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Abstract: The genome of Lactobacillus acidophilus PNW3 was assessed for probiotic and safety
potentials. The genome was completely sequenced, assembled using SPAdes, and thereafter
annotated with NCBI prokaryotic genome annotation pipeline (PGAP) and rapid annotation using
subsystem technology (RAST). Further downstream assessment was determined using appropriate
bioinformatics tools. The production of biogenic amines was confirmed through HPLC analysis and
the evolutionary trend of the strain was determined through the Codon Tree pipeline. The strain
was predicted as a non-human pathogen. A plethora of encoding genes for lactic acids and bioactive
peptides production, adhesion molecules, resistance to the harsh gut environmental conditions, and
improvement of the host metabolism, which are putative for important probiotic functionalities,
were located at different loci within the genome. A bacteriocin predicted to be helveticin J was
identified as one of the secondary metabolites. The maximum zone of inhibition exhibited by the
crude bacteriocin against STEC E. coli O177 was 21.7 ± 0.58 mm and 24.3 ± 1.15 mm after partial
purification (250 µg/mL). Three coding sequences were identified for insertion sequences and one
for the CRISPR-Cas fragment. The protein-encoding sequence for Ornithine decarboxylase was
found within the genome. L. acidophilus PNW3 presents important features categorizing it as a viable
and safe probiotic candidate, though further safety investigations are necessary. The application of
probiotics in livestock-keeping would ensure improved public health and food security.

Keywords: bioactive peptide; ornithine decarboxylase; phylogeny; insertion sequence; CRISPR-Cas

1. Introduction

Lactic acid bacteria (LAB) are widely used as probiotics across host species [1]. Lactobacillus
acidophilus is a lactic acid bacterium commonly used in dairy industries as a starter culture in
the production of high-quality health functional foods, such as yoghurt, cheese and beverages [2].
Complete genome sequences have contributed a great deal in the elucidation of the probiotic potentials
of lactic acid bacteria [3]. Several strains of L. acidophilus have been extensively characterized and their
probiotic features have been judiciously documented [4]. Studies have indicated that the bioactive
secondary metabolites produced by many probiotic agents affect bacterial community interactions and
potentially attenuate the disease symptoms caused by pathogens [5,6].
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Probiotic yoghurts containing L. acidophilus improve total cholesterol and low-density lipoprotein
cholesterol (LDL-C) concentrations in both male and female patients suffering from type 2 diabetes,
thus suggesting a great potential use in ameliorating risk factors associated with cardiovascular
diseases [7]. Surface layer proteins of the probiotic L. acidophilus NCFM were revealed to have a
potential to protect the intestinal epithelial barrier function against TNF-α-elicited inflammation through
the regulation of tight junction protein expression, the prevention of loose intestinal permeability,
the blockage of cell apoptosis and the obstruction of the nuclear factor kappa light chain enhancer
of the activated B cells (NF-κB) signaling pathway [8]. The presence of this promising bioactive
peptide supports the use of L. acidophilus NCFM in the development of functional foods, and as a
potential prophylactic agent for inflammatory bowel diseases. The surface layer protein extracted from
L. acidophilus NCFM also induces the formation of ROS, which, in turn, results in induced auto-phagic
death in HCT116 colon cancer cells through the suppression of the mammalian target of rapamycin
(mTOR) activity and activation of the c-Jun N-terminal kinase signaling pathway [9]. In a study
conducted by Guo et al. [10], using a rat model, it was also concluded that the administration of
L. acidophilus CICC6074 reduced levels of inflammatory cytokines TNF-α and IL-6, intestinal apoptosis,
and symptoms of Neonatal necrotizing enterocolitis.

The gut microbiota plays a crucial role in the wellbeing of the host and protection against
pathogens. The mutualism between host species and their gut microbial ecosystem begins at birth,
and stabilizes in humans around 3 years of age [11]. L. acidophilus has also been reported to be efficacious
in the readjustment of impaired microbiota and the inflammation induced in Th1- (C57BL/6) and Th2
(BALB/c)-biased mice after being challenged with Salmonella Typhimurium at infective dose levels [12].
The aim of this study was to assess the entire genome of L. acidophilus PNW3 in order to determine the
genome-based probiotics features which may be present in the strain.

