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Abstract

Background and objective—We designed an algorithm to identify abdominal aortic aneurysm 

cases and controls from electronic health records to be shared and executed within the “electronic 

Medical Records and Genomics” (eMERGE) Network.

Materials and methods—Structured Query Language, was used to script the algorithm 

utilizing “Current Procedural Terminology” and “International Classification of Diseases” codes, 

with demographic and encounter data to classify individuals as case, control, or excluded. The 

algorithm was validated using blinded manual chart review at three eMERGE Network sites and 

one non-eMERGE Network site. Validation comprised evaluation of an equal number of predicted 

cases and controls selected at random from the algorithm predictions. After validation at the three 

eMERGE Network sites, the remaining eMERGE Network sites performed verification only. 

Finally, the algorithm was implemented as a workflow in the Konstanz Information Miner, which 

represented the logic graphically while retaining intermediate data for inspection at each node. 

The algorithm was configured to be independent of specific access to data and was exportable 

(without data) to other sites.

Results—The algorithm demonstrated positive predictive values (PPV) of 92.8% (CI: 86.8-96.7) 

and 100% (CI: 97.0-100) for cases and controls, respectively. It performed well also outside the 

eMERGE Network. Implementation of the transportable executable algorithm as a Konstanz 

Information Miner workflow required much less effort than implementation from pseudo code, 

and ensured that the logic was as intended.

Discussion and conclusion—This ePhenotyping algorithm identifies abdominal aortic 

aneurysm cases and controls from the electronic health record with high case and control PPV 

necessary for research purposes, can be disseminated easily, and applied to high-throughput 

genetic and other studies.
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Introduction

Electronic health records (EHRs) capture a large volume of clinical and physiologic data, 

and present a valuable resource for research. The “electronic Medical Records and 

Genomics” (eMERGE) Network was organized by the National Human Genome Research 

Institute (NHGRI) in 2007 to develop, disseminate, and apply approaches to combine DNA 

biorepositories with electronic medical record (EMR) systems for large-scale, high-

throughput genetic research with the ultimate goal of returning genomic testing results to 

patients in a clinical care setting [1]. To accomplish these goals in the eMERGE Network an 

important first step is to develop robust algorithms, so called “ePhenotyping” tools, to 

identify cases and controls directly from the EHR for studies on specific diseases and traits 

[2-12]. eMERGE ePhenotypes are developed by one or more primary sites, validated at 

secondary sites and verified at all other sites that implement them. The results of this 
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rigorous development effort are accurate, robust algorithms that may be used at other sites 

outside the eMERGE Network.

An abdominal aortic aneurysm (AAA) is a chronic progressively expanding dilatation of the 

abdominal aorta below the renal arteries and above the iliac artery bifurcation [13,14]. The 

Society of Vascular Surgery guidelines define an AAA as a dilatation greater than 3 cm in 

diameter. Most dilatations expand to exceed the threshold over time and there is an increased 

risk of rupture with catastrophic consequences when the diameter exceeds 5.5 cm [13,14].

In the present study we report the design of an ePhenotyping algorithm to identify cases with 

AAA and controls from the EHR. Structured Query Language (SQL) was used to script the 

algorithm utilizing “Current Procedural Terminology” (CPT) and “International 

Classification of Diseases” (ICD-9) codes as well as demographic and encounter data to 

classify individuals as case, control, or excluded. The algorithm was validated on a subset of 

individuals by manual chart review, and then implemented at six other eMERGE network 

sites and one site not part of the network. Finally, the algorithm was implemented as a 

workflow in the Konstanz Information Miner (KNIME) (http://www.knime.org/) [15,16].

Materials and Methods

Seven eMERGE Network institutions and Aurora Health System participated in this study 

(Table 1). All institutions obtained appropriate approval from their respective institutional 

review boards, and made use of a common data use agreement to enable data sharing 

between institutions [1]. Each institution used an EHR for documentation of routine clinical 

care linked to a research specimen biorepository. Each site's cohort of genotyped individuals 

are targeted for specific diseases and mixed with an appropriate number of controls (Table 

1).

