
Anipose: A toolkit for robust markerless 3D pose estimation

Pierre Karashchuk1, Katie L. Rupp2, Evyn S. Dickinson2, Sarah Walling-Bell2, Elischa
Sanders4, Eiman Azim4, Bingni W. Brunton3,5,*, John C. Tuthill2,5,6,*

1Neuroscience Graduate Program, University of Washington, Seattle, WA, USA

2Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA

3Department of Biology, University of Washington, Seattle, WA, USA

4Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA

5Senior author

6Lead contact

SUMMARY

Quantifying movement is critical for understanding animal behavior. Advances in computer vision

now enable markerless tracking from 2D video, but most animals move in 3D. Here, we introduce

Anipose, an open-source toolkit for robust markerless 3D pose estimation. Anipose is built on

the 2D tracking method Deep-LabCut, so users can expand their existing experimental setups

to obtain accurate 3D tracking. It consists of four components: (1) a 3D calibration module,

(2) filters to resolve 2D tracking errors, (3) a triangulation module that integrates temporal and

spatial regularization, and (4) a pipeline to structure processing of large numbers of videos. We

evaluate Anipose on a calibration board as well as mice, flies, and humans. By analyzing 3D leg

kinematics tracked with Anipose, we identify a key role for joint rotation in motor control of fly

walking. To help users get started with 3D tracking, we provide tutorials and documentation at

http://anipose.org/.

Graphical Abstract

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
*Correspondence: bbrunton@uw.edu (B.W.B.), tuthill@uw.edu (J.C.T.).
AUTHOR CONTRIBUTIONS
P.K., B.W.B., and J.C.T. conceived the project. P.K. designed, implemented, and evaluated the Anipose toolkit. K.L.R. wrote the
Anipose documentation, contributed Tensorpack data augmentation to DeepLabCut, and wrote key parts of the Anipose visualizer.
E.S.D. and S.W.-B. collected the ChArUco and fly datasets. E.S. and E.A. collected the mouse dataset. P.K., B.W.B., and J.C.T. wrote
the paper, with input from K.R., E.S.D., S.W.-B., E.S., and E.A.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2021.109730.

DECLARATION OF INTERESTS
P.K. is a founder and the Chief Science Officer of Evolution Devices, a company that uses motion tracking to help people with
walking disorders.

INCLUSION AND DIVERSITY
One or more of the authors of this paper self-identifies as an underrepresented ethnic minority in science. One or more of the authors
of this paper self-identifies as a member of the LGBTQ+ community.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2021 October 08.

Published in final edited form as:
Cell Rep. 2021 September 28; 36(13): 109730. doi:10.1016/j.celrep.2021.109730.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://anipose.org/
https://creativecommons.org/licenses/by/4.0/

In brief

Karashchuk et al. introduce Anipose, a Python toolkit that enables researchers to track animal

poses in 3D. Anipose performs 3D calibration, filters tracked keypoints, and visualizes resulting

pose data. This open-source software and accompanying tutorials facilitate the analysis of 3D

animal behavior and the biology that underlies it.

INTRODUCTION

Tracking body kinematics is key to answering questions in many scientific disciplines. For

example, neuroscientists quantify animal movement to relate it to brain dynamics (Mathis

and Mathis, 2020; Seethapathi et al., 2019), biomechanists quantify the movement of

specific body structures to understand their mechanical properties (Alexander, 2017; Bender

et al., 2010), social scientists quantify the motion of multiple individuals to understand their

interactions (Schwager et al., 2008; Halberstadt et al., 2016), and rehabilitation scientists

quantify body movement to diagnose and treat disorders (Souza, 2016; Chiba et al., 2005;

Rinehart et al., 2006). In all of these disciplines, achieving rapid and accurate quantification

of animal pose is a major bottleneck to scientific progress.

