting a
colloidal mixture of the solid drug powder and a biocompatible/photo-curable resin. Having a solid drug for-
mulation ensures the highest possible concentration of the drug can be loaded into the microneedles. The resin
creates a solid matrix around the network of drug powder particles which are organized as pores and microchan-
nels (see Fig. 1 for conceptual representation) in a hard and solid resin. After insertion into the skin, the drug
particles dissolve in the interstitial fluid of the skin tissue diffusing out leaving behind a network of open chan-
nels and voids as shown in Fig. 1. The rigidity of the resin maintains the mechanical strength of the microneedles
during penetration without getting damaged or fractured.

Microneedle fabrication procedure. Any microneedle mold could be used to cast the drug/resin for-
mulation to make microneedle patches. However, we chose to use our prior work on cross-over-lines (COL)
fabrication procedure* to make microneedle patches due to its low cost, easy processing and ability to make
large area patches, as shown in Fig. 2a. A CO, laser (Boss LS-1416 from Boss Laser, LLC; Sanford, FL, USA)
was used to create negative volume on a Clear Scratch- and UV-Resistant Cast Acrylic sheet (part number of
8560K359. McMaster-Carr; Princeton, NJ, USA). The engraved acrylic mold was washed with isopropanol and
distilled water to remove the dust and particles from the surface and engraved areas. A nitrogen gun was used
to remove the excess water on the surface. The mold was then dried in an atmospheric oven at 80 °C for 30 min.
Then, polydimethylsiloxane (PDMS, Dow Sylgard™ 184 Silicone Elastomer; Dow Silicones Corporation in Mid-
land, MI, USA) was cast on the acrylic sheet. The PDMS-casted sheet was degassed and subsequently cured
in the oven at 80 °C for 2 h. After complete curing of the PDMS, PDMS microneedles were peeled off of the
acrylic sheet and were treated with oxygen plasma to activate the surface of the PDMS microneedles. The PDMS
microneedles were then silanized with trichloro(1H,1H,2H,2H-perfluorooctyl) silane (SKU: 448931-10G, from
MilliporeSigma; Burlington, MA, USA) under vacuum in a desiccator overnight. Ecoflex™ 00-50 (Smooth-On,
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Figure 1. Schematics of the polymeric porous microneedles with solid drugs embedded inside the solid matrix
before insertion into skin, after insertion into skin and after sustained release.
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Figure 2. (a) Fabrication flow of the microneedle mold and microneedle patch, (b) patches of microneedle
showing the flexibility, conformality and a roll of the microneedle patch.

Incorporated, Macungie, PA, USA) with the ratio of 1:1 was cast on the silanized PDMS microneedles followed
by curing at room temperature. The silane layer creates a barrier between PDMS microneedles and Ecoflex
mold, avoiding them from bonding to each other, and facilitates their detachment. The final Ecoflex mold can
be used to create microneedles by casting different polymers. In our case, the drug solution or powder can be
cast on the stretched mold. In our study we introduced a new drug/resin paste composed of biocompatible/
photo-curable resin and the solid drug powder, explained in the earlier section. Since the viscous dough-like
drug paste could not be embedded directly in the tiny holes of microneedle molds by regular vacuum molding
or centrifugal methods, we optimized our previously-proposed fabrication method* for microneedles fabrica-
tion by using the stretchable polymer for microneedle molds. Having a stretchable microneedle mold enabled
us to cast highly-viscous drug/resin paste into the microneedle molds through mechanical blade coating of the
paste onto a stretched mold surface. Also, utilizing the stretchable mold decreases the microneedle fabrication
time drastically by eliminating the vacuum procedure to embed the drug solution in micron-size cavities of
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microneedle molds. After molding the drug/resin paste onto a stretched Ecoflex microneedle mold, the mold
was then released from stretch causing excessive drug paste to accumulate on the top, this is then removed
from the surface of the mold ensuring drug/resin formulation is limited to the tip geometry of the microneedle.
The paste is then cured through exposure to 405 nm UV light. The biocompatible resin used to fabricate the
microneedles results in a polymeric matrix with hard mechanical properties after curing. After the curing step,
a thin layer of elastic polymer is cast on the surface of the mold as a substrate and cured under UV light. Using a
hard polymer for the needles and elastic polymer for the substrate enables us to have stiff and rigid microneedles
that facilitate effective insertion into the skin tissue and a soft/elastic substrate which enables skin conformability
and stretchability. Finally, the microneedles with the substrate were peeled off the mold with needles bonded to
the back substrate. As shown in Fig. 2b, we made several patches including the large area 6 x 20 cm? microneedle
patch and demonstrated its mechanical properties. These flexible microneedle patches with hard microneedles
can be fabricated in any form and shape by following the procedure mentioned above. The resulting micronee-
dles are porous microneedles with drug powder distributed within the pores and the micro-channels of the
microneedles.