Development and validation of an ePhenotyping algorithm for AAA

Figure 1 outlines the development process and validation logic for the AAA ePhenotyping 

algorithm. SQL was used to script the algorithm utilizing CPT and ICD-9 codes 

(Supplementary Material Table 1) as well as demographic and encounter data to classify 

individuals as case, control, or excluded. AAA cases were defined as having an AAA repair 

procedure (case Type 1), or at least one appropriate specialty encounter (vascular clinic) 

with a ruptured AAA (case Type 2), or at least two specialty encounters with an unruptured 

AAA (case Type 3) (Figure 2). Controls were neither cases nor those excluded, had an 

encounter within the past 5 years, and had never been assigned an ICD9 code of 441.*, 

where * is a 1 or 2 digit code. Individuals were excluded if 1) they had a rare heritable 

disease with aortic manifestation or thoracic aortic aneurysm (Supplementary Material Table 

1); 2) they were younger than 40 or older than 89 years, 3) they had a single encounter with 

a code without mention of rupture (441.4), or 4) they had not had an encounter within the 

past 5 years. Rare heritable diseases were excluded because the goal of the current study was 

to identify non-syndromic AAA [13,14]. Controls under 40 years might yet manifest an 

AAA, while cases under 40 years of age and without rare syndromic forms of aortic 

aneurysms are likely due to trauma. The full list of all CPT and ICD-9 codes used in the 
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algorithm is provided in Supplementary Material Table 1. The AAA algorithm can be 

downloaded from www.PheKb.org.

Evaluation of algorithm performance

Two different types of evaluation of the performance of the algorithm were carried out, 

namely verification and validation. Verification consisted in ensuring that the algorithm 

correctly identified cases, controls and those excluded by performing chart review knowing 

the algorithm call for a specific individual. Verification was used during algorithm 

development (Figure 1). Validation consisted in performing chart review blinded to the 

algorithm call. The expert opinions of trained chart reviewers or domain experts were then 

used to evaluate case positive predictive value (PPV), and control PPV. The standard formula 

for PPV was used with the gold standard defined as the expert opinion and test outcome 

considered to be the algorithm call.

Implementation in KNIME

KNIME is an open source integrated development environment (IDE) designed to facilitate 

drag-and-drop, graphical programming workflows [15-19]. Each workflow consists of many 

atomic functional units called nodes. Nodes complete a single, specific task, such as sorting 

a list or extracting some text. Execution can be initiated from any node, which will cause all 

prior nodes to execute. When a node is finished executing, that node's child will be executed 

next. If a node has more than one child, the children will be executed in parallel provided 

they are not dependent on some other process. The AAA workflow was divided into three 

sections: data load, phenotype processing, and output of results (Figure 3). The data load 

(Figure 4) and output sections were designed to be abstractions that could easily be 

customized by sites. The phenotype processing section utilizes filters, full text search, and 

aggregating nodes to isolate each group of cases, controls, and excluded individuals. Finally, 

each group is labeled, and the groups merged.

The interface for loading data into the algorithm was abstracted in that only the fields and 

their data types were specified, not the precise mechanism of obtaining the data from the 

local repository. Thus the data could be accessed by any number of I/O nodes provided by 

KNIME: direct SQL access to databases via database connector and database reader nodes, 

or from exported files in standard formats such as tab-delimited, comma separated variable 

or XML formats. Abstraction allows local sites to determine the mechanism of data access 

that conform to their rules and regulations. The AAA algorithm is based on use of ICD-9 

and CPT codes as well as encounter data. Three streams of data were specified: 1) 

identifiers, consisting of the cohort subject identifiers; 2) ICD-9 codes, consisting of subject 

identifiers, the date when the code was assigned, the ICD-9 code, the clinic where the code 

was assigned, and the age of the subject at the time; and 3) CPT codes, consisting of subject 

identifiers, the date when the code was assigned, the CPT code, the clinic where the code 

was assigned, and the age of the subject at the time. The algorithm filtered the ICD-9 and 

CPT code streams to restrict subsequent steps using the cohort identifiers. The identifier 

stream and filtering step could be redundant if the ICD-9 and CPT streams of data were 

provided as pre-filtered extracted files, but permitted the maximal flexibility of data input.
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Results and Discussion

eMERGE ePhenotyping algorithms are developed using an iterative approach where one of 

the sites, the primary site, proposes an algorithm and develops the first iteration [6]. One or 

more secondary sites then implement the algorithm and perform validation (Figure 1). If the 

algorithm performs poorly or the algorithm is difficult to implement, the primary site revises 

the algorithm using the comments from the secondary site and the process is repeated, until 

the algorithm performs to a desired criteria at both primary and secondary sites. Each 

iteration involves blinded validation. The AAA phenotype was proposed by the primary site 

Geisinger Health System (GHS), with Marshfield Clinic and Mayo Clinic acting as 

secondary sites. The algorithm was also implemented and validated at Aurora Health 

System, a site that is not a member of the eMERGE Network, demonstrating generalizability 

of the eMERGE algorithms.

