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Purpose: Although several metal artifact reduction (MAR) algorithms for computed tomography
(CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists
for assessing their performance. The lack of assessment methods poses a challenge to regulators, con-
sumers, and industry. We explored a phantom-based framework for assessing an important aspect of
MAR performance: how applying MAR in the presence of metal affects model observer performance
at a low-contrast detectability (LCD) task This work is, to our knowledge, the first model observer–
based framework for the evaluation of MAR algorithms in the published literature.
Methods: We designed a numerical head phantom with metal implants. In order to incorporate an
element of randomness, the phantom included a rotatable inset with an inhomogeneous background.
We generated simulated projection data for the phantom. We applied two variants of a simple MAR
algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backpro-
jection. To assess how MAR affected observer performance, we examined the detectability of a signal
at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of
merit, we used the area under the ROC curve (AUC).
Results: We used simulation to test our framework on two variants of the MAR technique of sino-
gram inpainting. We found that our method was able to resolve the difference in two different MAR
algorithms’ effect on LCD task performance, as well as the difference in task performances when
MAR was applied, vs not.
Conclusion: We laid out a phantom-based framework for objective assessment of how MAR impacts
low-contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the impor-
tance of testing MAR performance over a range of object and imaging parameters, since applying
MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an
initial step toward developing a more comprehensive objective assessment method for MAR, which
would require developing additional phantoms and methods specific to various clinical applications of
MAR, and increasing study efficiency. Published 2020. This article is a U.S. Government work and is
in the public domain in the USA. Medical Physics published by Wiley Periodicals LLC on behalf of
American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.14231]
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1. INTRODUCTION

Metal objects in computed tomography (CT) scans generate
streaks known as metal artifacts. These artifacts arise from a
variety of physical phenomena; mainly, beam hardening, par-
tial volume effects, and missing projection data due to the
presence of highly attenuating objects.1–3 Artifacts can

obscure or mimic pathology, impeding detection and diagno-
sis of disease. Artifacts can also interfere with the radiation
therapy process.4,5

Many common implanted medical devices contain metal,
including hip and knee replacements, surgical clips, dental
fillings, coils, and wires. The prevalence of implanted devices
is increasing; for example, between 2000 and 2010, the
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number of total hip replacement procedures in the United
States for patients between ages 45–54 jumped 205%, from
138 700 (2000) to 310 800 (2010).6 In 2014, 2.5 million
Americans had an artificial hip.7 The use of CT is increasing
as well. In 1980, about 3 million CT scans per year were
obtained in the United Sttaes; by 2006, that number had risen
to 62 million.8

Concomitant with the increasing clinical significance of
CT metal artifacts, an increasing number of medical device
manufacturers have sought regulatory clearance from the
United States Food and Drug Administration (USFDA) to
market medical devices with performance claims related to
the severity of metal artifacts present in CT images. Such
devices have included CT metal artifact reduction (MAR)
algorithms.9–13

As part of the premarket review of Class II devices with
imaging indications, USFDA assesses the devices’ perfor-
mance, often including artifact performance, relative to the
performance of previously cleared, “predicate” devices.

In view of the large number of devices whose performance
is tied to the level of metal artifact present in CT images, the
lack of standardizable, reproducible methods for assessing
claims related to CT artifacts poses a challenge to USFDA.
Such validation methods would enable manufacturers to
make claims about their device performance, and clinicians
to diagnose with a better understanding of device limitations.
In this work, we have explored a framework for task-based
assessment of MAR performance, which we have developed
further for a single important aspect of CT MAR perfor-
mance: How MAR impacts the detectability of low-contrast
lesions in the vicinity of metal implants.

1.A. CT metal artifact reduction — background

The first MAR techniques were based on sinogram
inpainting.14–16 Sinogram inpainting remains the reference
method for MAR, involving replacement of sinogram data
corrupted by high-attenuation areas with data linearly inter-
polated from nearby projections. Because the use of this
method removes all information in the metal projections, it
can lead to loss of contrast at metal–tissue interfaces, as well
as at any edges that the removed projections crossed. Interpo-
lation of projections also implicitly assumes that that the
object has similar attenuation in all directions. When this
assumption is violated — as it is in any actual clinical sce-
nario — new artifacts can appear in the reconstructed image.
In this article, we use sinogram inpainting to test our assess-
ment framework for MAR algorithms.

Sinogram inpainting depends on segmentation of the pro-
jection data corrupted by metal. Initial segmentation can be
performed on either images or sinograms; the two choices
lead to two different subclasses of methods. Sinogram-based
projection interpolation14,17,18 uses the sinogram to segment
the metal. Image-domain projection completion19–21 first seg-
ments the metal in image space, then forward projects the
segmented metal pixels to identify and remove the projections
corrupted by metal, and replace them with interpolated data.

While segmentation of metal in image space followed by for-
ward projection is more involved than segmentation directly
in projection space, the segmentation can be more accurate.
We will use our framework to assess the performance of these
two methods.