2. Materials and Methods

Every procedure involved in this study complied with the relevant legislation regarding the
protection of animal welfare and was approved by the Agricultural Research Council, API Ethics
Committee with registration number APIEC13/008.

2.1. Genomic DNA Extraction and 16S rRNA Identification of the Isolate

The lactic acid bacteria strain was isolated from the gastrointestinal tracts of compassionately
sacrificed weaned piglet of the indigenous South African Windsnyer pig breed (APIEC13/008), and were
cultured in de Man–Rogosa–Sharpe broth (Oxoid, Hampshire, UK), under strict anaerobic conditions.
A pure culture of the isolate in de Man–Rogosa–Sharpe broth was washed in phosphate buffer saline
(pH 7) and the bacterial genomic DNA was extracted from the washed cells with a DNA extraction
kit (Zymo Research, Irvine, CA, USA). The purity and concentration of the extracted genomic DNA
were determined using a nanodrop spectrophotometer (NanoDrop 2000, ThermoFisher, Germiston,
South Africa). The identification of the isolate was confirmed through PCR amplification of the 16S
rRNA region [13], and the resultant PCR amplicon was sequenced. The partial sequenced data (1552 bp)
were, thereafter, submitted to the GenBank data base, and an accession number (MK123485) was
received (https://www.ncbi.nlm.nih.gov/nuccore/MK123485.1/).

2.2. Sequencing of the Entire Genome of the Isolate

Genomic DNA was prepared with an Illumina Nextera DNA flex library prep kit and the
reads library was sequenced on an Illumina MiSeq instrument at the ARC, Biotechnology Platform,
South Africa, to generate 3.05 GB of data. The library contains a total of 4,944,578 reads with read
lengths of 2 × 300 bp paired-end. Conditions for the run and the basic statistical features of the entire
genome assembly have been mentioned in our previous study [14].

https://www.ncbi.nlm.nih.gov/nuccore/MK123485.1/
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2.3. Determination of Important Probiotic Genes

The genome of the isolate was assembled using SPAdes v. 3.12.0 [15] and was functionally annotated
with NCBI prokaryotic genome annotation pipeline (PGAP) v. 4.7 [16,17] and rapid annotations using
subsystems technology (RAST) with SEED viewer v. 2.0 [18]. The presence and location of the probiotic
important genes was manually searched through the genome functional annotations.

2.4. Determination and Extraction of Bioactive Secondary Metabolite

The rapid in silico analysis to determine the presence of secondary metabolite biosynthesis gene
clusters was performed using antiSMASH v. 5.0.0beta1 [19] and supported with a manual search
through functional annotations.

The identified bioactive peptide (bacteriocin) was extracted after the bacterial isolate was
sub-cultured into de Man–Rogosa–Sharpe (MRS) broth under complete anaerobic conditions and
incubated at 37 ◦C for 24 h under the influence of Microbiology Anaerocult A (Merk, Darmstadt,
Germany). Thereafter, the culture was centrifuged at 10,000 rpm for over 10 min and the pH of the
supernatant was adjusted to 6.5 before being filtered through a 0.22 µm syringe filter (Millex syringe
filters, Sigma Aldrich, Darmstadt, Germany). One liter of the filtered supernatant (crude bacteriocin)
was partially purified via precipitation with 80% saturated ammonium sulphate and left overnight at
4 ◦C with regular stirring. The precipitates were collected and re-suspended in 0.1 M phosphate buffer
solution at pH 7 and subsequently extracted in a mixture of chloroform and methanol (2:1, v/v) [20,21].

2.5. Susceptibility Testing of the Bioactive Peptide

The agar well diffusion method was used to determine the antimicrobial potential of the bioactive
peptide produced by the probiotic bacterial isolates against pathogenic Shiga toxigenic E. coli (STEC)
Escherichia coli O177 [22]. The E. coli O177 strains were collected from the culture collection of the
Molecular Microbiology Research Laboratory, North-West University Mafikeng Campus, South Africa.
A 24 h old nutrient broth culture of each isolate was standardized (0.5 McFarland) and 100 µL of the
standard inoculums was inoculated into molten (50 ◦C) sterile Muller Hinton agar, gently mixed and
then plated. The seeded agar medium was allowed to set before the wells were bored into it, using a
cork borer (6 mm). The wells were carefully filled with the bacteriocin extract and incubated at 37 ◦C
for 24 h. Thereafter, the clear zones of inhibition were measured. The experiment was carried out in
three replicates.