Establishment of diagnostic criteria

The objective of the study was to identify individuals with AAA not due to trauma or rare 

heritable diseases for genetic studies [13,14]. At GHS, the domain experts on AAA are the 

vascular surgeons; working closely together we elucidated their workflow and defined 

criteria for determining individuals who are suspected of having, or have, an AAA. Equally 

important was defining the criteria for excluding individuals who had AAAs due to 

identifiable conditions that would be phenocopies, i.e., individuals who had the same 

phenotype, but also had other aortic involvement such as thoracic aneurysm or dissection.

Three types of cases were defined in order of decreasing certainty: Type 1: individuals with 

a CPT code for AAA repair; Type 2: individuals who had an ICD-9 code for ruptured AAA; 

and, Type 3: individuals who had two ICD-9 codes on separate dates in one or more 

specialty clinics tasked with the diagnosis or treatment of AAA at the healthcare site, e.g., 

vascular surgery at GHS. Single and non-specialty clinic encounters were excluded because 

of the likelihood of a false-positive due to preliminary, unconfirmed diagnosis or miscoding.

Development of the algorithm flowchart

Criteria and flow logic were developed iteratively and formalized into a flowchart (Figure 2). 

Candidate EMR records were identified by searching for the ICD-9 codes for AAA (441.3 

and 441.4). Individuals with known rare heritable disorders with aneurysm manifestations 

such as the Marfan syndrome (ICD-9 759.82), Ehlers-Danlos syndrome (ICD-9 756.83), 

Moyamoya disease (ICD-9 437.5) or fibromuscular dysplasia (ICD-9 447.8), were excluded 

(Supplementary Material Table 1). In addition, we excluded individuals with diagnoses of 

other aortic aneurysms or aortic ruptures, or of generalized arterial dissections 

(Supplementary Material Table 1). Although not an exhaustive list of phenocopies, these 

comprise the most prevalent disorders and are also the ones with ICD-9 codes. We also 

excluded anyone with an AAA code at the age of 40 or younger since these are likely due to 

some pathogenic mechanism other than that of most AAAs, such as trauma or an 

unrecognized syndromic form.
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Individuals over 40 years of age with repair codes for AAA (Supplementary Material Table 

1) were identified as Type 1 cases. Next, individuals with ICD-9 codes for ruptured AAA 

(444.3) were identified as Type 2 cases. Among the remaining individuals, records were 

searched for the presence of two or more AAA diagnosis codes assigned on different visits 

at an appropriate clinic (vascular surgery at GHS) and the individuals identified as Type 3 

cases. The requirement for 2 or more diagnosis codes was to ensure that working hypothesis 

diagnoses or referral diagnoses, that were not confirmed, were excluded.

After excluding phenocopies and young individuals, and identifying the cases, the remaining 

individuals were subjected to a series of filters designed to ensure that controls have a low 

probability of having AAA. Since AAA is a late age-at-onset disease [13,14], it is nearly 

impossible to ensure that controls truly will never have an AAA. First, we required that 

individuals had at least 5 years of follow-up in the EMR to increase the likelihood that 

occult AAAs could be detected. Finally, individuals who had any remaining ICD-9 codes 

related to aortic aneurysm, including single occurrences of ICD-9 for AAA, were excluded. 

Individuals who passed all exclusion filters and were not AAA cases were assigned control 

status (Figure 2). In genetic studies it is important to make sure that cases are true cases and 

controls are free of the disease under study. The filters used here provided a stringent 

mechanism for identifying true cases and controls and yielded a better study group than 

using diagnosis and AAA repair procedure codes alone.

Performance of the algorithm

The algorithm was developed as part of the eMERGE Network activity, which emphasizes 

the integration of genomic data with EMRs. GHS contributed 3,111 individuals who were 

genotyped using high-density genotyping arrays to the collection of eMERGE genotyped 

biobank individuals (Table 1). To identify AAA cases and controls for genetic analyses we 

restricted the search to these 3,111 individuals and found 699 cases and 1,591 controls. 

