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Background: Relevant aspects regarding the SARS-CoV-2 pathogenesis and the
systemic immune response to this infection have been reported. However, the mucosal
immune response of the upper airways two months after SARS-CoV-2 infection in
patients with mild/moderate symptoms is still not completely described. Therefore, we
investigated the immune/inflammatory responses of the mucosa of the upper airways of
mild/moderate symptom COVID-19 patients two months after the SARS-CoV-2 infection
in comparison to a control group composed of non-COVID-19 healthy individuals.

Methods: A cohort of 80 volunteers (age 37.2 ± 8.2), including non-COVID-19 healthy
individuals (n=24) and COVID-19 patients (n=56) who presented mild/moderate
symptoms during a COVID-19 outbreak in Brazil in November and December of 2020.
Saliva samples were obtained two months after the COVID-19 diagnosis to assess the
levels of SIgA by ELISA and the cytokines by multiplex analysis.

Results: Salivary levels of SIgA were detected in 39 volunteers into the COVID-19 group
and, unexpectedly, in 14 volunteers in the control group. Based on this observation, we
distributed the volunteers of the control group into without SIgA or with SIgA sub-groups,
and COVID-19 group into without SIgA or with SIgA sub-groups. Individuals with SIgA
showed higher levels of IL-10, IL-17A, IFN-g, IL-12p70, IL-13, and IFN-a than those
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without SIgA. In intergroup analysis, the COVID-19 groups showed higher salivary levels of
IL-10, IL-13, IL-17A, and IFN-a than the control group. No statistical differences were
verified in the salivary levels of IL-6 and IFN-b. Lower IL-12p70/IL-10 and IFN-g/IL-10
ratios were found in the control group without SIgA than the control group with SIgA and
the COVID-19 group with SIgA.

Conclusion:Wewere able to present, for the first time, that associations between distinct
immunological profiles can help the mucosal immunity to maintain the salivary levels of
SIgA in COVID-19 patients two months after the SARS-CoV-2 infection.
Keywords: mucosal immunity, saliva, cytokines, interferon, interleukin, SARS-CoV-2
INTRODUCTION

The World Health Organization (WHO) declared, in March
2020, that humanity was facing a pandemic situation originated
by the SARS-CoV-2 virus, which causes the named coronavirus
disease 19 or COVID-19 (1). Since then, many studies have been
conducted in order to understand not only the pathogenic
aspects involved in this viral disease but also how the immune
and inflammatory response is induced by this infection (2, 3).

In this respect, as the SARS-CoV-2 is a respiratory virus, and its
presence in the airway elicits a local immune/inflammatory
response (4) that, in a “controlled situation”, can help the host
to clear the virus through the production and release of
immunoglobulins, mainly secretory immunoglobulin A (SIgA)
and cytokines (5–7). It is broadly accepted that the dysregulated
inflammatory response promoted by the SARS-CoV-2 infection
drives a cytokine storm, which is closely associated with severe
symptoms and viral lethality (8). Therefore, the “dose” of immune/
inflammatory responses elicited by SARS-CoV-2 infection seems
to be crucial for driving a “good” or “bad” outcome in this disease.
In fact, our group previously reported that individuals with severe
COVID-19 presented higher levels of SIgA, interferons (IFN) type
I (IFN-a and IFN-b) and type II (IFN-g), and interleukin (IL)-37
in nasopharyngeal and oropharyngeal swabs samples as compared
to the groups with mild COVID-19 and individuals with other
respiratory infections (9).

In terms of immune/inflammatory responses in the airway
mucosa, it has been shown that the presence of a respiratory
virus, such as SARS-CoV-2, can trigger the expression of
different types of cytokines that can assist not only in the
clearance of the pathogenic agent, but can also generate a
protective immunity against viral infection (10, 11). Moreover,
it is worth mentioning that the analysis of cytokines released on
airways mucosa in response to COVID-19 can be useful to define
a signature of this infection, which could help to guide medical
assistance, medicine development, and patients’ follow-up (12).
In this sense, we have demonstrated that COVID-19 patients
presenting mild symptoms showed significant correlations
between different types of cytokines. One of the most
interesting positive correlations found was between the levels
of SIgA and IL-17A (9).

According to the literature, the production and release of
cytokines by the upper airway’s mucosa, in response to
org 2
respiratory infection, can elicit different immune response
profiles such as Th1, Th2, and Th17, which can help in the
production of mucosal specific-SIgA against the infective agent
(10). Among some SIgA features, it is paramount to point out
that it was reported that reduction in SIgA levels is closely
associated with illness severity (13). Secretory immunoglobulin
A is considered as the “first line of defense” against many
different pathogens due to its capacity to directly bind and
inhibit many pathogenic agents in the mucosa (14–16).
Corroborating this important action, a lower level of SIgA in
the airways mucosa is related to a higher risk to present upper
respiratory infections (URTI) (17), particularly by a virus (18).