While it is possible for human observers to recognize body movements, scoring behaviors

by eye is laborious and often fails to detect differences in the rapid, fine-scale movements

that characterize many behaviors. Methods for automated tracking of body kinematics from

video have existed for many years, but they typically rely on the addition of markers to

Karashchuk et al. Page 2

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

identify and disambiguate body parts. Although such methods can achieve very precise

pose estimation (Marshall et al., 2021), the use of markers is often impractical, particularly

when studying natural behaviors in complex environments, tracking multiple body parts, or

studying small animals. Thus, there is a pressing need for methods that perform automated,

markerless tracking of body kinematics.

Recent advances in computer vision and machine learning have dramatically improved

the speed and accuracy of markerless body-pose estimation (Mathis and Mathis, 2020).

There are now a number of tools that apply these methods to track animal movement

from 2D videos, such as DeepLabCut (Mathis et al., 2018), SLEAP (Pereira et al., 2020),

DeepPoseKit (Graving et al., 2019), among others (Cao et al., 2021; Machado et al.,

2015; https://github.com/kristinbranson/APT). These software packages allow users to label

keypoints, train convolutional neural networks, and apply them to identify keypoints from

videos; several toolkits also include auxiliary tools, such as visualizing and filtering the

tracked keypoints. Among them, DeepLabCut is the most widely used (Mathis et al., 2020).

While tracking of animal movement from 2D video is useful for monitoring specific body

parts, full body-pose estimation, and measurement of complex or subtle behaviors require

tracking in three dimensions. Multiple tools have emerged for 3D tracking and body-pose

estimation, including DANNCE (Dunn et al., 2021), FreiPose (Zimmermann et al., 2020),

DeepFly3D (Günel et al., 2019), and OpenMonkeyStudio (Bala et al., 2020). However, these

tools use fundamentally distinct network architectures, workflows, and user interfaces from

popular 2D tracking methods. Out of the existing 2D tracking tools, only DeepLabCut (Nath

et al., 2019) supports triangulation with up to 2 cameras. However, three or more cameras

are often required to resolve pose ambiguities, such as when one body part occludes another.

Thus, there is a need for additional tools that allow users to extend their existing 2D tracking

setups to achieve robust 3D pose estimation while preserving their established workflows.

Here, we introduce Anipose (a portmanteau of “animal” and “pose”), a toolkit to quantify

3D body kinematics by integrating DeepLabCut tracking from multiple camera views.

Anipose consists of a robust calibration module, filters to further refine 2D and 3D tracking,

and an interface to visualize and annotate tracked videos (link to example here). These

features allow users to analyze 3D animal movement by extracting behavior and kinematics

from videos in a unified software framework. Below, we demonstrate the value of 3D

tracking with Anipose for analysis of mice, fly, and human body kinematics (Figure 1).

Applying 3D tracking to estimate joint angles of walking Drosophila, we find that flies move

their middle legs primarily by rotating their coxa and femur, whereas the front and rear

legs are driven primarily by femur-tibia flexion. We then show how Anipose can be used to

quantify differences between successful and unsuccessful trajectories in a mouse reaching

task. Finally, we visualize how specific leg joint angles map onto a manifold of human

walking.

We designed Anipose to make 3D tracking accessible for a broad community of scientists.

Because it is built on DeepLabCut, Anipose allows users to easily upgrade from 2D to

3D tracking, as well as take advantage of the DeepLabCut community, documentation,

and continued support. To help users get started, we provide in-depth tutorials and

Karashchuk et al. Page 3

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kristinbranson/APT

documentation at http://anipose.org. The release of Anipose as free and open-source Python

software facilitates adoption, promotes ongoing contributions by community developers, and

supports open science.