There were 171 individuals that were excluded due to having known rare heritable disorders 

with aneurysm manifestation, or with thoracic or thoracoabdominal aortic aneurysms. The 

age criterion (younger than 40) excluded 559 individuals. Only 31 individuals were excluded 

due to no follow-up visits within the health system (5-year follow-up criterion) and 60 

individuals were excluded due to not having been seen at a specialty clinic. The algorithm 

was validated on a randomly selected subset of individuals (n=100; 50 predicted cases and 

50 predicted controls) by 2-fold manual chart review (each chart was reviewed by two 

independent reviewers) and demonstrated a case PPV of 94% and control PPV of 100% 

(Table 2). Among the 50 charts of predicted cases reviewed there were three false positives 

among the AAA cases identified by the algorithm. Two of these false positives were initially 

diagnosed as AAA as a result of having an abdominal aortic diameter of greater than 3 cm 

on an ultrasound, but were later changed after a computerized tomography (CT) scan 

showed that the size was actually less than 3 cm; these individuals had ectactic aortae and 

could be considered pre-aneurysmal. The other false positive was a complex aneurysm that 

was mostly in the ileac artery, but coded with both the 442.4 and 441.4 ICD-9 codes.

We also applied the AAA algorithm to the EMRs of all individuals consented for the GHS 

MyCode™ biobank. At the time of execution, the biobank comprised 29,770 individuals, 

Borthwick et al. Page 6

Int J Biomed Data Min. Author manuscript; available in PMC 2016 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the algorithm identified 1,155 AAA cases and 17,523 controls. We excluded 337 

individuals based on predisposing genetic conditions, 109 individuals without a visit within 

the past 5 years and 10,398 individuals based on age.

The algorithm was then tested independently at the Marshfield Clinic, which uses an 

internally developed CattailsMD EMR system, and Mayo Clinic, which uses GE Centricity, 

and implemented at four other eMERGE Network sites. At Marshfield Clinic the case PPV 

was 100% and control PPV was 100% indicating that there were no false positives in the 

case or control groups (Table 2). At Mayo Clinic the case and control PPV were 88% and 

100%, respectively. At Mayo Clinic there were 6 false positives among the 50 cases 

reviewed manually (Table 2). Most of the false positive cases had AAA diagnosis codes, 

with a dilated abdominal aorta (aortic ectasia), but the size did not meet the formal definition 

of AAA (>3 cm) [13,20]. Prior studies suggest that many, if not most, individuals with 

dilated abdominal aortas subsequently develop AAA [21]. The algorithm therefore detected 

“pre-aneurysmal manifestations.”

Finally, the algorithm was implemented and validated at Aurora Health System, which is not 

a member of the eMERGE Network (Table 2). The algorithm performed very well at Aurora 

Health System achieving the case and control PPV of 96 and 100, respectively. There were 2 

false positives among the 50 cases reviewed manually (Table 2). One of them had a popliteal 

artery aneurysm and the other patient had a pre-aneurysmal aortic dilatation, which was not 

confirmed in subsequent imaging studies using computerized tomography.

Overall, the algorithm demonstrated PPV of 92.8% (CI: 86.8–96.7) and 100% (CI: 97.0–

100) for cases and controls, respectively.

The counts for identified AAA cases and controls using the algorithm at eight different 

institutions are shown in Table 1, and the validation results are summarized in Table 2. In 

total, there were 1,490 cases and 38,393 controls with biobanked blood samples. Of these 

1,234 cases and 22,382 controls already have genome-wide data available for genetic 

studies.

We next looked at the distribution of AAA cases in the different case types in the three 

institutions with the largest number of AAA cases (Table 3) and how well the algorithm 

performed in identifying them. As can be seen in Table 3 at GHS, a substantial proportion of 

cases were Type 1 cases with AAA repair codes (42.2%), whereas at Aurora Health System, 

the majority of the cases were of Type 3 (97.3%). Table 4 shows a confusion matrix 

depicting the categorization of results from these three sites. Most false positives detected 

during the validation process were erroneously categorized as “case, Type 3.” These were 

caused by cases that required at least two visits to the vascular clinic before they were 

diagnosed as not having an AAA. It is possible that these false positives could be addressed 

by adding natural language processing (NLP) to determine the aneurysm size.