In terms of mucosal immunity in the upper airways, it was
reported that both the oral cavity and nasal passages contain
higher frequencies of sIgA+ B-cells, which suggests a similarity
between these mucosal effector tissues. Based on this fact, the use
of saliva is useful to evaluate not only diseases and conditions in
the oral cavity, but also as well as the systemic health of
individuals (19–21). These affirmations are especially valid for
the immune/inflammatory response in the mucosa of the upper
airways considering that saliva is an easily accessible external
fluid that can be used to measure the antigen-specific SIgA
antibodies following immunological challenges, such as
infection and immunization, in both human and experimental
animal models (14). Beyond the presence of antibodies, saliva is a
biofluid composed of other biomolecules, including different
types of cytokines (22, 23). Based on this information,
investigation about the immune and inflammatory responses
in the mucosa of the upper airway against the COVID-19 not
only can improve our knowledge concerning this disease, but can
allow us to better understand why some individuals are
asymptomatic or why the symptomatic develop mild,
moderate, or severe COVID-19. Furthermore, it is worthy to
note that, until now, the overwhelming majority of studies that
aimed to evaluate the antibodies and cytokines profile in
COVID-19 patients were focused on systemic aspects, mainly
in patients with severe disease, whom, in general, presented the
cytokine storm. Therefore, in the present study, we evaluated the
immune/inflammatory responses in the mucosa of the upper
airway, particularly assessing SIgA and cytokines, two months
after SARS-CoV-2 infection in a group of patients who presented
mild/moderate symptoms in comparison to a control group
composed of healthy individuals.
May 2022 | Volume 13 | Article 890887
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MATERIALS AND METHODS

Subjects of the Study
In the present study, 80 individuals (mean age 37.2 ± 8.2), 28 men
and 52 women, were enrolled. The volunteers were distributed
into two groups: the control group (n=24) was composed of non-
COVID-19 healthy individuals and the COVID-19 group (n=56)
was composed of individuals infected with SARS-CoV-2, who
presented mild/moderate symptoms between the months of
November and December of 2020, during a COVID-19
outbreak in Brazil. We clarify that on this occasion none of the
volunteers were submitted to the vaccination for COVID-19. All
the participants were informed about the study and signed the
informed consent form previously approved by the Ethics
Committee of the Albert Einstein Hospital (number 4.159.565).
It is noteworthy to highlight that both the study and all
experiments were performed in accordance with the Declaration
of Helsinki. Data concerning age, gender, and clinical parameters,
including the COVID-19 symptoms, are shown in Table 1.

Determination of Virus Infection
by RT-PCR
The diagnosis for SARS-Cov-2 infection was carried out by real-
time (RT) PCR using nasal/oropharyngeal samples obtained in
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the individuals of the COVID-19 group and healthy individuals.
The RT-PCR kits XGENMASTER COVID-19 (Mobius, Pinhais,
Paraná, Brazil); COBAS® SARS-CoV-2 Test (Roche Molecular
Systems, Branchburg, NJ, USA); Xpert®Xpress SARS-CoV-2
(Cepheid, Sunnyvale, CA, USA); and Abbott RealTime SARS-
C0V-2 (Abbott Molecular Inc.,DesPlaines, IL,USA) were used
following manufacturer’s instructions (24–32).

Saliva Sampling
Unstimulated saliva was self-collected by the COVID-19 patients
or healthy non-COVID-19 volunteers in a sterile 50-mL tube as
previously described (33) in the “Hospital Israelita Albert
Einstein” located in São Paulo, Brazil. Regarding the COVID-19
group, the samples were obtained 55 to 60 days after the COVID-
19 diagnosis. In relation to the healthy non-COVID-19 volunteer
group, none of them presented SARS-CoV-2 infection on the
salivary sample collection day. All saliva samples were centrifuged
at 3000 rpm for 5 min and the supernatants were stored in -80°C
to perform cytokines and secretory immunoglobulin A assays.
The volunteers enrolled in this study presented good oral health
conditions at the moment of salivary samples collection. In
addition, it is noteworthy to point out that all the volunteers
were submitted for clinical examination in order to attest to their
good health status before the saliva sampling.
TABLE 1 | Demographic, clinical characteristics, and symptoms presented by the patients who composed the COVID-19 sub-groups without or with SIgA.

Parameter CONTROL COVID-19 p value

Without SIgA (n=10) With SIgA (n=14) Without SIgA (n=17) With SIgA (n=39)

Age 37.7 ± 9.5 40.5 ± 11.4 35.5 ± 4.8 35.4 ± 7.4
Male 6 4 6 12 > 0.05
Female 4 10 11 27 > 0.05
M/F ratio 1:0.66 1:2.5 1:1.84 1:2.25 > 0.05
Clinical characteristics n n
Comorbidity 11 18 > 0.05
Hypertension 1 5 > 0.05
Obesity 0 3 > 0.05
Asthma 2 1 > 0.05
Pregnancy 0 1 > 0.05
Smoking 0 2 > 0.05
Presence of COVID-19 symptoms 10 16 > 0.05