Dye-loaded microneedle patch for in vitro release. In order to show qualitative in vitro release of the
microneedles visually, we first used a colored dye as a model drug for easier visualization. We used bio-com-
patible/photo-curable resin (Dental SG) from Formlabs (Somerville, MA, USA) and Sulforhodamine B (SKU:
230162-5G, MilliporeSigma; Burlington, MA, USA). Due to the small size of microneedles, the dye particles
need to be ground into finer particles with smaller sizes. Without this step, the dye particles will not distribute
uniformly especially on the tips, given the tips are merely ~ 20 pm in size. We compared the encapsulation of the
dye in microneedles by preparing microneedles with both unground and ground Sulforhodamine B particles.
The unground and ground particles of the dye are shown in Fig. 3a,b with size distribution shown in Fig. 3c. On
average, the unground and ground dye particles had ~50 um and ~ 6 pm size respectively. As shown in Fig. 3d,
there is a lesser quantity of the dye particles encapsulated due to larger size. On the other hand, the microneedles
shown in Fig. 3e have more dye particles encapsulated. Figure 3f shows dye-loaded microneedles with star-
shaped base structure which can be added for robustness and reliable attachment of the microneedles to the
base utilizing the same COL process to make the molds*. Note that the dye does not dissolve in the resin but
gets dispersed in the resin. Mixing the resin and the drug for longer times will result in more even distribution.
Also, homogenization and sonication would result in a more even distribution. Figure 3g shows the schematics
of the microneedle patch that we prepared for in vitro dye release. We added a solid acrylic ring around the sub-
strate so that the patch can be held and applied easier on the skin. The in vitro dye release experiment is shown
schematically in Fig. 3h. A 10% gelatin (Gelatin from Porcine Skin, SKU: G2500-1KG from Millipore Sigma)
solution was prepared as a tissue model and was poured onto a petri dish. Then it was placed in the refrigerator
for 20 min for solidification. A thin layer of parafilm (Parafilm” M, Amcor; Zurich, Switzerland) was then used
as an outer stratum corneum skin layer to cover the gelatin tissue model in the petri dish. The top and bottom
side of the prepared dye-loaded microneedle patch is shown in Fig. 31,j. After inserting the microneedle patch
into the “parafilm-covered solidified-gelatin” skin model, the dye gets released into the gelatin which is visually
monitored at time points as shown in Fig. 31. Figure 3k shows the release of the dye after 10 min. Results indicate
that the dye loaded porous microneedle exhibits sustained release in gelatin, making this type of microneedle
attractive for transdermal release of several drugs directly in solid form.

Drug-loaded microneedles. The microneedle patches were loaded with an anesthetic drug, Lidocaine
and a NSAID Ibuprofen. We studied the in vitro drug diffusion profile for both of these drugs. We also con-
firmed if the molecular structure of the drug and thus its efficacy is maintained throughout the process of mak-
ing the microneedles. We performed FTIR spectroscopy on the cured drug/resin for this confirmation. We also
analyzed the mechanical properties of drug-loaded microneedles through compression tests.

In vitro drug release of lidocaine and ibuprofen microneedles. We used Ibuprofen sodium salt
(SKU: 11892) and Lidocaine hydrochloride monohydrate (SKU: L5647) both purchased from MilliporeSigma
(Burlington, MA, USA). Ibuprofen and Lidocaine can be detected by UV-Vis spectroscopy in the 222 and
263 nm band respectively®®®!. Different concentrations of Ibuprofen and Lidocaine were prepared by dissolv-
ing them in Dulbecco’s Phosphate Buffered Saline (DPBS) by MilliporeSigma (SKU: 59331C). The absorbance
peaks at 222 nm and 263 nm for Ibuprofen and Lidocaine solutions were detected by Evolution 220 UV-Vis
Spectrophotometer by Thermo Fisher Scientific Incorporated (Waltham, MA, USA). The absorption spectrums
were swept in 190-300 nm and 254-300 nm of wavelength for various concentrations as shown respectively in
Fig. 4a,b. We extracted the calibration curve for Ibuprofen and Lidocaine based on the data points of the absorb-
ance amplitude versus concentration (mg/ml) as seen in Fig. 4c. The calibration curve helps us to quantify the
release profile of the drug in the DPBS medium. We performed a detailed release study in DPBS medium for
both Ibuprofen and Lidocaine microneedle patches. The Ibuprofen sodium salt and Lidocaine hydrochloride
monohydrate were ground by Chulux grinder (with four blades) for three minutes to make finer particles. Then,
Ibuprofen and Lidocaine fine particles were mixed with bio-compatible/photo-curable resin with a weight ratio
of 1:1. After that, the patch was fabricated with the same method explained in the “Microneedle Mold Fabrica-
tion Procedure” section. Each patch had one hundred microneedles on it with a size of 0.5 mm in diameter and
1 mm in height. Multiple petri dishes (one petri dish for each time stamp) containing DPBS were placed inside
the Midi CO, incubator (Thermo Scientific) with a temperature of 37 °C. As shown in Fig. 4d, the release profile
shows that each patch (containing 100 microneedles) roughly releases 1 mg of drug in DPBS solution after 2 h
by dissolution-diffusion mechanism. Considering that some drug powders are encapsulated in the areas close to