2.6. Genomic Assessment of the Isolate for Safety

The entire genome of the Lactobacillus acidophilus PNW3 was assessed to evaluate how safe the
isolate were for a probiotic candidate. PathogenFinder v. 1.1 [23] was used to determine the pathogenicity
of L. acidophilus PNW3 towards human hosts. ResFinder v. 3.1 [24] and the Comprehensive Antibiotic
Resistance Database (CARD) v. RGI 5.1.0, CARD 3.0.7 [25] were employed for the presence of
antimicrobial resistance genes. The possibility of virulence determinant within the genome was
assessed using VirulenceFinder v. 2.0 [26] in combination with manual searches, through the annotation,
for protein-encoding sequences related to virulence in the isolate. The virulence determinants considered
during the search include sex pheromones, gelatinase, cytolysin, hyaluronidase, aggregation substance,
enterococcal surface protein, endocarditis antigen, adhesine of collagen and integration factors.

The rapid identification and annotation of prophage sequences within the genome of L. acidophilus
PNW3 was determined using the Phage Search Tool (PHAST) [27] and the Phage Search Tool Enhanced
Release (PHASTER) [28]. The genome was searched for insertion sequences (IS) using the ISfinder
search tool, Insertion Sequence Semi-Automatic Genome Annotation (ISsaga V. 2.0) [29] and the
Optimised Annotation System for Insertion Sequences (OASIS) [30]. Protein-encoding genes for
transposase were manually searched through the functional annotation data. Coding sequences for
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clustered regularly interspaced short palindromic repeats (CRISPR) and the associated Cas-genes were
identified using CRISPRCasFinder v. 1.1.2-I2BC [31].

2.7. Determination of Possible Biosynthesis of Toxic Biochemical

Protein-encoding sequences putative for the production of biogenic amines, such as ornithine
decarboxylase, histidine decarboxylase, agmatine dehydrolase, L-lysine decarboxylase, tyrosine
decarboxylase and the agmatine deiminase pathway, were manually investigated through the functional
annotation. Other toxins that were considered in the search included haemolysin, cytotoxin K, fengygin,
surfactins and lychenisin.

2.8. Biochemical Extraction and Determination of Biogenic Amines

The isolate was sub-cultured in de Man–Rogosa–Sharpe broth supplemented with amino acid
supplements, L-histidine mono-hydrochloride (2.5 g/L), L-tyrosine disodium salt (2.5 g/L), L-ornithine
mono-hydrochloride (2.5 g/L), L-lysine mono-hydrochloride (2.5 g/L) and agmatine sulfate salt (1 g/L)
(Sigma-Aldrich, Darmstadt, Germany). The culture was incubated, under strict anaerobic conditions
at 37 ◦C for 72 h without agitation [32,33]. Histamine, putrescine, agmatine, cadaverin and tyramine
were extracted and determined following the procedure as previously reported by Singracha et al. [34].
Exactly 50 mL of the bacterial culture was centrifuged at 10,000 rpm over a 10 min period at 10 ◦C.
Then, 5 mL of the supernatant thereof was extracted in 25 mL of 0.4 M perchloric acid before being
transferred into a screw-capped bottle. Thereafter, 1 mL of crude extract was added with 10 µL of
the internal standard (1, 7-diaminoheptane), 200 µL of 2M NaOH, 300 µL of saturated NaHCO3 and
1000 µL of dansyl chloride (10 mg/mL in acetone), and vortexed. The thoroughly mixed suspension
was incubated for 30 min at 70 ◦C. The excess dansyl chloride was then precipitated with 30% NH4OH
(100 µL). The resulting supernatant was adjusted to 50 mL with acetonitrile and filtered through a
0.45 µm Polytetrafluoroethylene membrane filter, and kept at −28 ◦C before the HPLC analysis.