Fever 5 4 > 0.05
Cough 4 9 > 0.05
Dyspnea 3 6 > 0.05
Anosmia 6 12 > 0.05
Ageusia 4 11 > 0.05
Sore throat 3 7 > 0.05
Myalgia 6 10 > 0.05
Chills 4 8 > 0.05
Coryza 5 9 > 0.05
Headache 7 13 > 0.05
Nausea/Vomiting 2 5 > 0.05
Diarrhea 3 9 > 0.05
Fatigue 6 10 > 0.05
Mental confusion 2 0 > 0.05
Chest pain 3 4 > 0.05
Days of symptoms 28 +/- 43 22+/-27 > 0.05
Days of symptoms (range) 1 - 144 08 - 120
May 2022 | Volume 13 | Article
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Determination of Secretory
Immunoglobulin A (SIgA)
Secretory IgA immunoglobulin (SIgA) was detected by ELISA in-
house test, which was previously standardized, in order to define
not only the optimum concentration of SARS-CoV-2 antigens
but also the better saliva samples dilution. Briefly, 96-well plates
(Corning, New York, USA) were coated with a mixture of
antigens (0.12 ug/mL in sodium carbonate–sodium bicarbonate
buffer) from nCoV-PS-Ag7 (Fapon Biotech Inc., Dongguan,
China) containing the nucleoprotein (N), membrane (M) and
spike (S) and was incubated overnight. Unspecific binding of
antibodies was avoided by blocking with the buffer PBS-BSA-T
containing 1% of bovine serum albumin (Invitrogen by Thermo
Fisher Scientific, Vienna, Austria) in PBS (1X, pH: 7.3) + 0.05%
of Tween 20 (Synth, Diadema, Brazil) at 37°C for 2h. After
washing three times with a PBS-T solution (PBS 1X, pH:7.3 +
0.05% of Tween), 100mL of saliva [diluted at 1:2,000 in PBS-BSA
(PBS 1X, pH: 7.3 + 0.1% of BSA)] was added and incubated for
2h at 37°C. After washing three times with a PBS-T solution, it
was added the secondary antibody conjugated with horseradish
peroxidase diluted at 1:2,000 (in PBS-BSA) of goat anti-human
IgA (Sigma-Aldrich Co., Deisenhofen, Germany). After
incubation for 1h at 37°C and three PBS-T washes, 100 mL of
TMB solution (3.3′.5.5′- tetramethylbenzidine. Thermo
Scientific, Massachusetts, USA) was added and incubated for
10 min at room temperature, avoiding direct exposure to light.
The reaction was stopped by adding a solution of sulfuric acid
(0.2 N) to each well, and the optical density at 450nm
was measured.

Determination of Cytokines
Cytokine concentrations were determined in the saliva samples
by a multiplex assay (LEGENDplex™ bead-based multiplex
assays, Biolegend, San Diego, CA, USA). The biomarkers
assessed were: IL-6, IL-10, IL-12p70, IL-13, IL-17A, IFN-a,
IFN-b, and IFN-g following the manufacturer’s instructions. In
this regard, all salivary samples were initially diluted 2-fold and
after 25microL of the sample diluted was used to perform this
assay. The concentration of cytokines was calculated using
appropriate standard curves (following instructions from
manufacturers). The linearity of the multiplex assay was within
the 2.4–10,000pg/mL range, which includes the range of sample
determinations. The correlation coefficients of all standard
curves were ranged from 0.95 to 0.99, while intra-assay
variance coefficients were 3–5%, and interassay variance
coefficients were 8–10%. Analysis was performed with the BD
Accuri™ C6 Plus Flow Cytometer (BD Biosciences San Jose. CA.
USA) and the data obtained were analyzed with LEGENDPlex™

V8.0 software (Biolegend).

Statistical Analysis
All data obtained from the SIgA and cytokines analysis were
initially compared with the Gauss curve and the normality for
each parameter assessed was determined by the Shapiro-Wilk
test, followed by the homogeneity of variance analysis by the
Levene test. Salivary concentrations of SIgA and the cytokines in
Frontiers in Immunology | www.frontiersin.org 4
the volunteer groups were analyzed using the Mann-Whitney
test and were presented as the median with the respective
quartiles. In addition, the correlation test was performed by
Spearman’s test. Differences between age, number of men and
women, and the salivary concentrations ratio between IL-10
and the other cytokines were analyzed using the Student T-test
and were presented as mean and standard deviation, whereas the
differences between the clinical characteristics and symptoms
were evaluated using the Chi-square test. Significance was
established with a risk at 5.0% level (p ≤ 0.05) and all the
analysis was performed data using GraphPad Prism (version
8.1.2) software.
RESULTS

As shown in Figure 1, some volunteers in the control group did
not present SIgA for SARS-Cov-2 antigens (n=10) as expected,
whereas other volunteers presented this antibody in saliva
(n=14). It is worthy to note that, as mentioned in the “Material
and Methods” section, these healthy volunteers were allocated to
the control group based on the observation that all of them were
RT-PCR negative for COVID-19. In addition, the volunteers
infected by SARS-Cov-2 were also separated into two groups in
accordance with the presence of SIgA: COVID-19 with SIgA
(n=39) and COVID-19 without SIgA (n=17). Significant
differences were found in the intragroup analysis between the
volunteers in the subgroups control (p = 0.002) or COVID-19
(p < 0.0001). Moreover, in the intergroup analysis, the salivary
SIgA levels observed in the COVID-19 group were higher than
the levels found in the control group (p = 0.04).