Although our article uses basic sinogram inpainting to test
our assessment framework, many more recent MAR methods
exist, including variants of sinogram inpainting intended to
improve accuracy.22,23 We refer the reader to Refs. 24,25 for a
review of newer methods, including iterative methods that
include feedback mechanisms in their operation on image
and projection data.26–29

Dual-energy CT, a technique that uses two different x-ray
spectra to image an object, also has applications in metal arti-
fact reduction. Dual energy can generate virtual monochro-
matic images for specific photon energies. Generation of
these virtual monochromatic images can potentially reduce
metal artifacts by mitigating the beam hardening effects that
arise from polychromatic x-ray spectra. Although some stud-
ies have demonstrated the utility of dual-energy imaging for
MAR,30–32 others have reported that the use of dual energy
in the presence of metal objects can introduce new streaks
that obscure anatomical structures, or compromise the con-
trast to noise ratio.33,34

Each of the major CT manufacturers markets a MAR algo-
rithm. Other algorithms are distributed for research use only:
Table I lists some of the MAR algorithms available in the
US.

Although regulatory review of CT MAR algorithms is an
area of ongoing USFDA effort, and this paper focuses on the
assessment of MAR performance, a related area of concern is
the large number of devices containing metal, with associated
labeling identifying the devices as “CT compatible.” Mean-
ingful objective assessment of MAR performance involves
indirect measurement of the severity of metal artifacts, and
similar methods could therefore apply to providing more pre-
cise and useful definitions of “CT compatiblity” claims.
USFDA often encounters such claims in brachytherapy,38

which involves the introduction of radioactive sources into

TABLE I. Some commonly used metal artifact reduction (MAR) algorithms
and their United States Food and Drug Administration (USFDA) clearance
information (if available).

Manufacturer Algorithm
USFDA 510(k) number (if

available)

Canon Medical SEMAR K13222210

General Electric
Healthcare

SmartMAR35 K16321313

Hitachi HiMAR K16352836

Philips Healthcare O-MAR K16074312

Siemens Healthineers MARIS28 K13090111

Siemens Healthineers iMAR K1425849

reVISION radiology Metal deletion
technique37

N/A–research use only
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patients’ bodies via applicators. Treatment planning uses CT
and MR scans. Since dose gradients are large in brachyther-
apy and slight shifts in anatomy can result in large changes in
dose, applicators must be in situ during those scans. If the
applicators generate significant artifacts, the accuracy of the
reconstruction and the dose calculations have the potential to
be affected. Although multiple major manufacturers market
radiation therapy applicators with claims that their devices
are CT compatible, no standard definition exists for this term.
As a side note, radiation therapy is also a primary area in
which CT MAR algorithms find application; metal artifacts
may be particularly detrimental in proton therapy, where
streaks on images can lead to incorrect target coverage and
delineation of organs at risk.5

The term “CT compatible” is not limited to radiation ther-
apy devices, appearing in the labeling of EEG electrodes,
needle positioning systems, patient head positioners, and a
variety of other devices: A recent Google search of “CT com-
patible” returned over 64 000 results, despite the fact that no
standard definition of this term exists.39

Task-based methods for assessment of MAR algorithms
could be easily adapted to provide some objective evaluation
of claims of “CT compatibility,” an application for which a
regulatory need exists across different device types. Objective
assessment of metal artifacts in MRI is also of interest.40

Although the nature of metal artifacts is different for MRI,
general objective assessment frameworks developed for metal
artifacts in CT could potentially find applications for other
modalities as well.

1.B. Measuring metal artifact reduction: methods,
limitations, and applications

A variety of methods have appeared in literature for
measuring image quality in the presence of artifacts. These
methods typically fall into one of three main categories:
(a) rating scale experiments using human observers; (b)
the definition and calculation from images of quantitative
metrics related to artifact severity; (c) task-based studies.
In this section, we discuss the advantages and drawbacks
of each method.

1.B.1. Rating scale experiments using human
observers

Most literature that assesses the severity of metal arti-
facts has relied on subjective scoring of clinical images
by human observers.15,26,28,37,41,42 The majority of such
assessments have required human observers to evaluate
images generated with and without MAR, and rate the
images on a 5-point Likert scale for either overall image
quality or diagnostic utility. Others have used human
assessments of artifact severity, with readers asked to
score the most severe image artifact. In both types of
experiments, the ratings yield numerical results allowing
direct comparison of images with and without MAR, as
well as significance testing.

An obvious advantage of human observers rating clinical
images is that this setup closely resembles actual clinical
practice. Rating scales distinguishing, for example, “excellent
image quality with full diagnostic interpretablility” vs “good
image quality allowing diagnostic interpretablility,” are also
easy for patients and physicians to understand.

In addition to the expense and time involved in human
studies, the disadvantage of this setup is the inherent subjec-
tivity involved in image interpretation and assessment by
humans. The subjectivity leads to inter- as well as intra-ob-
server variability: Two readers with different preferences
might rank the same clinical image very differently, and even
a single reader might rank the same image differently on two
readings, if reader learning or fatigue are factors. In addition,
human assessments are difficult to standardize or reproduce.

Additionally, in studies that generate rankings of general
image quality, the image quality may not correspond directly
to the suitability of an image for a given clinical task. For
example, application of a MAR algorithm might reduce
streaks far from an implant, yielding an image perceived as
being high quality, but might reduce the detectability of
lesions near a metal–tissue interface. Similarly, measurements
of streak severity may not correspond directly to diagnostic
utility, and also the score depends only on one of many arti-
facts which may be present.

Due to these limitations, USFDA believes that the use of
rating scale methods is unlikely to be sufficient evidence to
validate specific, and particularly quantitative, claims of arti-
fact reduction.