Determination of biogenic amines from the supernatant was carried out using advanced optical
detection with exceptional chromatographic and spectral sensitivity, and high-performance liquid
chromatography (PerkinElmer Altus, A-10 PDA Detector) with a C18 RP-HPLC column (Analytical
C18 Column 100 × 4.6 mm, 5 µm particle size). The combination of acetonitrile and deionized water
was used as the gradient elution system, while 0.5 mL/min was set as the flow rate. The elution
gradient of 65% acetonitrile was set at 0 min, and was increased to 70% at 5 min and 100% at 20 min,
and then 65% at 25 min. Histamine, tyramine, cadaverine, putrescine and L-agmatine (Sigma-Aldrich,
Darmstadt, Germany) were used as standards.

2.9. Shared Protein-Based Phylogeny between L. acidophilus PNW3 and Other Strains Isolated from Different
Locations and Sources

The phylogeny was developed using the Codon Tree pipeline host on the PATRIC v3.6.6 [35].
The pipeline uses amino acids and nucleotide sequences from a defined number (500) of PATRIC’s
global protein families (PGFams) [36]. These were randomly picked to build an alignment and then
generate a tree based on the differences among the selected coding sequences. The protein-encoding
sequences were aligned using MUSCLE [37], while the nucleotide coding gene sequences were aligned
using the codon align function of BioPython [38]. A concatenated alignment of all proteins and
nucleotides was written into a phylip-formatted file, and then we generated a partitions file for
RaxML [39]. The support values were generated using 100 rounds of the “Rapid” bootstrapping
option [40] of RaxML. The resulting newick file was downloaded and viewed in the FigTree [41].

3. Results

The sequenced set of reads and complete genome assembly of the Lactobacillus acidophilus PNW3
has been deposited in SRA and the DDBJ/ENA/GenBank under the accession numbers SRX5395058
and SMLT00000000, respectively. The entire genome, assembled in 25 contigs, contains 1776 coding
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sequences. Figure 1 shows a circular representation of the genome with the relative position of each of
the contigs.
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genome. The mapping was generated using CGView [42].

3.1. Important Probiotic Genes

The probiotic features determined within the genome include coding sequences putatively
involved in the following: production of lactic acids; production of bioactive peptides; production of
adhesion molecules; production of extracellular enzymes; development of stress resistance mechanism;
and stimulation of active metabolism in the host (Table 1). Three protein-encoding sequences were
determined for L-lactate dehydrogenase (EC 1.1.1.27), which functions in the fermentation of lactate
and mixed acids. Six different coding sequences putatively involved in the biosynthesis of bacteriocin
were identified within the genome of the L. acidophilus PNW3. One coding sequence was determined
encoding for FIG006988 (Lipase/Acylhydrolase with GDSL-like motif (390 bp)) and three were found
encoding for Esterase/Lipase, which are 795, 822 and 897 base-pairs long, respectively. Twelve protein-
encoding sequences were also found for different forms of extracellular protease, while none were
identified for both amylase and cellulase.
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Table 1. Protein-encoding sequences putative for important probiotic functions.

Important Probiotic Features Associated Functional Proteins/Peptides Gene Size (bp) CDS Contigs Identity

Production of lactic acids L-lactate dehydrogenase (EC 1.1.1.27)
915 NODE_10_length_151230_cov_215.460261
927 NODE_2_length_675994_cov_165.027269
972 NODE_4_length_230557_cov_252.939857

Production of bioactive peptides

Bacteriocin helveticin J 978 NODE_10_length_151230_cov_215.460261

Bacteriocin pre-peptide/inducing factor for bacteriocin synthesis 162 NODE_3_length_242459_cov_251.537351
192 NODE_3_length_242459_cov_251.537351

Three-component quorum-sensing regulatory system, inducing peptide for
bacteriocin biosynthesis 144 NODE_3_length_242459_cov_251.537351

Bacteriocin ABC-transporter, ATP-binding and permease component 2163 NODE_3_length_242459_cov_251.537351
591 NODE_3_length_242459_cov_251.537351