Since the groups were distributed due to the presence or
absence of SIgA in saliva, Table 1 presents the number of
individuals allocated in the control group without SIgA or with
SIgA, as well as in the COVID-19 group without SIgA or with
SIgA. In addition, it presents the age, the number of men and
women, and its ratio in each volunteer group along with the
comorbidities and symptoms found in COVID-19 groups during
the SARS-CoV-2 infection. In a general way, no differences were
observed in these parameters.

Figure 2 shows the analysis of salivary cytokines, both pro (IL-6,
IL-12p70, IL-13, IL-17A, IFN-a, IFN-b, and IFN-g) and anti-
inflammatory (IL-10), in the volunteers enrolled in the present
study. Concerning the results obtained in the intragroup evaluation,
it was found that the control group with SIgA presented higher
levels of IL-10 (Figure 2B), IL-17A (Figure 2E), and IFN-g
(Figure 2H), as well as lower levels of IL-13 (Figure 2D) than the
values observed in the control group without SIgA. In a similar way,
the COVID-19 group with SIgA presented higher levels of IL-10
(Figure 2B) and IFN-g (Figure 2H) than the values found in the
COVID-19 group without SIgA. However, increased salivary levels
of IL-12p70 (Figure 2C), IL-13 (Figure 2D), and IFN-a
(Figure 2F), and no differences in IL-17 levels (Figure 2E) were
also observed in the COVID-19 group with SIgA as compared to the
results obtained in the COVID-19 group without SIgA. In addition
to these findings, it was observed in the intergroup analysis that the
May 2022 | Volume 13 | Article 890887
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COVID-19 group without SIgA showed higher levels of IL-10
(Figure 2B), IL-13 (Figure 2D), and IL-17A (Figure 2E) than the
control group without SIgA. In relation to the groups with SIgA,
increased levels of IL-10 (Figure 2B), IL-13 (Figure 2D), IL-17A
(Figure 2E), and IFN-a (Figure 2F) were found in the COVID-19
group as compared to the values observed in the control group. No
statistical differences were verified in the salivary levels of IL-6
(Figure 2A) and IFN-b (Figure 2G).

Table 2 presents the results obtained in the Spearman
coefficient correlation analysis. Interestingly, a positive
correlation between IFN-a and IL-12p70 was verified in all
volunteer groups. In a different way, whereas IFN-a showed a
positive correlation with IL-6 in the control group without SIgA,
the IFN-a showed a positive correlation with IL-10 in the control
group with SIgA, with IFN-g in the COVID-19 group with SIgA,
and with IL-13 in both COVID-19 groups. Concerning IL-6, it
was found a positive correlation with IL-12p70 in the control
group without SIgA, whereas the control group with SIgA IL-6
showed negative correlations with IL-13 and IFN-g. Particularly
in the COVID-19 groups, IL-6 presented a positive correlation
with IFN-g and also IL-12p70 presented a positive correlation
with IL-17A. In addition, the groups that presented SIgA showed
a positive correlation between IL-12p70 and IL-10. Another
cytokine that showed significant correlations in the groups
presenting SIgA was IL-13, but with different cytokines, since
in the control group with SIgA, a negative correlation with IFN-b
was observed, and in the COVID-19 group with SIgA, two other
positive correlations were evidenced, with IFN-g and IL-17A.
Lastly, the COVID-19 group without SIgA exclusively showed a
positive correlation between IL-12p70 and IL-13, whereas the
COVID-19 group with SIgA presented positive correlations
between the levels of SIgA and IFN-g, as well as IL-17A.

Figure 3 shows the analysis of the ratio between salivary levels
of IL-10 and the other pro-inflammatory cytokines assessed in
this study. It was found a significant decrease in the IL-12p70/
Frontiers in Immunology | www.frontiersin.org 5
IL-10 ratio (Figure 3B) between the control group without SIgA
and the control group with SIgA, as well as in the IFN-g/IL-10
ratio (Figure 3G) between the control group without SIgA, the
control group with SIgA, and the COVID-19 group with SIgA.
No other differences were observed.

Figure 4 summarizes all data found in the volunteer groups of
this study.
DISCUSSION

The present study shows, for the first time, that two months after
SARS-CoV-2 infection, the COVID-19 group with SIgA showed
increased salivary SIgA levels than the control group with SIgA,
as well as pro-inflammatory cytokines, such as IL-12p70, IL-13,
IL-17A, IFN-a, and IFN-g, and the anti-inflammatory cytokine
IL-10, as compared to the other groups. In an interesting way, no
differences in the salivary levels of IL-6 and IFN-b were verified
between the groups. Furthermore, the correlation analysis
demonstrated remarkable associations in all volunteer groups,
highlighting the results obtained in the COVID-19 group
with SIgA.