1.B.2. Quantitative metrics calculated from images

In lieu of rating-scale experiments, some studies have esti-
mated MAR performance via calculation of quantitative met-
rics directly from the images.

Many of these methods used phantoms with removable
metal parts, enabling acquisition of images with and without
metal. Such setups enable pixel-by-pixel comparison of the
HU values4,26,37 (or quantities such as water equivalent thick-
ness, derived from the HU values5) of the MAR-corrected
images or ROIs to those in the true metal-free images. The
ROI placement can focus on regions of the image that chal-
lenge the MAR algorithm.

Methods involving the pixel-by-pixel calculation of differ-
ences between images fall into a category of metrics called
“fidelity metrics.”An advantage is their standardizability and
reproducibility. A disadvantage is that image fidelity lacks a
straightforward relationship to image quality for a specific
task.43,44 Fidelity-based methods are sensitive to small
changes in scale or orientation of objects, while being insen-
sitive to tradeoffs between noise and resolution, so that two
very different images can have the same fidelity.44 The most
significant shortcoming of fidelity methods, however, is that
they do not involve the actual clinical task which a reader will
perform on the image. Despite having only one value of the
fidelity metric, an image might be suitable for one clinical
task, while being unsuitable for another.
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Another quantitative method4 has been the use of the HU
value of the brightest streak artifact as a metric. Others45 have
counted the total number of pixels above a threshold in the
MAR-corrected images. While these approaches yield esti-
mates of the severity of artifacts, they do not necessarily pro-
vide a measure of the overall utility of an image for a specific
diagnostic task.

Still other work has defined an “artifact index”46 based
on local standard deviation, or used measurements of overall
image noise.28 While the noise, or changes in the noise due
to application of MAR yield information about local or glo-
bal image texture, they do not provide a definitive metric of
image quality for a given task; for example, smoothing an
image, while reducing the standard deviation of an image,
can also blur the edges of a lesion.

We note that in most of the references cited above, the cal-
culated metrics were combined with human rating scale
methods, so that although both types of methods had short-
comings individually, their combination provided more
meaningful information.

1.B.3. Task-based evaluation

Task-based observer experiments are common as
assessment tools in CT and other imaging fields, and can
use either human or model observers. Such methods most
often focus on an observer’s ability to detect, discriminate
between, localize, or estimate some property of signals.
Task-based methods require defining a task representative
of a clinical task, selecting an observer, and analyzing the
observer’s performance on the task, that provides an
objective metric of the image quality that is also relevant
to clinical scenarios. We are aware of at least one study47

that included a task-based evaluation of the effect of
MAR on low-contrast detectability on an arthroplasty
phantom. The study used human observers. We elected to
use model observers due to their comparative advantages
in cost, standardizability, and reproducibility. We describe
our framework in Section 2; to our knowledge, it is the
first model observer–based framework for evaluation of
MAR algorithms in the published literature.

The USFDA, the medical device industry, patients, and
practitioners would all benefit from a standardizable method
of assessing device performance with respect to metal arti-
facts. Task-based assessments of image quality constitute a
rigorous approach to the evaluation of imaging system per-
formance.48 We have laid out and explored the feasibility of
a framework that uses computer model observers to quanti-
tatively estimate the effect of MAR algorithms on the low-
contrast detectability of lesions in the vicinity of metal
implants. In particular, we designed a numerical phantom
that generates simulated metal artifacts. We used a channel-
ized Hotelling observer (CHO) to perform a lesion detection
task on the numerical phantom. We demonstrated that the
framework could provide an objective, reproducible, and
quantitative method of assessing how MAR impacts obser-
ver performance on an LCD task.

2. MATERIALS AND METHODS

Our objective was to lay out a method by which we
could estimate the effect of MAR on an observer’s perfor-
mance at an LCD task. We also required that our frame-
work provide the uncertainty associated with the
detectability measurement, with that uncertainty being suf-
ficiently low as to allow resolution of differences in task
performance when MAR was applied, vs when it was not,
in addition to differences in task performance when differ-
ent MAR algorithms were applied.

Task-based assessments of an ensemble of images require
selecting a task, an observer, and a figure of merit. In this section,
we provide details of these three components of our assessment.

2.A. Task

A principal clinical task related to MAR is detection of
lesions in the presence of hip implants, dental fillings, cochlear
implants, deep brain stimulators, and other objects containing
metal. In trauma situations, including battlefields, metal artifacts
also arise from bullets or shrapnel.49,50 We focused on assess-
ing how MAR affects an observer’s performance at detecting
low-contrast lesions in the presence of metal artifacts.

Signal detection is one of only several clinically relevant
tasks for which an observer’s performance may be impacted
by the application of MAR. Other clinical tasks performed in
the presence of MAR include segmentation of organs in radi-
ation therapy applications, and assessment of metal-bone
interfaces in orthopedics. Ideally, a framework for assessing
MAR performance for a specific clinical task should use a
study assessing the effect of MAR on an observer’s perfor-
mance at the appropriate type of task.

We designed a digital reference object; a numerical phan-
tom that resembled a human head. The anthropomorphic
aspects of the phantom are somewhat incidental; the phantom
was not intended to be directly representative of a specific
clinical situation, but rather to incorporate strongly attenuat-
ing metal in some geometries that loosely mimic some com-
monly found clinical ones — for example, oral lesions can be
obscured by metal artifacts resulting from dental fillings.