Scientific Reports |

(2022) 12:1853 | https://doi.org/10.1038/s41598-022-05912-6 nature portfolio



www.nature.com/scientificreports/

150

100

(4}
o
1

particle diameter (um)

o
|

Before After
grinding grinding

Drug loaded
head —,
Solid Acrylic
ring
Hard
microneedle Elastic back
base substrate
Parafilm 1 J k
Back substrate .
R X Sulforhodamine B
(not water (elastic) o
loaded Microneedles
permeable) X o
S
ACADSOSTN
e
R
=
T

Petri dish 10% Gelatin from
porcine skin in PBS

Figure 3. (a) Unground Sulforhodamine B particles, (b) ground Sulforhodamine B particles, (c) particle size
distribution of Sulforhodamine B particles before and after grinding, (d) microneedles made with unground
Sulforhodamine B particles, scale bar of 1 mm, (e) microneedles made with ground Sulforhodamine B particles,
scale bar of 1 mm, (f) microneedles made with ground Sulforhodamine B particles with base structure, scale bar
of 0.5 mm, (g) schematics of microneedle arrays with elastic back substrate and solid acrylic ring, (h) in vitro
release experiment schematics, (i) front side of dye-loaded microneedle patch, (j) back side of dye-loaded
microneedle patch, (k) release of dye in gelatin after 10 min, (I) release distribution of dye-loaded microneedle
arrays in gelatin at different time stamps.
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Figure 4. (a) UV-Vis spectroscopy of Ibuprofen for different concentrations in mg/ml, (b) UV-Vis
spectroscopy of Lidocaine for different concentrations in mg/ml, (c) calibration curve of Ibuprofen and
Lidocaine showing absorption amplitude in 222 nm and 263 nm for different concentrations, (d) release
profile of Ibuprofen/resin and Lidocaine/resin microneedle patches in DPBS, each patch had one hundred
microneedles, (e) FTIR spectroscopy of Lidocaine encapsulated in microneedle showing absorbance spectrum
of lidocaine powder compared with Lidocaine/resin, (f) FTIR spectroscopy of ibuprofen encapsulated in
microneedle showing absorbance spectrum of Ibuprofen powder compared with ibuprofen/resin.

the base and the core of microneedles, it would take more time for those drug powders to come out of the solid
matrix and in some cases some drug powders might choose to stay entrapped in the solid matrix. This would
happen for lower pore densities. Therefore one can increase the porosity such that almost all of the drug would
release given sufficient time. For the microneedles reported in this publication with 1:1 resin:drug ratio, our
calculations indicate that around 20% of the drugs gets released after 200 min of study. Increasing the amount of
resin and decreasing the amount of drug will reduce the amount of drug encapsulation reducing our overall drug
capacity. On the other hand, decreasing the amount of resin and increasing the amount of drug powder would
result in a weaker structure for the needles and consequently lower breaking force for the needles.

Interaction between polymers and drug: FTIR spectroscopy. FTIR spectroscopy was used to evalu-
ate the possible changes in encapsulated drugs during the casting and curing process. Our expectation is that the
drugs do not change their form and molecular structure during mixing and UV curing. We used Nicolet 6700
(Thermo Scientific”; Waltham, MA, USA) with a Smart™iTX ATR accessory having a diamond crystal to acquire
Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectra. The spectra showed the presence of
the following characteristic peaks in lidocaine: N-H stretching at 3450 and 3385 cm™!, amide C=O stretching at
1655 cm™ as shown in Fig. 4e. There was an obvious increase in the intensity of the peak at ~1655 cm™, related
to the amide C=0 stretch. In FTIR, an increase in the peak intensity usually means an increase in the amount
(per unit volume) of the functional group associated with the molecular bond, whereas a shift in peak position
usually means the hybridization state or electron distribution in the molecular bond has changed. Thus, the
decrease in the intensity of amide C=0 in lidocaine/resin samples was attributed to the reduction of lidocaine
ratio in samples®?. The FTIR was checked with a manufacturer data sheet for Lidocaine hydrochloride monohy-
drate and there were three peaks at 3450, 3400 and 3200 cm™ as seen in our data in Fig. 4e. Also, no shift in peak
position was seen in FTIR spectra of ibuprofen/resin as seen in Fig. 4f. The peaks at 1721 cm™ and 3400 cm™
are assigned to the stretching vibration of C=0 and O-H, respectively®. FTIR observation confirmed that the
chemical structure of lidocaine and ibuprofen remained unchanged during the fabrication process.