Corroborating to the present study, our group (9) has
previously demonstrated a significant positive correlation
between IL-17A and SIgA in COVID-19 patients presenting
mild/moderate symptoms. According to the literature, IL-17A is
one of the major cytokines involved in the Th17 immune
response, including the upper airway mucosal immunity, by
improving its protection in association with a specific-SIgA
response (10). Hence, it was reported that IL-17 can enhance
the expression of the polymeric immunoglobulin receptor
(pIgR), which is responsible to mediate the transport of
polymeric immunoglobulins such as SIgA, across the mucosal
epithelial cells, delivering this antibody to the mucosal surface
(14). In fact, it is utmost of importance to highlight that IL-17 is
FIGURE 1 | Comparison of the levels of salivary specific-SIgA for SARS-CoV-2 between control and COVID-19 groups with or without the presence of SIgA. The
level of significance was established at 5% (*p < 0.05; **p < 0.05; ****p < 0.0001).
May 2022 | Volume 13 | Article 890887
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associated with an upper airway mucosal protective immunity
since its neutralization impaired the immune response against
not only nasal vaccination but also influenza infection (10, 34,
35). In a recent review, Hoffmann et al. (2021) (36) showcased
the corollary action of IL-17 in the airway’s viral infection and
secondary bacterial infections (37). In this context, in association
with IL-22, IL-17 can also regulate the function of the epithelial
barrier and mediate host response to infections (38–40) by
inducing the production of antimicrobial proteins and mucus,
recruitment of monocytes and neutrophils, favoring tight
junction formation, and the mucosal repair (41–44). Moreover,
it has been reported that the improvement of secondary bacterial
infections clearance during influenza infection was related to IL-
17 production (45). In line with these findings, Smith and
collaborators (14) declared that “the strategic positioning of
TH17 cells at barriers surfaces reflects their importance in the
Frontiers in Immunology | www.frontiersin.org 6
neutralization of pathogens”. So, as COVID-19 is also a
respiratory disease, the production of IL-17A in the upper
airway of individuals with SARS-Cov-2 infection can be crucial
to elicit an immune response that limits disease severity (36),
particularly by inducing specific-SIgA for COVID-19 as observed
in the present study.

Based on the previous report of Mahallawia and collaborators
(2018) (44), in which it was shown that patients with acute MERS-
CoV infection presented both Th1 and Th17 responses, our
findings show a significant positive correlation between IL-12p70,
a classical Th1 cytokine, and IL-17 in the COVID-19 groups.
Beyond that, higher levels of IL-12p70 and IL-17 were also
observed in the COVID-19 group with SIgA compared to the
COVID-19 group without SIgA. Therefore, it shows that the SARS-
CoV-2 infection can elicit a similar immune response denoted by
MERS-CoV. In terms of mucosal immunity, IL-12p70 is a cytokine
A B

D

E F

G H

C

FIGURE 2 | Comparison of the salivary cytokines levels of IL-6 (A), IL-10 (B), IL-12p70 (C), IL-13 (D), IL-17 (E), IFN-a (F), IFN-b (G), and IFN-g (H) between control
without or with SIgA and COVID-19 without or with SIgA group. Values are presented in the median and interquartile range. Statistical analysis: Mann-Whitney test.
The level of significance was established at 5% (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
May 2022 | Volume 13 | Article 890887

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Santos et al. COVID-19: Immunological Profile and SIgA
that not only can induce interferon production (46), but can also
act directly in B cells (47) stimulating their growth and
immunoglobulin secretion (48, 49). Moreover, it was
demonstrated that IL-12 can be important to enhance the pIgR
expression on upper airways (50) and also that the nasal
immunization with this cytokine was able to increase antigen-
specific antibody response (14). Taking these data together, we can
hypothesize that the concomitant increase of IL-12p70 with IL-17A
observed in the COVID-19 group with SIgA could be an important
feature in order to promote an efficient stimulation of the immune
response in the airway’s mucosa, leading to SIgA production.
However, this association between the salivary levels of IL-12p70
and IL-17A, seemingly, is not the unique factor able to induce the
SIgA production in COVID-19 patients, since the COVID-19
group without SIgA did also present the same correlation.

In this sense, another interesting finding in the samples
collected after two months of SARS-CoV-2 infection in the
COVID-19 group with SIgA was not only the increased IL-13
levels but also the positive correlation between IL-13 and IL-17.
Although elevations in the plasma levels of both IL-13 and IL-17,
among other cytokines, were observed in symptomatic patients
infected by SARS-CoV-2 as compared to controls (51), higher IL-
13 levels in saliva of COVID-19 patients presenting SIgA than
COVID-19 patients without SIgA or control with SIgA has not
been reported before. It is broadly known that IL-13 is a cytokine
involved in the Th2 immune response and its elevation is closely
associated with several respiratory diseases, such as asthma,
COPD, polyposis, and allergy, notably involved in hypersecretion
of mucus in such diseases. However, it is also accepted that some
Th2-derived cytokines, including IL-13, are able not only to induce
IgA+ B cells proliferation, but also the differentiation of these cells
Frontiers in Immunology | www.frontiersin.org 7
into IgA-secreting plasma cells (52), which can promote the
increase of SIgA production in the mucosa.