The phantom (schematic in Fig. 1) includes teeth with
metal fillings, as well as two disks (corresponding to metal
rods on a physical phantom) in the positions of cochlear
implants, and two in the position of deep brain stimulators. In
the middle of this phantom is a rotatable inset. The signal,
when present, is a disk located at the phantom center. On a
physical phantom, this signal would be a removable rod. We
selected a range of signal contrasts that permitted us to exam-
ine the full range of observer performance; the lowest contrast
we examined was nearly undetectable by the observer; the
highest contrast was easily detectable. Although we did not
examine negative contrast signals, negative contrasts can also
be clinically relevant in many situations; our framework does
not change for negative contrast signals.

The inset has inhomogeneous attenuation, generating a
lumpy background on the image. Various methods exist
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for generating such inhomogeneity in a real phantom: An
example of a phantom capable of generating multiple real-
izations of a random, textured background for use in
observer studies occurs in the M3R framework.51 In this
case, 3D printing could generate a textured inset that
could be rotated between acquisitions. Alternately, the
inclusion of movable objects within the phantom could
make the phantom dynamic, yielding a different image
with each acquisition.

For each material in the phantom, we adapted publicly
available software52 to interpolate values of the energy-de-
pendent attenuation l(E) from data in the NIST XCOM pho-
ton cross section library.53 For convenience, this phantom
consists of geometric primitives: disks and Gaussians cen-
tered at various radii. The Radon transform of each of these
objects is analytic — a useful feature in numerical simulation
of the projection data. Table II describes the geometric primi-
tives that make up the phantom.

We experimented with various different metals, and also
with removing projection data directly rather than simulating
metal. Ultimately to balance realism with simplicity and also
create artifacts strong enough to challenge the MAR algo-
rithms, we selected the strongest attenuator (iron) for all
metal in the phantom.

The attenuation of the lumpy background is a sum of N
Gaussians,

XN
i¼1

lie
�pjr�rij2=w2

i

where r = (x,y), ri, wi, and li determine the centers, widths,
and amplitudes of each Gaussian, respectively. We have
selected N = 20, wi ¼ 1:3 þ 2R with R�N(0,1) a normally
distributed random variable, and ri also random, with the
constraint that ri\4:9, to keep the lumps confined within the
inset radius. The lumps rotate with the inset. The amplitude
of each lump is li ¼ lwater � 1:5R, where R�N(�1,1).

Using this phantom, we generated projection data that we
reconstructed with FBP only, MAR 1, and MAR 2, respec-
tively. The task that an observer performed was determining
whether a signal was present at the center of the phantom.
We generated each image with the inset oriented at a random
angle, corresponding to the rotation of the phantom inset
between acquisitions. We introduce this random component
in order to prevent overtraining the model observer on a par-
ticular pattern of streak artifacts.

The phantom contains a removable disk signal at the
center. The signal can be either present (in which case it
is a homogeneous disk at the center) or absent (in which
case the surrounding lumpy background is present at the
center). At each value of imaging parameters examined,
we generated 1000 512 9 512 images, with the inset at a
different, random angle for each acquisition. From each
image, we extracted a 121 9 121 pixel ROI centered on
the origin, with the signal at the ROI center. (To make the
study more efficient, when using a physical phantom, it
would also be possible to make use of ROIs at other loca-
tions or values of z).

2.B. Simulating metal artifacts

Having designed the phantom in Fig. 1, the next task is to
simulate x-ray projection data using the phantom. Metal arti-
facts in CT arise from a variety of physical phenomena1–2

FIG. 1. Schematic of phantom. The phantom consists of an sk, an inner disk,
and a rotatable inset (interior of the red dashed circle) with an inhomoge-
neous, lumpy background. The curved red arrow indicates that the inset
rotates. The phantom contains metal in locations that are motivated by dental
fillings, cochlear implants, and deep brain stimulators. At the phantom center
(white arrow) is a low-contrast signal. This signal corresponds to an inter-
changeable rod, so it replaces the lumpy background rather than being added
to it. Rotating the inset to a different, random angle at each acquisition ran-
domizes the background as well as the relative position of artifacts, avoiding
overtraining the observer on a particular phantom configuration. All metal
objects outside the inset are at fixed positions. Signal detection studies use
the region of interest indicated by the green dashed square. [Color figure can
be viewed at wileyonlinelibrary.com]

TABLE II. Phantom parameters. The center of the phantom corresponds to
(0 cm, 0 cm).

Disk Coordinates of center (cm)
Radius
(cm) Attenuation

Outer disk (0,0) 12 Bone

Inner disk (0,0) 10 Water

Inset (0,0) 5.9 1.05 9 water

Teeth (7 cos (np/11),9 sin (np/
11)), n = 0,1,. . .,11

0.7 Iron

Cochlear
implants

(�11, 0) 0.6 Iron

Deep brain
implants

(�1, �5.1), rotate with inset 0.3 Iron

Dental fillings Same as teeth 0.2 Iron

Signal (when
present)

(0,0) 0.5 (1.00–1.06) 9
background
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whose net effect is to corrupt the projection data, resulting in
the breakdown of a linear relationship between the log-atten-
uation and the measured projections. Since the goal of our
study was to demonstrate the feasibility of using our frame-
work of MAR evaluation, we used the simplest possible sim-
ulation containing the basic physics of metal artifact
generation.