Each eMERGE site implements an ePhenotyping algorithm on a cohort of individuals that 

are targeted for certain diseases. The GHS cohort was selected for AAA and obesity; 

therefore it may not be surprising that we achieved a high PPV. However, by validating the 

algorithm at Mayo and Marshfield Clinics, which have cohorts that are targeted for 
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cardiovascular and eye diseases, respectively, and achieving similar results shows that the 

algorithm performs well in other biobanks. Furthermore, by achieving excellent results at 

Aurora Health System, whose cohort is not selected for any specific disease, we demonstrate 

that the algorithm is universally applicable.

KNIME workflow implementation to improve transportability of the ePhenotyping algorithm

Transportability must be considered when designing an ePhenotyping algorithm that is 

meant to be executed at different clinical sites. Each potential site may have a different EMR 

system with different access mechanisms and names for data objects, therefore algorithms 

must be shared in a generic and portable way. Typically, eMERGE sites exchange algorithm 

pseudocode, allowing each site to implement the algorithm as needed for its environment. 

This can be very time and labor intensive, and may produce unintended results if the 

pseudocode is interpreted incorrectly.

As an alternative to this practice, we determined the feasibility of using a portable 

executable algorithm in the form of a KNIME workflow. A KNIME workflow can be 

exported in a generic way (without data or site-specific identifiers), and easily imported into 

a KNIME environment at another site. Each site must extract and transform data from its 

EHR data repository so that it conforms to KNIME workflow specifications, allowing the 

algorithm to be executed with little to no customization (Figures 1 and 3). This helps to 

ensure that the logic of the algorithm is unaltered from its original state, therefore 

eliminating unintended results based on misinterpretation of pseudocode.

The eMERGE group at Northwestern University tested the remote implementation of the 

KNIME workflow for the AAA ePhenotype in their Epic EMR system. Although they found 

it to be easy to implement, they had to make a minor adjustment to the KNIME workflow to 

make it compatible with their site. The algorithm requires Type 2 and Type 3 cases to have 

been seen by a specialty clinic that is responsible for diagnosing AAA. For GHS, this 

specialty clinic is the vascular clinic, and the KNIME workflow was preset to allow for this 

requirement. At Northwestern University, the responsible clinics also included cardiology 

and interventional radiology, so the workflow had to be edited to accept this difference. This 

could have been overcome by designing the KNIME workflow to allow the responsible 

clinic to be entered as a variable.

Implementation of the algorithm at other sites was not technically demanding, but effective 

implementation depended on knowledge of the clinical workflow at that institution. 

Tabulation of the ICD-9 codes by clinic type can prove useful in identifying the relevant 

clinic(s). Some sites had prior experience implementing algorithms that, like the AAA 

algorithm, relied predominantly on ICD-9 codes and were described in pseudocode and 

flowcharts. They found the KNIME implementation to be substantially less work. The most 

time-consuming aspect of implementation was validation or verification, i.e., manual 

checking of records to ensure that the algorithm performed correctly.

Other possible solutions to the problem of portability of ePhenotyping algorithms have been 

suggested in the literature. The Shared Health Research Information Network (SHRINE) 

tool [22] of the Informatics for Integrating Biology & the Bedside (i2b2), an NIH-funded 
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National Center for Biomedical Computing, and the Virtual Data Warehouse (VDW) of the 

HMO Research Network (HMORN) [23] both offer the ability to share data with other 

members of a consortium by creating a federated database. Algorithms are then built to 

process the shared data, and can be distributed without preparation or alteration. Initial setup 

and maintenance of these databases have a high cost. All data must be transformed to an 

appropriate schema, loaded into the federated database, and maintained overtime. The 

expertise to perform such functions needs to be retained on each site's staff. ePhenotyping 

algorithms have also been distributed as National Quality Forum (NQF) Quality Data Model 

(QDM) [24] documents with certain levels of success [25]. Like federated databases, much 

preliminary work must be performed to create an infrastructure to allow for processing of 

these documents. We decided against these solutions in favor of reducing overhead and 

keeping project costs to a minimum.

Conclusion

We designed a robust ePhenotyping algorithm and implemented it as a KNIME workflow to 

identify AAA cases and controls from the EMR with high case and control PPV necessary 

for research purposes. The resulting algorithm yields cases and controls with high 

confidence, since AAA due to trauma or rare heritable diseases, phenocopies, and working 

diagnoses are excluded. The KNIME workflow makes the algorithm easily transportable 

from one institution to another even with different EMR systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of ePhenotyping. The diagram outlines the processes for phenotype algorithm 

development, validation and implementation as a KNIME workflow, as well as the 

interactions between the various study sites and investigators outside the eMERGE Network. 