RESULTS

We implement 3D tracking in a series of steps: estimation of calibration parameters

from calibration videos, detection and refinement of 2D joint keypoints, triangulation and

refinement of keypoints to obtain 3D joint positions, and computation of joint angles (Figure

2). In addition to the processing pipeline, the key innovations of Anipose are a robust 3D

calibration module, spatiotemporal filters that refine pose estimation in both 2D and 3D,

and a visualization incorporating videos, tracked keypoints, and behavioral annotations in

one interface. We evaluated the calibration and triangulation modules without filters by

testing their ability to accurately estimate lengths and angles of a calibration board with

known dimensions (Figure 1A) and to track the hand of a mouse reaching for a food pellet

(Figure 1B). We then evaluated how filtering improves estimation in 3D of position and time

derivative of walking flies (Figure 1C) and humans (Figure 1D). Representative examples of

tracking from each dataset are shown in Video S1.

Robust calibration of multiple camera views

An essential step in accurate 3D pose estimation is precise camera calibration, which

determines the relative location and parameters of each camera (i.e., the focal length

and distortions). We implemented an automated procedure that calibrates the cameras

from simultaneously acquired videos of a standard calibration board (e.g., checkerboard

or ChArUco board) moved by hand through the cameras’ fields of view (Figure 2A).

We recommend the ChArUco board because its keypoints may be detected even with

partial occlusion, and its rotation can be determined uniquely from multiple views. The

pipeline starts by detecting keypoints on the calibration board automatically using OpenCV

(Bradski, 2000), based on the board’s geometric regularities (e.g., checkerboard grid pattern,

specific black and white markers). These board detections are used first to initialize camera

calibration parameters from arbitrary positions through a greedy algorithm that adds edges

between cameras one by one until it reaches a fully connected tree (Figure S1A).

Although some tracking tools (e.g., Cao et al., 2021; Dunn et al., 2021) stop at the

initial estimate of camera parameters based on estimated calibration board orientation from

different cameras, we found that this is often not sufficient to obtain accurate camera

calibrations, especially when there are few frames with a detected board. To resolve this

issue, we implemented procedures that optimize the camera calibration parameters to

minimize the reprojection error of the calibration board keypoints, referred to as bundle

adjustment in the camera registration literature (Triggs et al., 2000). We implemented

bundle adjustment with standard (least-squares) as well as robust losses (Huber and

soft L1). Furthermore, we developed an iterative procedure we term “iterative bundle

adjustment,” which performs bundle adjustment in multiple stages, using only a random

subsample of detected keypoints points in each stage (see STAR Methods for a detailed

description). This procedure automatically tunes the outlier thresholds and minimizes the

Karashchuk et al. Page 4

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://anipose.org/

impact of erroneous keypoint detections and bad camera initialization. Each of these bundle

adjustment procedures improves the reprojection error from the initial estimate (Figure

S1B). Iterative bundle adjustment produced marginally better results, but with no parameter

tuning, so we use this as the default in Anipose.

Accurate reconstruction of physical lengths and angles in 3D

An important test of any calibration method is whether it can accurately reconstruct an

object with known dimensions. We evaluated the Anipose calibration and triangulation

toolkit by asking whether it could estimate the lengths and angles of a precisely

manufactured ChArUco board (Garrido-Jurado et al., 2014).

We first compared the accuracy of tracking the 9 corners of the ChArUco board (Figure 3A)

with three methods: manual annotation, neural network detections, and OpenCV detections

(example detections in Figure 3B). Although manual annotations are typically assumed to

be the ground truth in tracking animal kinematics, we started by assessing the reliability of

manual annotations relative to high-precision, sub-pixel resolution keypoint detection based

on the geometry of the ChArUco board with OpenCV (Bradski, 2000; Garrido-Jurado et al.,

2014). Relative to the OpenCV points, the manual keypoint annotations had a mean error

of (0.52, −0.75) pixels and standard deviation of (2.57, 2.39) pixels, in the (x, y) directions,

respectively (Figure 3C). These observations provide a useful baseline of manual annotation

accuracy.