In terms of viral infection, it was demonstrated that the
presence of innate lymphocyte cells (ILC), a type of immune
cell that shares many characteristics of the CD4+ T helper cell
but without adaptive immunity receptors/lymphoid lineage
expression, can induce the production of IL-13 (53, 54) when
it presents the Th2 profile (called ILC2) in the respiratory tract.
Concerning ILC2 cells, the number of these cells increased in the
mucosa. particularly in the intestines, lungs, and tonsils (55),
playing a prominent role in the maintenance of the epithelial cell
barrier since its depletion led to profound damages in the
epithelial barrier following H1N1 infection (56). Also, it was
demonstrated that in an H1N1 infection there was an
accumulation of ILC2 cells in the lung, regardless of viral load
(57). Regarding ILC cells profiles, as previously mentioned, ILC2
cells were associated with a Th2 immune profile characterized by
the production of IL-13, whereas type 1 ILC (ILC1) cells produce
interferon-gamma (IFN-g), type 3 ILC (ILC3) cells IL-17A, and
IL-22 (58). However, recently it was reported that ILC2 cells also
can transdifferentiate to an ILC3-like cell and produce IL-17,
which shows that the ILC2 cells in the airways mucosa present
remarkable plasticity and can contribute with ILC3 cells in IL-17
production following infection. Therefore, the positive
correlation between IL-13 and IL-17 could be putatively
attributed to ILC2 cells responses, which lead to the
improvement of the mucosa protective immune response,
particularly by eliciting the SIgA production.

Corroborating this suggestion that the association between
IL-13 and IL-17 can improve the conditions to promote SIgA
production in COVID-19 patients, including two months after
TABLE 2 | Significant correlations between analysis of SIgA and cytokines of COVID-19 and control with and without SIgA groups.

Group Correlation Pearson r p value

Control without SIgA IL-6 IL-12p70 0.626 0.019
IL-6 IFN-a 0.596 0.027
IL-12p70 IFN-a 0.824 0.001

Control with SIgA IL-6 IL-13 -0.661 0.044
IL-6 IFN-g -0.818 0.006
IL-10 IL-12p70 0.721 0.023
IL-10 IFN-a 0.794 0.009
IL-12p70 IFN-a 0.879 0.002
IL-13 IFN-b -0.721 0.023

COVID-19 without SIgA IL-6 IFN-g 0.841 0.001
IL-12p70 IL-13 0.812 0.001
IL-12p70 IL-17A 0.628 0.023
IL-12p70 IFN-a 0.749 0.004
IL-13 IFN-a 0.575 0.043

COVID-19 with SIgA SIgA IL-17A 0.427 0.001
SIgA IFN-g 0.334 0.025
IL-6 IFN-g 0.560 0.001
IL-10 IL-12p70 0.555 0.001
IL-12p70 IL-17A 0.334 0.035
IL-12p70 IFN-a 0.537 0.001
IL-13 IL-17A 0.335 0.034
IL-13 IFN-a 0.543 0.001
IL-13 IFN-g 0.420 0.007
IFN-a IFN-g 0.342 0.027
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SARS-CoV-2 infection, we found that the COVID-19 group
without SIgA did not show this same association. Instead, the
COVID-19 group without SIgA showed an exclusive positive
correlation between the salivary levels of IL-13 and IL-12p70.

According to the classical immunological knowledge, both in
physiologic or even some infection and inflammation situations,
when the immune response is driven to the Th1 profile (IL-12),
the Th2 profile (IL-13) is diminished, or even some cytokines
belonging to the same Th response can be preferentially
produced than others (59, 60). For instance. it was
demonstrated that during RSV responses, the IL-12 production
was negatively related to IL-13 production, that IL-12/IL-13 axis
was central to elicit an effective or innefective immune response
Frontiers in Immunology | www.frontiersin.org 8
to RSV infection and central to dictate the infection severity (61).
Furthermore, it has been pointed out that the control of IL-13
release is crucial to avoid or minimize the dangerous effect of this
cytokine in some diseases and infection processes in the airways
(50, 61–63) and the positive correlation between the levels of IL-
13 and IL-12p70 could represent a remarkable way to putatively
control the harmful IL-13 effects in COVID-19 patients.
Therefore, this association also could be responsible for the
lack of association between IL-13 and IL-17, two months after
SARS-CoV-2 infection, which led some COVID-19 patients to
not present salivary SIgA levels.