S-ribosylhomocysteine lyase (EC 4.4.1.21) @ Autoinducer-2 production protein LuxS 474 NODE_2_length_675994_cov_165.027269
156 NODE_2_length_675994_cov_165.027269

Type 1 capsular polysaccharide biosynthesis protein (EC:2.4.1.-) 702 NODE_2_length_675994_cov_165.027269
Mannosyltransferase involved in polysaccharide biosynthesis 699 NODE_9_length_161393_cov_196.936481

Production of adhesion molecules

Sortase A, LPXTG specific 690 NODE_2_length_675994_cov_165.027269

Cell surface protein, ErfK family 609 NODE_2_length_675994_cov_165.027269
690 NODE_10_length_151230_cov_215.460261

Cell surface protein precursor 1932 NODE_10_length_151230_cov_215.460261
Cell surface protein 1020 NODE_7_length_167441_cov_180.361088

Fibronectin/fibrinogen-binding protein 1692 NODE_2_length_675994_cov_165.027266
S-layer protein precursor 1500 NODE_9_length_161393_cov_196.936481

ATP synthase epsilon chain (EC 3.6.3.14) 441 NODE_2_length_675994_cov_165.027269
Tyrosine-protein kinase transmembrane modulator EpsC 876 NODE_3_length_242459_cov_251.537351

Tyrosine-protein kinase EpsD (EC 2.7.10.2) 783 NODE_3_length_242459_cov_251.537351

“COG1887: Putative glycosyl/glycerophosphate transferases involved in teichoic
acid biosynthesis TagF/TagB/EpsJ/RodC/Putative

polyribitolphosphotransferase/CDP-ribitol:
poly (ribitol phosphate) ribitol phosphotransferase/CDP-glycerol: poly

(glycerophosphate) glycerophosphotransferase (EC 2.7.8.12)/CDP-glycerol:
N-acetyl-beta-D-mannosaminyl-1,4-N-acetyl-D-glucosaminyldiphosphoundecaprenyl

glycerophosphotransferase”

1155 NODE_9_length_161393_cov_196.936481
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Table 1. Cont.

Important Probiotic Features Associated Functional Proteins/Peptides Gene Size (bp) CDS Contigs Identity

Production of stress resistance molecules

Cell envelope-associated transcriptional attenuator LytR-CpsA-Psr, subfamily F2
1275 NODE_3_length_242459_cov_251.537351
1056 NODE_3_length_242459_cov_251.537351
1104 NODE_4_length_230557_cov_252.939857

ATP-dependent Clp protease, ATP-binding subunit ClpE 2187 NODE_2_length_675994_cov_165.027269
ATP-dependent Clp protease, ATP-binding subunit ClpC 2478 NODE_4_length_230557_cov_252.939857

Peptide-methionine (R)-S-oxide reductase MsrB (EC 1.8.4.12) 438 NODE_7_length_167441_cov_180.361088

S-ribosylhomocysteine lyase (EC 4.4.1.21) @ Autoinducer-2 production protein LuxS 474 NODE_2_length_675994_cov_165.027269
156 NODE_2_length_675994_cov_165.027269

Improving host metabolism

2-diacylglycerol and 3-glucosyltransferase (EC 2.4.1.337) 1164 NODE_20_length_14896_cov_167.363722
Poly (glycerol-phosphate) alpha-glucosyltransferase (EC 2.4.1.52) 1092 NODE_9_length_161393_cov_196.936481

Cellobiose phosphor transferase system celC 447 NODE_22_length_12729_cov_198.662143
PTS system, cellobiose-specific IIC component 1326 NODE_2_length_675994_cov_165.027269

PTS system, cellobiose-specific IIB component (EC 2.7.1.205) 336 NODE_2_length_675994_cov_165.027269
Outer surface protein of unknown function, cellobiose operon 1062 NODE_3_length_242459_cov_251.537351

Methionine synthase II (cobalamin-independent) 1119 NODE_2_length_675994_cov_165.027269
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3.2. Efficacy of the Bioactive Secondary Metabolites

Both the manual search through the functional annotation and the rapid in silico analysis for
secondary metabolite biosynthesis gene clusters revealed the presence CDS, predicted for bacteriocin
(Figure 2). The bacteriocin extracted from the Lactobacillus acidophilus PNW3 was partially purified and
tested against two different strains of Shiga toxin-producing E. coli O177. Both strains were susceptible
to the crude and partially purified bacteriocin with different ranges of zone of inhibition (Table 2).
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Zone of Inhibitions (mm) **

Crude Bacteriocin Partially Purified Bacteriocin (250 µg/mL)

E. coli C1 21.7 ± 0.58 24.3 ± 1.15
E. coli C2 19.3 ± 0.58 24.0 ± 1.00

Key: **—Mean values of three replicates.