AAA, abdominal aortic aneurysm; EHR, Electronic Health Record; eMERGE, electronic 

MEdical Records and GEnomics Network (http://www.gwas.org); KNIME, Konstanz 

Information Miner (http://www.knime.org/); PheKB, Phenotype KnowledgeBase available at 

http://www.phekb.org, an online collaborative repository for building, validating, and 

sharing electronic phenotype algorithms and their performance characteristics.
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Figure 2. 
ePhenotyping algorithm for the identification of cases with abdominal aortic aneurysms 

(AAA) and appropriate controls for research studies. For codes used in the algorithm, see 

Supplementary Material Table 1.
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Figure 3. 
KNIME representation of the abdominal aortic aneurysm (AAA) ePhenotyping algorithm. 

(A) Global overview of the algorithm. The inputs on the left are abstract representations of 

the data required by the algorithm. The data fields are enumerated in each “Table Creator” 

node. Each site can supply the input data via any of KNIME's data reader nodes, provided all 

fields are present, named according to the templates and of the correct data type. The 

algorithm is encapsulated in the central meta node. (B) Expansion of the meta node, showing 

individual KNIME nodes with annotation and graphic background to facilitate 

comprehension of algorithm steps. (C) Enlarged top portion of (B) for readability.
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Figure 4. 
Entity relational diagram (ERD) of the input for the AAA ePhenotyping algorithm.

Borthwick et al. Page 14

Int J Biomed Data Min. Author manuscript; available in PMC 2016 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Borthwick et al. Page 15

Ta
b

le
 1

C
as

e 
co

nt
ro

l c
ou

nt
s 

an
d 

de
m

og
ra

ph
ic

s 
at

 d
if

fe
re

nt
 s

ite
s.

B
io

ba
nk

A
A

A
 C

as
es

C
on

tr
ol

s

C
oh

or
t

P
ar

ti
ci

pa
nt

s
Ta

rg
et

 d
is

ea
se

s†
N

Se
x

A
ge

§  
(y

ea
rs

)
Se

x
A

ge
§  

(y
ea

rs
)

N
*

%
 M

al
e

M
ea

n
SD

N
%

 M
al

e
M

ea
n

SD

A
ur

or
a

17
,9

02
25

6
80

73
10

.0
4

16
,0

11
44

63
15

.3
7

G
H

S
3,

11
1

A
A

A
 a

nd
 o

be
si

ty
69

9
81

71
7.

43
1,

59
1

47
62

10
.8

6

G
ro

up
 H

ea
lth

3,
52

8
A

lz
he

im
er

's
 d

is
ea

se
17

8
72

80
5.

16
2,

49
0

44
78

8.
94

M
ar

sh
fi

el
d

4,
98

7
E

ye
 d

is
ea

se
s

10
0

71
74

8.
48

3,
92

8
38

72
10

.4
6

M
ay

o
10

,0
62

C
ar

di
ov

as
cu

la
r 

di
se

as
es

17
8

81
73

7.
65

4,
93

0
54

67
10

.9
0

M
ou

nt
 S

in
ai

6,
54

5
K

id
ne

y 
di

se
as

es
30

94
76

7.
58

5,
32

4
41

63
11

.9
8

N
or

th
w

es
te

rn
4,

93
7

Ty
pe

 2
 d

ia
be

te
s 

an
d 

ca
nc

er
11

73
65

6.
98

3,
96

7
17

54
14

.6
0

V
an

de
rb

ilt
9,

58
4

C
ar

di
ov

as
cu

la
r 

di
se

as
es

38
58

78
7.

71
15

2
76

78
8.

59

To
ta

l
60

,6
56

1,
49

0
38

,3
93

* Fo
r 

eM
E

R
G

E
 s

ite
s 

th
e 

nu
m

be
r 

of
 b

io
ba

nk
 p

ar
tic

ip
an

ts
 is

 w
ith

 h
ig

h-
de

ns
ity

 g
en

om
e-

w
id

e 
da

ta
 [

1]
, a

nd
 f

or
 A

ur
or

a,
 th

e 
nu

m
be

r 
is

 th
e 

to
ta

l n
um

be
r 

of
 c

on
se

nt
ed

 p
at

ie
nt

s 
w

ith
 a

 b
lo

od
 s

am
pl

e 
in

 th
e 

bi
ob

an
k.