In an interesting finding two months after SARS-CoV-2
infection, COVID-19 group patients with SIgA, the salivary
A B

D

E F

G

C

FIGURE 3 | Comparison of the salivary cytokines ratios of IL-6/IL-10 (A), IL-12p70/IL-10 (B), IL-13/IL-10 (C), IL-17/IL-10 (D), IFN-a/IL-10 (E), IFN-b/IL-10 (F), and
IFN-g/IL-10 (G) between control without or with SIgA and COVID-19 without or with SIgA group. Values are presented in the median and interquartile range.
Statistical analysis: Kruskal Wallis test. The level of significance was established at 5% (*p < 0.05; **p < 0.01).
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level of IL-13 did not show a positive correlation with IL-17 and
IFN-g. This last association can favor the activation of an
effective immune response to SARS-CoV-2 infection since it
was reported that the concomitant production of IFN-g and IL-
13 in the airways increased the numbers of CD11c-positive cells
expressing MHC class II, as well as the co-stimulator molecule
CD86 (64), which can improve not only antigen-presentation but
also the activation of CD4+ T cell. Furthermore, Jartti and
collaborators (2014) (65) demonstrated that the presence of
viral infection on tonsils or nasopharyngeal mucosa induced
an “unexpected” strong correlation between IL-13 and the cluster
of antiviral cytokines, which included all types of interferons.

According to these authors, the concomitant secretion of IL-
13 and antiviral interferons can decrease inflammation and
injury due to the capacity of IL-13 in inhibiting the pro-
inflammatory factors synthesis by monocytes and macrophages
during viral infection (66). Based on the information presented
Frontiers in Immunology | www.frontiersin.org 9
above, we can putatively suggest that, the positive correlation
between IL-13 and IFN-a observed in both COVID-19 groups
two months after the SARS-CoV-2 infection was important to
control the inflammation and consequently minimize an
eventual tissue injury in the airways, and, also, the positive
correlation between IL-13 and IFN-g can help the activation of
the immune response leading to the SIgA production.

Beyond these observations, the COVID-19 group with SIgA
showed increased IFN-a and IFN-g levels as compared to the
COVID-19 group without SIgA, as well as a positive correlation
between these interferons. Higher IFN-a and IFN-g levels were
verified in patients with MERS-CoV (67) and SARS-CoV (9, 68),
and it was postulated that these elevations could be useful both to
improve the antigen presentation and also to develop a robust
antiviral response against these infections (44, 69).

Although the elevation of IFN-g in COVID-19 patients with
mild/moderate symptoms have already been demonstrated by
FIGURE 4 | Summarized representation of the main results found in the study. The boxes representing the cytokines are colored in black color indicating an
increase in their concentration when compared to the other groups. The arrows represent the correlations found in the study, in which positive correlations appear in
gray and negative in orange.
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our group (9), the present study found significant positive
correlations between the levels of IFN-g with SIgA, IFN-a, IL-
6, and IL-13 which were found in the same group in salivary
samples obtained two months after SARS-CoV-2 infection,
which we found particularly concerning.

It is noteworthy to point out that regardless of the type of
interferons [type-I (IFN-a and IFN-b); type II (IFN-g); or type-III
(IFN-l)], in a viral infection, these molecules are the main
antiviral cytokines that promote the infection control and the
ability to elicit an adaptive immune response to improve the viral
clearance (70). Regarding the coronavirus infection, mainly in
MERS-CoV and SARS-CoV infections, it was documented that
the elevation in interferons both type-I and type-II was able to
elicit an efficient host defense through its essential property of
inhibiting coronavirus replication (9, 70). In terms of SARS-CoV-
2 infection, the presence of the protective action of IFNs in the
upper airway is very important to promote viral clearance with or
without mild/moderate symptoms (71). Therefore, the increase in
salivary levels of IFN-a and IFN-g, especially in the COVID-19
group with SIgA, may elicit an effective immune response in the
mucosa of the upper airway leading to SIgA production.

In this respect, according to the literature, IFN-g is another
cytokine that, similar to IL-17, is capable to upregulate the pIgR
expression in the mucosal epithelial cells, which can drive to the
better secretion of SIgA in the mucosa surfaces. Furthermore, it
was reported that, in response to pro-inflammatory stimulus,
IFN-g can also up-regulate the expression of MHC class II
molecules on mucosal epithelial cells. It is also paramount to
highlight that the elevation of the IFN-g levels concomitant with
IL-6 by cells in the submandibular glands was able to create
conditions for IgA synthesis in this site (14).

Thus, its direct effect on MHC class II and pIgR expression on
the mucosal epithelial cells and the positive correlation with IL-6,
demonstrates that IFN-g is a very important cytokine to induce a
favorable molecular environment in the mucosa of the upper
airway to promote the secretion of SIgA (14). However, our
finding that the COVID-19 group without SIgA also presented a
positive correlation between IFN-g and IL-6, two months after
the SARS-CoV-2 infection, can reinforce the importance of the
other features formerly described in the response necessary to
guarantee SIgA production.