3.3. Safety Assessment of the Strain

Both the ResFinder and CARD database for the genes encoding for acquired drug resistance
revealed the presence of Tetracycline-resistant ribosomal protection protein (tetW) and Lincosamide
nucleotidyltransferase (lnuC), which confer resistance to Tetracycline and Lincosamide, respectively.
Manual searches through the functional annotation only indicate the presence of multidrug-resistant
proteins with assisting heterodimetric efflux ABC transporters (LmrC subunit of LmrCD). The strain
was predictably identified as a non-human pathogen by the PathogenFinder tool hosted by the Centre
for Genomic Epidemiology. The calculated Matched Pathogenic Families was 0, while the Matched
Not Pathogenic Families was 597, and the probability of being a human pathogen was calculated to be
0.2. There was no hit for virulence determinants using VirulenceFinder.

A handful of Mobile Genetic Elements were equally identified within the genome of the Lactobacillus
acidophilus PNW3. A single prophage region was identified within the entire genome, and the coding
sequence indicates incomplete prophage type. Five coding sequences were also predicted for insertion
sequences (IS), with three different identified IS distributed into three different families using the
Optimised Annotation System for Insertion Sequences search tool. The associated IS families were
S200–IS605, IS30 and IS66, while on the other hand, 10 putative complete open reading frames
(ORF) putative for IS were identified using the ISsaga search tool and distributed into 10 different
families (Figure 3).

A search for the CRISPR-Cas sequence within the L. acidophilus PNW3 genome revealed only
one CDS putative for the CRISPR sequence with the associated cas gene. The fragment occurred
on Contig Identity NODE_10_length_151230_cov_215_460261_1 and occupied the region between
64,572 and 66,430 bp. The identified CRISPR sequence contained 30 spacer genes and a 28 bp repeat
consensus (GGATCACCTCCACATACGTGGAGAAAAT).
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3.4. Detection of Biogenic Amines Produced by the Strain

Only one protein-encoding sequence related to the production of biogenic amines was found
within the entire genome of the L. acidophilus PNW3. The CDS is putative for Ornithine decarboxylase
(EC 4.1.1.17) and located on Contig Identity NODE_2_length_675994_cov_165.027269. The length of
the fragment measures 2094 bp and stretches between 368,158 and 370,251 bp along the forward DNA
strand (Figure 4). No hit was found for the enteroxins and lipopeptides within the genome. Analysis of
the HPLC carried out on the extracted biogenic amines produced by the isolate also revealed putrescine
as the only biogenic amine produced. The putrescine produced by the L. acidophilus PNW3 was
eluted within a 2.337 min retention time, while the putrescine used as the standard reference eluted at
2.436 min under the same flow rate of 0.5 mL/min.
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3.5. Evolutionary Similarity between the L. acidophilus PNW3 and Other Strains

A total of seven genomes of different strains of L. acidophilus, including PNW3 and two genomes
of L. johnsonii, were used to generate a phylogenetic tree. L. acidophilus PNW3 (South Africa) and 30SC
(South Korea) were both isolated from Sus scrofa, while the ATCC 53,544 (USA), DSM 20,079 (France)
and DS1_1A (USA) were isolated from Homo sapiens. The strain YT1 (South Korea) was from Rattus
norvegicus and UBLA-34 (India) was from fermented food. The Lactobacillus johnsonii strains UMNLJ114
(USA) and ZLJ010 (China) were isolated from Meleagris gallopavo and Sus scrofa, respectively (Figure 5).
The tree was built on 500 single copy genes that included 200,641 amino acids and 601,842 nucleotides.
All the L. acidophilus appeared on the same clade, and likewise the two strains of the L. johnsonii had
a 100% support value for each clade. Among the L. acidophilus, only the 30SC does not cluster with
the others. The L. acidophilus PNW3 appears to have evolved around the same time as the other five
strains, regardless of the year of isolation, location and the source of the isolates. This is supported by
a 100% confidence level, except for the UBLA-34 and DS1_1A, which are 50% and 40%, respectively.
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4. Discussion