We generated noisy projection data2,54,55 including con-
stant scatter, Poisson noise, and normally distributed elec-
tronic readout noise. We generated a tube spectrum from
Siemens’ online x-ray spectrum–generating tool56 for a tube
voltage of 120 kVp. To generate attenuation maps of the
phantom, for each material present, we adapted publicly
available software52 to interpolate values of the energy-de-
pendent attenuation l(E) from data in the NIST XCOM pho-
ton cross section library.53 We reconstructed the resulting
sinograms using filtered backprojection (FBP) and a Ram-
Lak filter as implemented in MATLAB.57 Note that because the
phantom consists entirely of geometric primitives (disks and
Gaussians) whose Radon transforms are analytic, fully ana-
lytic reconstruction is possible.

2.C. Metal artifact reduction methods

The MAR algorithms we implemented were two simple
variants of sinogram inpainting, described in Section I. We
denote these methods MAR 1 and MAR 2. In MAR 1, we seg-
mented the metal from the sinogram. In MAR 2, we segmented
the reconstructed image to identify the metal, then forward pro-
jected the metal pixels to identify the corresponding data on
the sinogram. The metal pixels on the sinogram were then
replaced by values interpolated from the remaining data.

As our MAR algorithms were rudimentary, we selected
the threshold for metal segmentation manually, for parame-
ters (dose, signal amplitude) in the middle of our parameter
space. These thresholds were not set to automatically adapt to
changing parameters. Segmentation algorithms can be sensi-
tive to noise as well as to absolute CT number. With changes
in dose, we anticipated that MAR 1 might fail completely,
providing the opportunity to check whether our assessment
method was able to correctly identify this failure.

2.D. Observer

We reviewed the use of model observers in CT image
quality assessment in Ref. 58. For an overview of channelized
model observers, we refer the reader to Ref. 48. To summa-
rize briefly, channelized observers perform feature extraction
on images, reducing high-dimensional image data to a few
relevant features. Each channel is an image corresponding to
a feature, and the channel output is the scalar product of that
channel with the image.

To determine signal detectability, we applied a channel-
ized Hotelling observer (CHO), described on pp. 936–937 of
Ref. 48. The CHO is designed for binary discrimination tasks
such as, in this case, detection of a lesion at the center of the

phantom. The goal is to classify each image as belonging to
class 1 (lesion absent) or class 2 (lesion present). The signal
is known exactly, and the background, while known exactly,
is both spatially inhomogeneous and rotated to a random
angle for each acquisition (see Fig. 1).

We refer the reader to48,58 for information about different
options for channels. While USFDA does not specify the par-
ticular model observer or types of channels that manufactur-
ers should use in demonstrations of imaging CT
performance, the observer and channels should be motivated
by human performance. In this case we have elected to use
ten dense difference of Gaussian (DDOG) channels; DDOG
channels have been validated against human performance,
with which they correlate well, following noise regulariza-
tion.59 We determined the number of channels by investigat-
ing AUC as a function of channel number. We found that the
task in this situation was a low-order one, for which the AUC
was above 0.5 only for the first seven channels, so that the
use of ten channels was sufficient. In Section 2.E we discuss
the AUC as a measure of observer performance.

2.E. Figure of merit

The AUC is a common summary figure of merit for obser-
ver performance. Here, we describe the estimation of the
AUC. After extracting ROIs from each image, as shown in
Fig. 1, the ROI pixel values were cast as a q,9 1 column vec-
tor, g. Define p�q as the number of channels. The weights
defining each channel were collected into respective columns
of a q 9 p channel matrix, U, which upon application to each
image yielded a p 9 1 channel output vector v ¼ UTg. In
our study, q ¼ 1212 ¼ 14 641 and p = 10.

Following the notation and methods of Wunderlich and
Noo,60 we denote the means and covariance matrices of vi
(i = 1,2) as li and Ri, respectively. Define Dl ¼ l2 � l1: In
addition, let R ¼ ðR1 þ R2Þ=2. In this notation, the template
for a CHO is w ¼ R

�1
Dl. We assumed that R1 ¼ R2 ¼ R,

simplifying the CHO template to

w ¼ R�1Dl: (1)

To classify an image with a channel output vector v, the
CHO starts by generating a test statistic, t ¼ wTv. We
assume that the test statistic t, is normally distributed for each
class. In the presence of strong artifacts, the assumption that t
remains normal requires some justification. The majority of
the streak artifacts are nonrandom in our experiment, as they
arise from implants with fixed locations relative to the signal
and background. These artifacts contribute to the image at
the signal location in a deterministic way. As a result, the ran-
domness of the test statistic is primarily influenced by the sta-
tistical variations in the pixel values due to the photon
counting noise at the detector, which is transferred to the
image domain during the reconstruction process. There is
also a contribution to the randomness in the image values at
the signal location from the variation in streaks due to the
random rotation of the two high-contrast implants
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The test statistic t is a weighted sum of image values in the
area of the expected signal. As per the Central Limit Theo-
rem, the sum of a large number of random variables is
asymptotically Gaussian, even in the case of as few as ten
random values, and regardless of the probability distribution
functions of those variables.