We evaluated the accuracy of reconstructing ChArUco board lengths and angles as estimated

by three methods: manual keypoint annotations, OpenCV keypoint detections, and neural

network keypoint detections (see STAR Methods for detailed descriptions). As our ground

truth dataset, we chose the known physical lengths and angles between all pairs of 9 corners

on the ChArUco board. The ChArUco board was manufactured with precise tolerance (<2

μm), which allowed us to evaluate the accuracy of lengths and angles from manual keypoint

annotations and OpenCV keypoint detections, which are commonly taken to be the ground

truth. As expected, OpenCV detections had the lowest error in length and angle, as they

leveraged prior knowledge of the ChArUco board geometry to make high-precision corner

estimates (Figure 3D). Surprisingly, neural network (trained with DeepLabCut) predictions

had a lower error than manual annotations, despite the network itself being trained on

manual annotations. More than 90% of poses estimated by Anipose had an error of less than

20 μm in length and 1 degree in angle, relative to the true dimensions of the ChArUco board

(Figure 3D). These results demonstrate the efficacy of camera calibration with Anipose and

serve as useful bounds of expected performance.

Animal tracking in 3D

We evaluated the triangulation of markerless tracking on three different animal datasets

(Figures 3E–3G). For each dataset, we computed the error of estimated joint positions and

angles on labeled animals withheld from the training data. The error in estimated joint

angles was <16° in over 90% of frames, and <10° in over 75% of frames. Furthermore, the

error in the estimated joint position was <18 pixels (approximately 1.6, 0.14, and 86 mm

for mouse, fly, and human datasets, respectively) in over 90% of frames and <12 pixels

Karashchuk et al. Page 5

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(approximately 1, 0.09, and 57 mm for mouse, fly, and human datasets, respectively) in

over 75% of frames. Importantly, the position error in units of camera pixels is roughly

comparable across these three datasets, spanning more than 3 orders of magnitude in spatial

scale. Therefore, we believe these errors are representative of what can currently be expected

for accuracy of 3D markerless tracking.

Although triangulation usually resulted in accurate estimates of joint positions and angles,

there were still some frames where it failed due to missing keypoint detections (as in

Figure 3E). In other cases, incorrect keypoint detections led to erroneous 3D joint position

estimates (as in Figure 3F). Even though these issues occurred in a small minority of

frames, tracking errors are especially problematic for analyzing movement trajectories. For

instance, missing estimates complicate the estimation of derivatives, whereas erroneous

estimates bias the distribution of summary statistics. To minimize these issues, we leveraged

complementary temporal and spatial information within each dataset to refine tracking

performance in 3D.

Addition of filters to improve tracking accuracy

Naturally behaving animals present unique challenges for 3D pose estimation. Animals can

contort their bodies into many different configurations, which means that each behavioral

session may include unique poses that have not been previously encountered, even across

multiple animals. Our approach to tackling these challenges is to leverage prior knowledge

that animal movements are usually smooth and continuous, and that rigid limbs do not

change in length over short timescales. In particular, we developed and implemented a set of

2D and 3D filters that refine keypoints, remove errors in keypoint detections, and constrain

the set of reconstructed kinematic trajectories. We demonstrate that both sets of filters work

together to significantly improve pose estimation. Here, we focus on detailed quantification

of these filters in tracking flies and humans, where our datasets included keypoints at every

limb joint tracked with at least 4 camera views.

Refining keypoints in 2D—We implemented three distinct algorithms to remove or

correct errors in 2D keypoint detection: a median filter, a Viterbi filter, and an autoencoder

filter. The median and Viterbi filters operate on each tracked joint across frames, and the

autoencoder filter refines keypoints using learned correlates among all joints. The median

filter removes any point that deviates from a median filtered trajectory of user-specified

length and then interpolates the missing data. The Viterbi filter finds the most likely path of

keypoint detections for each joint across frames from a set of top (e.g., 20) detections per

frame, given the expected standard deviation of joint movement in pixels as a prior. Finally,

the autoencoder filter corrects the estimated score of each joint based on the scores of the

other joints, with no parameters set by the user. Where errors in tracking cannot be corrected

by filtering, the keypoint is removed altogether, since the missing joint can be inferred

from other camera views, but an erroneous keypoint can produce large discrepancies in

triangulation. We document the parameters we used to produce results across the paper in

Table S1. Anipose users are encouraged to evaluate the effect these filtering parameters may

have on their analyses. Depending on the particulars of the experimental setup, including the

spatial and temporal resolution of the videos, the parameters may need to be adjusted.