This study is an overhaul of the entire genome of Lactobacillus acidophilus PNW3 for important
probiotic features and the safety of the isolate. Functional annotation through the NCBI prokaryotic
genome annotation pipeline and rapid annotations using subsystems technology with SEED viewer
revealed several inherent protein-encoding sequences predictably in support of the health benefit of a
typical probiotic candidate.

Three protein-encoding genes were determined within the genome, putative for L-lactate
dehydrogenase (EC 1.1.1.27), an important enzyme required in the fermentation of lactate and
mixed acids. In the in vitro and in vivo studies conducted by Yang et al. [43], lactic acid was confirmed
as an inducer of the rapid de-phosphorylation of the epidermal growth factor receptor. It also exhibited
inhibitory effects on the production of IL-8 induced by IL-1β, and colony formation by HT29 cells.
Furthermore, lactic acid commendably increased the rate of survival when administered through
the oral route to ApcMin mice (Apc/multiple intestinal neoplasia) with advanced stage malignant
tumor. In another independent study, L-lactate dehydrogenase was found to possess the ability to
stimulate the bioenergetics of the mitochondria in the heart, muscle and liver, just as effectively as
pyruvate. The enzyme L-lactate dehydrogenase was also confirmed to stimulate the production of
reactive oxygen species in the mitochondrion at the same rate as pyruvate induces the production of
hydrogen peroxide [44].

Moreover, among the probiotic important genes found within the genome of L. acidophilus PNW3
are genes putative for bioactive peptides. The coding sequences for the bacteriocin, Autoinducer-2
production protein, type 1 capsular polysaccharide biosynthesis protein and mannosyltransferase
involved in polysaccharide biosynthesis were found within the genome. Bioactive peptides, synthesized
as secondary metabolites by the lactic acid bacteria, provide a source of alternative bioactive compounds
of natural origin to synthetic antimicrobials. Several studies have revealed the potency of the active
compounds secreted by LAB against clinically important pathogens and malignant cells [45–47].

The effectiveness of a probiotic is largely enhanced by its ability to adhere and competitively
colonize gut epithelia cells. Sortase A, which is LPXTG-specific, identified with heme, hemin uptake
and utilization systems in Gram-positive Sortase, and is among the important adhesion players in
the L. acidophilus PNW3. Sortase A is an enzyme used by Gram-positive bacteria to coat the cell
surface with functional proteins and a pili assemblage that enables interactions between the cells and
their environment. The enzyme is highly important in the cell physiology and defense; it is made
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up of protein domains connected with the adhesion of cells to host cells and extracellular matrix
proteins [48,49]. Other important adhesive encoding genes identified include the following: cell surface
and S-layer proteins; fibronectin/fibrinogen-binding protein; and members of the EPS cluster such as
EpsC, EpsD, EpsJ and ATP synthase epsilon chain.

The gut microbiota vested with diverse enzymatic potentials plays a crucial role in the improvement
of the host metabolism, the repression of pathogens, the contribution of additional nutrients and the
improvement of nutrient digestibility and absorption [50,51]. Extracellular enzymes, such as lipase,
protease and amylase, among others, produced by most lactic acid bacteria, play an important role
in the guts of animals and human beings, including infants [52]. Four coding sequences putative for
different kinds of lipases and twelve coding sequences putative for different proteases were among the
probiotic supportive genes located in the genome of L. acidophilus PNW3. This, therefore, supports the
envisaging potential of the isolate with regard to improving nutrient digestibility in the host as a
probiotic candidate. This may directly translate into growth performance improvement in the target
farm animal.