The observer signal to noise ratio (SNR), a figure of merit
related to the AUC, is then

SNR2 ¼ j�t1 ��t2j2
1
2 r2t1 þ r2t2

� � (2)

with the AUC then being

AUC ¼ UðSNR=
ffiffiffi
2

p
Þ; (3)

where Φ(x) is the cumulative distribution function for the
standard normal distribution (see p. 819 of Ref. 48).

In practice, estimates of the AUC use a finite set of
images. The finiteness of the image set can introduce bias in
the estimate.61–63 We now consider two methods of estimat-
ing the AUC that provide upper and lower bounds on the
bias: The resubstitution and hold-out methods. In general,
resubstitution estimates of the AUC are positively biased, and
are higher than the AUC for an infinitely trained CHO,
whereas estimates obtained via hold-out are lower.61 Using
both methods, and identifying the value of AUC to which
they converge as the number of images becomes infinite, can
provide an unbiased estimate of the AUC.61

The first method we examine is the resubstitution method,
which uses the same NT images for training and testing the
observer. Resubstitution uses the full NT images to compute
all terms in Eq. (2), which yields the AUC via Eq. (3). While
resubstitution has the advantage of simplicity and efficiency,

because one does not need to partition the data set, the result
is positively biased due to re-use of the data and the finiteness
of the image set.64

The second strategy, called the hold-out method, uses
independent image sets for training and testing, with the
training set containing NT images and the test set containing
the remaining N � NT images, where N is the total size of the
image set.

Estimating the AUC using the hold-out method requires
calculating different terms of the SNR in Eq. (2) using either
the training set or the test set. Training the observer, that is,
calculating the Hotelling template in Eq. (1) uses only the
training images. Testing the observer means applying this
template to the images in the test set, that is, calculating the
test statistics ti ¼ wTvi; ði ¼ 1; 2Þ with the vi computed
using only the test images. Eqs. (2) and (3) then yield the
AUC.

The resubstitution and hold-out results together generate
an “antler plot” (Fig. 2), a version of the “learning curve”
used to examine the performance of machine learning classi-
fiers.63 The antler plot shows the AUC estimated via the
resubstitution and hold-out methods as NT varies from 25 to
1000. At each value of signal contrast, we averaged AUC
results over 50 different image sets, selected randomly; the
error bars indicate the standard deviation over these 50 mea-
surements. As expected,61,62 the AUC obtained by both meth-
ods has power-law dependence on NT . The resubstitution
method demonstrates positive bias, whereas the hold-out
method is slightly negatively biased. Denote the value of the
AUC to which the resubstitution and holdout methods con-
verge as Nt ! 1 as AUC1 — this would be the unbiased
AUC calculated from an infinite number of images. We can
obtain an estimate of AUC1 by fitting the antler plot data to

FIG. 2. These plots compare observer performance at a signal detection task with no metal artifact reduction (MAR) (red), MAR 1 (green), and MAR 2 (black).
The two plots in (a) and (b) are “antler plots”61,62 demonstrating variation of area under the ROC curve (AUC) with 1=NT , the size of the training set (using the
hold-out method) or the size of the image set (using resubstitution). The signal amplitudes are 1.01 (a) and 1.03 (b) times background. We include both figures in
order to demonstrate that as the separation between AUC values changes, one might need different numbers of images to establish the existence of a statistically
significant difference in performance. The error bars shown are the standard deviation of the values over 50 repetitions of the measurement. [Color figure can be
viewed at wileyonlinelibrary.com]

Medical Physics, 47 (8), August 2020

3350 Vaishnav et al.: CT MAR: Objective performance assessment 3350

www.wileyonlinelibrary.com


lines; AUC1 is the y-intercept of both lines, at which the
resubstitution and hold-out methods converge as the training
set becomes large.

Note that the appropriate size of NT depends on the speci-
fic claims that an investigator wishes to make. For example,
resolving the large difference between MAR 2 and FBP per-
formance is easier than resolving the finer difference between
MAR 2 and MAR 1 performance. Establishing any perfor-
mance differences is more difficult at lower signal contrast
[Fig. 2(a)] than at higher signal contrast [Fig. 2(b)], where
the performances are better separated.

To gain an overall understanding of performance, generat-
ing antler plots for a few different values of signal amplitude
is helpful. For example, in Fig. 2(b), resubstitution with 100
images is enough to resolve differences. In Fig. 2(a), closer to
500 images would be required.

3. RESULTS

Using the antler plot formalism and methods in Section 2,
we generated detectability curves (Fig. 3). These curves are
the final product of our framework for MAR assessment,
summarizing the performance of our CHO on two different
MAR algorithms as well as FBP alone, over a range of signal
amplitudes [Fig. 3(a)] and radiation doses [Fig. 3(b)] . The
error bars are smaller than the markers.

Each point on the curves was calculated by extrapolating
the resubstitution and holdout arms of the antler plot to
1=NT ¼ 0 and calculating the intercepts, denoted as
AUCðr;hÞ

1 . Each measurement was repeated 50 times using
random image sets. AUC1 was then estimated as
(hAUCðrÞ

1 i þ hAUCðhÞ
1 iÞ=2, where the angle brackets denote

the mean over the 50 repetitions.
To estimate the error, we calculated contributions from

bias and variance. The maximum error due to bias was esti-
mated as one half the difference between the values of
AUC1 obtained by the resubstitution and holdout methods:

�b ¼ jAUCðrÞ
1 � AUCðhÞ

1 j=2. The error due to variance �v was
estimated using the standard deviation of the mean of AUC1
over 50 repetitions. The root-mean-square error e was calcu-
lated as � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2b þ �2v
p

, to include contributions from bias
and variance. The errors are of the order 10�3 and are too
small to be visible on Fig. 3.