Interestingly, in the control group with SIgA, negative
correlations were observed between the levels of IFN-g and
IL-6, between IFN-b and IL-13, and between IL-13 and IL-6.
These findings are in agreement with the classical notion that, in
a physiologic situation, without infection and inflammation,
when the immune response is driven to the Th1 profile (IFN-
g), the Th2 profile (IL-6 and IL-13) is diminished. However, Th1
and Th2 cytokines may co-exist depending of the stimuli.
Therefore, we can suggest that in this asymptomatic group, the
presence of SARS-CoV-2 infection led to the activation of the
immune response in the mucosa of the upper airway and after
the viral clearance, confirmed by the PCR test negative, the
physiological conditions have been stabilized.

Another very interesting result is related to the positive
association between the salivary levels of IFN-a and IL-12p70,
regardless of the SARS-Cov-2 infection or SIgA production. In
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agreement with the literature, both IFN-a and IL-12 are
cytokines present in the The immune response and can induce
the IFN-g production in the oral cavity (72, 73). It was reported
that low doses of IFN-a are able to prime the mucosal immune
responses and that its functions are upstream of IL-12 action in
the Th1 response against different antigens (self and non-self)
and pathogens, mainly viruses in the oral cavity (74, 75).
Regarding IFN-a action, its presence can induce the
differentiation of monocytes to dendritic cells, when released
during antigen presentation to CD4 T lymphocytes. This not
only elicits signals in favor of Th1 immune response but also
promotes upregulation of high-affinity IL-12 receptors (IL-12b1/
b2), which leads the Th1 cells to be more responsive to IL-12
actions, as well as be useful to amplify the CD8 T lymphocyte
resistance to viral infections (74, 76, 77). Furthermore, IFN-a
also demonstrated a potential capacity to improve the
neutrophils’ antifungal activity in the oral cavity (78, 79).
Taking together all these data, our observation of the positive
correlation between IFN-a and IL-12p70 could be understood as
a hallmark of oral cavity immunity since all the volunteer groups
presented this same association.

Specifically in the control group without SIgA, the positive
correlation between IL-6 and IFN-a or IL-12p70 showed an
interesting regulation of the immune response in the oral cavity
since as formerly described, IL-6 is associated with Th2 immune
response whereas IFN-a and IL-12 are associated with Th1
immune response. These positive correlations can corroborate
our previous report that this association (Th1/Th2) is favorable to
create a mucosal environment more protective by guaranteeing
conditions to produce SIgA (14), particularly in response to the
presence of a pathogenic agent. Furthermore, IL-6 is a cytokine
that presents both pro and anti-inflammatory effects, depending
on the context. It is accepted that this cytokine can be produced
by a variety of cells, such as neutrophils, macrophages, fibroblasts,
keratinocytes, endothelial cells, and also that it is involved in
several biological processes, such as antibody production, T and B
cells activation and differentiation, hematopoiesis, vascular
permeability, and angiogenesis (80–82). In the oral cavity, IL-6
is a crucial cytokine involved in the host response against bacterial
infection (83) and together with IFN-a, is important in host
defense to influenza infection (84). So, the association between
these cytokines allows us to speculate that this immune profile is
necessary to create a protective environment improving the host
defenses against potential pathogens.

Alternatively to what is described above, the groups that
presented SIgA in saliva showed a positive correlation between
IL-10 and IFN-a and/or IL-12p70, which demonstrates that the
control of inflammation was elicited. It is broadly known that IL-
10 is one of the most important anti-inflammatory cytokines and
its production is crucial to regulate the inflammatory process
(85). In the present study, we show that salivary IL-10 levels were
increased in the COVID-19 groups (two months after the SARS-
CoV-2 infection) and also in the control group that presented
SIgA, demonstrating that IL-10 production was promoted and
necessary to control the inflammation induced by SARS-CoV-2
infection. To support this idea, we observed no difference in the
analysis of the ratio between salivary levels of IL-10 and the other
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pro-inflammatory cytokines, with the exception of a significant
decrease of IL-12p70/IL-10 and IFN-g/IL-10 ratios, which were
closely associated with the increase of IL-10. According to the
literature, the analysis of the ratio between pro and anti-
inflammatory cytokines is considered a keystone that can
clarify whether the inflammatory process is controlled (86),
and mitigating dangerous situations that occur when the
inflammation is not regulated, such as the cytokine storm in
SARS-CoV-2 infection (87). Therefore, we can putatively suggest
that IL-10 was able to control the inflammation in the COVID-
19 groups, even two months after the SARS-CoV-2 infection,
and in the control group with SIgA, which allows us to
hypothesize that this regulation contributed to these volunteers
being asymptomatic or presenting moderate/mild symptoms.

Taking our findings together, we were able to reinforce the
importance of IL-17 in the immune response of airways’mucosa
and show, for the first time, relevant characteristics and
associations between cytokines in COVID-19 groups, two
months after the SARS-CoV-2 infection, in producers or non-
producers of salivary specific-SIgA for SARS-CoV-2 virus.
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