In addition, the functional annotation of the entire genome assembly also revealed a plethora
of coding genes putative for stress tolerance within the gut environment in relation to bile salts and
gastric pH. These include ATP synthase epsilon chain, PTS system, cellobiose-specific IIC component,
ATP-dependent Clp protease ATP-binding subunit, and L-lactate dehydrogenase, all of which are
responsible for the maintenance of acid stress resistance [3]. Autoinducer-2 production protein LuxS,
which is among the stress-resistant CDS identified in the genome, has been described as part of the
proteins involved in both acid and bile salt stress tolerance [53]. Another CDS identified along the
cell envelope subcategory is the cell envelope-associated transcriptional attenuator LytR-CpsA-Psr,
subfamily F2. The hydrophobic nature of the cell envelope of microorganism assists with the adhesion
of the organisms to the host epithelia cell, therefore conferring a competitive edge for colonization of
the gastrointestinal tract [54].

Quick searches through different databases and a manual search through functional annotation
revealed that L. acidophilus PNW3 harbors resistant genes against Lincosamide and Tetracycline.
Functional annotation also revealed the presence of the heterodimeric efflux ABC transporter,
and multidrug resistance. Although several heterodimeric ABC transporters have been reportedly
involved in multidrug efflux in Gram-positive organisms, it is worthy to note that most of the annotated
multidrug efflux transporters are not capable of transporting drugs, but rather get involved in other
physiological functions within the cell [55]. Moreover, the heterodimeric efflux ABC transporter is an
intrinsic form of resistance, which has little or no chance of being transferred to other bacteria [56].
The only prophage region found within the L. acidophilus PNW3 genome was designated as an
incomplete prophage type, an indication of its non-functionality. None of the identified transposase
and other insertion sequences flanked the resistance genes, thus further limiting the transferability of
these antimicrobial resistance genes.

Furthermore, the genome of the isolate harbors a fragment of clustered regularly interspaced short
palindromic repeats (CRISPR) with associated Cas-gene and spacer. The presence of a CRISPR region
within the microbial genome is expected to limit the spread of antimicrobial resistant genes through
the obstruction of multiple pathways of lateral gene transfer [57]. The CRISPR-Cas fragment equips
the host strain with a sequence-specific defense-line against the intrusion of extra-chromosomal DNA
molecules such as insertion sequences (IS), plasmids, transposons and phages [58,59]. The presence of
this therefore indicates the stability of the L. acidophilus PNW3 genome and the reduced possibility of
acquiring antimicrobial-resistant genes.

The CDS putative for ornithine decarboxylase (EC 4.1.1.17) was the only protein with the potential
for producing a biogenic amine compound in the L. acidophilus PNW3. The decarboxylation of amino
acid ornithine by the enzyme ornithine decarboxylase leads to the formation of putrescine, which is
a biochemical that has been confirmed to down-regulate the activities of macrophages in response
to injury due to microbial infection [60]. The production of putrescine by the L. acidophilus PNW3
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was practically confirmed through HPLC analysis. Ornithine decarboxylase also limits the rate of
polyamine biosynthesis, thus increasing the potential for oncogenesis [61]. The increased activity of
the enzyme has been reportedly observed in the rapid proliferation of normal and neoplastic cells.
Although the activity of Ornithine decarboxylase is under strict regulation at transcriptional and
post-translational stages, due to its impact on the cellular processes [62], Ornithine degradation is
regulated by a protein known as antizyme in response to the density of polyamine, and is also one of
the targets of the Myc/Max transcription factor [63].

5. Conclusions

The genome of L. acidophilus PNW3 is vested with enough protein-encoding genes in support of
its probiotic efficacy, and the organism appears safe at the genome level. Neither of the two identified
drug resistance genes were flanked by the insertion sequences, which thus reduces any potential risk
of the resistant gene transferring into the environment; this could also be prevented by the presence of
the CRISPR-Cas fragment. In general, L. acidophilus PNW3 is confirmed as a non-human pathogen,
though the strain is capable of producing putrescine, which is a biogenic amine. Further in vivo
assessment is required on the safety assurance of the strain as a viable probiotic agent. The application
of probiotics in livestock keeping would ensure improved public health and food security.

NB. The data discussed in this article are part of the thesis submitted to the repository of North-West
University, South Africa (repository.nwu.ac.za).
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