Note that, although sufficient for this framework, error
bars calculated in this manner underestimate the true error, as
the samples used to calculate the standard deviation are actu-
ally correlated. A more thorough error analysis would make
use of a multireader, multicase variance analysis involving
model observers trained on separate image sets, and tested on
an independent set of images. The USFDA has published a
software tool to assist with the setup of such analyses.65

The curves in Fig. 3(a) show the AUC as a function of sig-
nal amplitude. The results are as expected. At all values of
the signal amplitude, both MAR algorithms improve the
detectability of signals. At all values of signal amplitude,
MAR 2 (image-based metal segmentation) outperforms
MAR 1 (sinogram-based metal segmentation), with statisti-
cally significant differences in the results.

However, when we vary the dose (right), we see that the
above observation does not hold for all doses. For a range of
doses, the application of MAR 1 in fact degrades the image
as compared to FBP. The failure of MAR 1 occurs because
MAR 1 attempts to segment metal projections in sinogram
space, a process that is very sensitive to image noise. A
threshold that is satisfactory at one level of dose quickly
breaks down at other doses until at different noise levels, the
thresholding is unable to identify metal pixels, and MAR 1
has no effect on the image at all. By looking at the images
corrected by MAR 1 (Fig. 4), the breakdown is visually obvi-
ous — and our performance assessment framework is able to
identify it.

An unusual feature of this setup is that we do not expect
an AUC equal to 0.5 when the signal amplitude is equal to
the background, that is on the left hand side of the plots in

FIG. 3. Detectability curves, demonstrating variation of area under the ROC curve with (a) the amplitude of the disk signal relative to the background, dose fixed
at 1e6 a.u., and (b) dose, signal amplitude fixed at 1.03 times background. Dashed lines indicate equivalent points. The data in green demonstrate the nonlinearity
of metal artifact reduction algorithms, in terms of performance vs dose. [Color figure can be viewed at wileyonlinelibrary.com]
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Figs. 3(a)–3(b). The lumps are Gaussian with random widths,
whereas the signal is a homogeneous disk. Even when the
signal amplitude is equal to the mean background, a small
but discriminable difference exists between the signal present
and signal absent case, and the observer is capable of identi-
fying this difference.

4. DISCUSSION

We have explored a potential framework for assessing
MAR algorithm performance by developing phantoms for
clinical tasks that are potentially affected by MAR, examining
how MAR affects a model observer’s task performance, and
statistically analyzing the results. In particular, we have
explored the feasibility of this framework for LCD tasks, by
using computer model observers to examine the effect of two
sinogram inpainting algorithms on model observer perfor-
mance. Our results showed that the observer’s task perfor-
mance in the presence of MAR was strongly dependent on
object and imaging parameters, suggesting that MAR algo-
rithm validation should cover the full range parameters over
which algorithm performance is indicated. Our model obser-
ver-based framework for assessing MAR performance was
able to successfully detect the failure of the MAR algorithms
as we changed parameters.

Data obtained via model observer frameworks may be use-
ful as partial support for labeling claims on MAR perfor-
mance. For example, for MAR 2, the data in Fig. 3(b) might
support a statement like “In a simulation study based on a
numerical head phantom with metal implants, MAR 2
improved low-contrast signal detectability over a range of sig-
nal amplitudes and doses as compared to both MAR 1 and
FBP alone.”

The data in Fig. 3(b), which show a maximum AUC differ-
ence of approximately 0.2 between FBP and MAR 2 might
also support the addition of more quantitative statements such
as “MAR 2 improved the AUC by up to 0.2 over FBP alone.”
(A quantitative comparison to MAR 1 might be misleading,
since over a range of doses, MAR 1 did not perform as well
as FBP.)

The quantitative results were consistent with the results
we would have expected based on visual assessment of the
images. To more completely characterize the effect of a MAR
algorithm on signal detectability, we recommend that investi-
gators present the full performance curves as functions of
object and imaging parameters, such as signal amplitude and
dose. As illustrated by the results in Fig. 3, presenting the
entire detectability curve provides a more complete under-
standing of each MAR algorithm’s performance characteris-
tics, as well as an understanding of the particular parameters

FIG. 4. This figure illustrates the detectability data laid out in Fig. 2. These images show the performance of filtered backprojection, metal artifact reduction 1
(MAR 1), and MAR 2 at three different doses (a–c). MAR 1 involves sinogram-based thresholding; the procedure is more robust to changing signal amplitude,
but is fairly sensitive to changes in image noise. At intermediate doses, MAR 1 begins to introduce artifacts, before failing completely in Panel (c). MAR 2 perfor-
mance, in contrast, increases as the dose goes up. The detectability curves identify these features. [Color figure can be viewed at wileyonlinelibrary.com]
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at which any comparison is made. A summary statistic for the
difference in algorithm performance based on the difference
in the areas under these curves might be a useful alternative
to point-based measures; however, the development of such a
statistic would require further investigation. Another impor-
tant point is that MAR algorithms may work well far from
metal–tissue interfaces, while obscuring details in an image
that are close to metal objects. A methodology such as the
one described in this paper might allow detailed exploration
of those limitations, and development of either appropriate
performance claims or disclaimers.