Histology test, surface morphology and mechanical behavior. A histology test was performed to
confirm the insertion of microneedles to the skin. A pig skin from a recently sacrificed four month old male
Yorkshire pig (from another study) was used for the histology test. The skin was shaved and cut using a 10#
scalpel blade and was placed into a specimen container filled with sterile 0.9% saline. The microneedle patch
was inserted on the skin using a thumb pressure. The micrographs are from the H&E (Hematoxylin and Eosin)
stained tissue section fixed in 10% neutral formalin. Histological examination showed that the microneedle
penetrated ~ 600 um onto the skin as shown in Fig. 5a. As it was shown in other similar studies, the depth of
microneedle’s penetration into skin was shorter than the length of the entire microneedle due to the deformation
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Figure 5. (a) Histology examination of the microneedles, scale bar 100 pum, (b) SEM images of resin/drug
before release, (c) SEM images of resin/drug after release.
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Figure 6. (a) Mechanical behavior of an individual microneedle containing drug and resin, (b) comparing the
robustness of resin/drug microneedle with PEGDA/drug microneedle.

of highly elastic skin****%5. Having an optimal length of microneedles or penetration depth is a tradeoff between
numerous variables like desired drug delivery dosage, microneedle application site, spacing, numbers and diam-
eter of MNs, velocity of microneedle application etc.

Next we studied the pore structures in the microneedles. The mixture of resin and drug creates pores shown
in Fig. 5b. As discussed before, these pores are created in a solid matrix. The drug gets released after administer-
ing the microneedles into the skin, leaving empty cavities behind. These empty cavities are observable in Fig. 5¢
which are SEM images of the microneedles after release.

Our porous microneedles showed high robustness due to high tensile strength of the resin (73 MPa). An
individual drug/resin microneedle showed a mechanical behavior as displayed in Fig. 6a. The compression test
was performed with Instron (Norwood, MA, USA). The microneedles tip started to break down at the force
of ~0.26 N per needle on average. This is over four times the required force needed for insertion into the skin
using the microneedles of this geometry'?.

As a final set of experiments, we compared drug/resin microneedles used in this study to another repre-
sentative of a hard microneedle made from polyethylene glycol diacrylate (PEGDA) based microneedles. The
PEGDA microneedles also show strong mechanical properties for easy skin penetration as detailed in previous
studies®. In our study, we confirmed higher robustness of drug/resin microneedles compared to the PEGDA
based microneedles as shown in Fig. 6b. The PEGDA microneedles were prepared with a Lidocaine solution of
500 mg/ml and PEGDA (Millipore Sigma, SKU: 437441-500ML) with molecular weight of 575 mixed 1% photo
initiator of 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Millipore Sigma, SKU: 410896-10G).
The drug solution and PEGDA solution was mixed with the ratio of 4:1 (v/v). The prepared solution was added
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to microneedle mold and crosslinked by UV-light irradiation with a wavelength of 365 nm. Our results indicate
that PEGDA based microneedles are less rigid and they start to break down at the force of ~0.164 N per needle.

Discussion

In this paper we presented a new kind of polymeric porous microneedles through direct mixing of a solid drug
with biocompatible and photo-curable resin. Solid formulation provides an opportunity to increase drug loading
capacity in the microneedles compared to aqueous drug dispersions. Our polymeric microporous microneedles
have reliable mechanical properties for effective skin penetration. The microneedle patches have flexible and
stretchable backing that improves skin conformability and wearability. Patches can be made large or small and
in any shape and form to be compatible with application at different body parts. To demonstrate drug release,
Lidocaine and Ibuprofen were embedded in our proposed porous microneedles with an eye towards local pain
management. We investigated their release profile in DPBS and verified the drugs characteristics are unchanged
after mixing and curing them with the polymers. We also confirmed the ex vivo penetration of the micronee-
dles in pig skin by histology examination which showed desirable penetration behavior. Solid drug formulation
ensures that different drug candidates, both large and small molecules, can be delivered at high strengths using
these microneedles as compared to conventional microneedles.
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