† A
pp

ro
pr

ia
te

 c
on

tr
ol

s 
fo

r 
th

e 
di

se
as

es
 m

en
tio

ne
d 

w
er

e 
al

so
 in

cl
ud

ed
 in

 th
e 

ge
no

m
e-

w
id

e 
da

ta
 s

et
s.

§ A
ge

, a
ge

 a
t d

ia
gn

os
is

 f
or

 c
as

es
, a

nd
 a

ge
 a

t e
nr

ol
lm

en
t f

or
 c

on
tr

ol
s.

 A
A

A
, A

bd
om

in
al

 A
or

tic
 A

ne
ur

ys
m

; G
H

S,
 G

ei
si

ng
er

 H
ea

lth
 S

ys
te

m
.

Int J Biomed Data Min. Author manuscript; available in PMC 2016 April 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Borthwick et al. Page 16

Ta
b

le
 2

Su
m

m
ar

y 
of

 c
ha

rt
 r

ev
ie

w
 r

es
ul

ts
 a

t 
fo

ur
 p

ar
ti

ci
pa

ti
ng

 s
it

es

M
an

ua
l c

ha
rt

 r
ev

ie
w

G
H

S*
M

ay
o 

C
lin

ic
*

M
ar

sh
fi

el
d 

C
lin

ic
*

A
ur

or
a 

H
ea

lt
h†

C
as

e
C

on
tr

ol
To

ta
l

C
as

e
C

on
tr

ol
To

ta
l

C
as

e
C

on
tr

ol
To

ta
l

C
as

e
C

on
tr

ol
To

ta
l

E
H

R
 p

re
di

ct
io

n

C
as

e
47

3
50

44
6

50
25

0
25

48
2

50

C
on

tr
ol

0
50

50
0

50
50

0
22

22
0

50
50

To
ta

l
47

53
10

0
44

56
10

0
25

22
47

48
52

10
0

C
as

e 
PP

V
94

88
10

0
96

C
on

tr
ol

 P
PV

10
0

10
0

10
0

10
0

* T
ra

in
ed

 c
ha

rt
 r

ev
ie

w
er

s.

† C
lin

ic
ia

n 
ch

ar
t r

ev
ie

w
er

s.

G
H

S,
 G

ei
si

ng
er

 H
ea

lth
 S

ys
te

m
; E

H
R

, e
le

ct
ro

ni
c 

he
al

th
 r

ec
or

d.

Int J Biomed Data Min. Author manuscript; available in PMC 2016 April 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Borthwick et al. Page 17

Ta
b

le
 3

D
is

tr
ib

ut
io

n 
of

 A
A

A
 c

as
e 

ty
pe

s 
1,

 2
 a

nd
 3

 a
t G

H
S,

 A
ur

or
a 

H
ea

lth
 S

ys
te

m
 a

nd
 M

ay
o 

C
lin

ic
 b

io
ba

nk
s.

C
as

e 
T

yp
e

G
H

S
A

ur
or

a
M

ay
o

N
%

N
%

N
%

1
29

5
42

.2
0

0
72

40
.4

2
16

2.
3

7
2.

7
0

0

3
38

8
55

.5
24

9
97

.3
10

6
59

.4

A
ll

69
9

10
0

25
6

10
0

17
8

10
0

B
re

ak
do

w
n 

of
 th

e 
A

A
A

 c
as

es
 in

to
 th

os
e 

w
ho

 w
er

e 
op

er
at

ed
 f

or
 A

A
A

 (
ca

se
 T

yp
e 

1)
, w

ho
 h

ad
 a

 r
up

tu
re

d 
A

A
A

 (
ca

se
 T

yp
e 

2)
, o

r 
w

ho
 h

ad
 a

t l
ea

st
 tw

ic
e 

an
 I

C
D

-9
 c

od
e 

fo
r 

A
A

A
 in

 th
ei

r 
E

H
R

 (
ca

se
 T

yp
e 

3)

Int J Biomed Data Min. Author manuscript; available in PMC 2016 April 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Borthwick et al. Page 18

Table 4

Distribution of false positive AAA case types 1, 2 and 3 at GHS, Aurora Health System and Mayo Clinic 

based on manual chart review validation.

Case Type GHS N Aurora N Mayo N Total N

1 0 0 2 2

2 1 0 0 1

3 2 2 4 8

All 3 2 6 11
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