Although the main forms of CHO channels have been
extensively validated against human performance, little work
has been done in the area of validating CHO channels in situa-
tions where the image has strongly oriented features (streaks).
Further investigation along these lines would be valuable.

We would envision that an investigator intending to make
claims regarding MAR performance would be responsible for
validating the results of simulation studies with a limited
dataset using actual images of a physical phantom, to demon-
strate that the simulation is representative of actual device
performance. Clinical images could also be a useful supple-
ment.

At present, our framework is simulation based and there-
fore the need for many images is not a problem. Practically,
however, CT scanners are not designed to allow repeated
scans of a phantom in a short period. To make our framework
practical using real data, we would want to obtain statistically
significant results using tens of images. Many options exist to
optimize the framework we describe in this paper to be less
burdensome. For example, if the phantom is designed with
multiple signals in the inset, multiple ROIs could be obtained
from a single acquisition. Careful consideration would have
to be devoted to the size of the ROIs vs the size of the signals,
as well as the selection of ROIs. ROIs could also be extracted
at different z positions.

In the context of validation of radiation dose reduction by
iterative reconstruction algorithms, Popescu and Myers66

have demonstrated that the use of signal localization tasks is
potentially much more efficient than the use of signal detec-
tion tasks.

The application of iterative reconstruction algorithms can
sometimes result in metal artifact reduction, despite the algo-
rithms not having been designed with that specific purpose in
mind.42 The fundamentals of our framework for assessing
MAR are independent of the nature of the MAR algorithm; a
similar framework could be applied to assess whether itera-
tive reconstruction can enhance low-contrast detectability in
the vicinity of metal, as compared to FBP.

Although we have designed our methods with multidetec-
tor CT in mind, it is likely that the general framework can be
adapted for use in dental cone beam CT, particularly since we
used a head phantom.

We note that while some clinical tasks that MAR poten-
tially impacts involve detection of low-contrast lesions — for
example, detection of malignant rectal lymph nodes in the
presence of hip implants; oral lesions in the presence of

artifacts from dental fillings — others do not. In the context
of radiation therapy, for example, MAR is applied to seg-
menting organs — a task that depends on the precise delin-
eation of the organ boundaries, as opposed to LCD. In some
orthopedic applications, accurate reconstruction of the bone–
metal interface is a priority. A complete task-based frame-
work for MAR evaluation would include multiple phantoms
and tasks reflecting multiple clinical scenarios, as well as
analysis methods.

The USFDA envisions public and validated tools support-
ing the types of analyses described in this paper. These tools
would include digital phantoms, models of the imaging phy-
sics, and methods for analyzing the resulting images and gen-
erating metrics of image quality. Some of these tools,
especially the statistical analysis tools, are amenable to stan-
dardization, while others, like the phantom, might require
customization to reflect a particular vendor’s hardware or
MAR algorithm. Although manufacturers’ individual MAR
algorithms are proprietary, phantoms, models of the observer,
and statistical analysis of the results can exist outside of the
competitive space, so that the potential exists for collabora-
tion on shared development, dissemination, and validation of
better phantoms and accurate simulation tools. Collabora-
tions of this type could potentially lead to increased reliance
on simulation tools for system evaluation and future regula-
tory decision-making. The development of such simulation
tools is a priority to USFDA.67–69

The utility of image quality assessment in the presence of
metal artifacts extends beyond the evaluation of MAR algo-
rithm performance, and has the potential to provide more pre-
cise information about artifact generation than the plethora of
“CT compatibility” claims presently made regarding medical
devices containing metal. Such assessments would be valu-
able to vendors and to consumers of the devices.

5. CONCLUSIONS

We explored the feasibility of a potential task-based frame-
work for the objective assessment of the effect of CT MAR
algorithms on low-contrast detectability, which is an impor-
tant component of overall MAR performance. Other phan-
toms, tasks, and analysis methods could be developed to
assess other aspects of MAR performance.

We tested our framework on two sinogram inpainting
algorithms: Sinogram-based and image-based projection
completion. Our framework involved the use of a signal
detection task in the presence of a variable background, the
application of a model observer validated against human per-
formance, and ROC-based methods for statistical analysis of
the results.

We demonstrated that our method was able to distinguish
observer performance in the presence of MAR from that
when MAR was not used. Furthermore, the method was able
to distinguish observer performance in the presence of two
different MAR algorithms. We also found that MAR algo-
rithms do not always enhance the detectability of low-contrast
lesions in the presence of metal. Rather, the degree to which
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they improved this task-specific aspect of image quality
depended sensitively on parameters like signal amplitude and
dose, and that if applied in incorrect parameter regimes,
MAR could in fact degrade lesion detectability.

The USFDA encourages the use of simulation as partial
support for claims regarding artifact reduction. Simulation
offers the advantage that large numbers of images, and new,
complex objects are available. However, in some cases, simu-
lation results may need to be validated with a dataset based
on actual phantom images; additional work is required to
optimize the framework in this paper to be suitable for use
with practical numbers of real phantom images. Many
options exist for this optimization, including the use of search
tasks, which can potentially yield the same statistical power
using fewer images.66
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