Karashchuk et al. Page 6

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The addition of each filtering step noticeably improved the tracking of fly leg joints (Figure

4A). The median and Viterbi filters both reduced spurious jumps in keypoint position,

which may occur if the neural network detects a similar keypoint on a different limb or at

another location in the frame. The Viterbi filter is able to remove small erroneous jumps in

detected keypoint trajectories while also preserving high-frequency dynamics, whereas the

median filter may mistakenly identify fast movements as an error and remove them. The

autoencoder filter removed detections for keypoints that were typically not visible from a

given view, which improved 3D position estimates after triangulation (Figure S2).

For each of the 2D filters, we quantified the performance improvement of estimating the

joint position and angle on manually annotated validation datasets. The 2D median filter

significantly reduced error in joint position and angle estimation on the human dataset (t =

−14.8, p < 0.001 for position, t = −7.7, p < 0.001, paired t test) but not on the fly dataset

(t = −1.2, p = 0.2 for position, t = −0.98, p = 0.3, paired t test). The Viterbi filter reduced

error on both fly and human datasets (t = −4.4 and t = −4.1 for fly position and angle, t =

−10.9 and t = −8.7 for human position, with p < 0.001 for all, paired t test). The autoencoder

filter also reduced error in joint positions and angles on the fly dataset (t = −5.4, p < 0.001

for positions, t = −2.16, p = 0.03 for angles, paired t test). We did not apply the autoencoder

filter to human tracking, since all occluded points are annotated in the training dataset. In the

fly dataset, applying the autoencoder filter after the Viterbi filter further improved the joint

position and angle estimates above the autoencoder (t = −3.97, p < 0.001 for positions, t =

−3.44, p < 0.001 for angles, paired t test). In summary, we found the addition of these three

filters improved the ability of Anipose to accurately estimate joint positions and angles.

Refining poses and trajectories in 3D—To further refine joint position and angle

estimates in 3D, we developed a triangulation optimization that takes advantage of

the spatiotemporal structure of animal pose and behavior. Specifically, our optimization

produces pose estimates that are smooth in time using temporal regularization, and limbs

demarcated by adjacent keypoints that are constant in length with spatial regularization. The

length for each limb is automatically estimated in the optimization. The relative strengths

of the temporal and spatial regularization terms may be balanced and tuned independently.

As with the 2D filters, we empirically determined default strengths that worked across

multiple datasets. A complete description of each filter, along with all the parameters, is

detailed in the STAR Methods. For illustration, we compared the performance of these

filters (Figure 5A) to other commonly used methods from the literature (random sample

consensus, or RANSAC, triangulation and 3D median filter) on the walking fly dataset. We

applied the 3D filters on kinematic trajectories partially corrected with 2D filtering (Viterbi

then autoencoder filters for the fly dataset, and Viterbi filter only for the human dataset),

to evaluate how much the 3D filters improved the accuracy. Spatiotemporal regularization

substantially improved pose estimation. The temporal regularization noticeably reduced

jitter in the trajectory (Figure 5A), while the spatial regularization stabilized the estimate

of limb length (Figure S3B). These improvements are also obvious in example videos of

reconstructed pose before and after filtering (Video S2).

For each of the 3D filters, we quantified the improvement in position and angle error

relative to tracking with 2D filters alone (Figures 5C and S3C). We found that RANSAC

Karashchuk et al. Page 7

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

triangulation did not improve position and angle error. The 3D median filter significantly

reduced position and angle errors relative to only 2D filters for the human dataset (t = −

11:8 for position, t = − 7:3 for angle, p < 0.001 for both, paired t test), but not for the fly

dataset. Spatial and temporal regularization applied together provided the largest reduction

in tracking error (t = − 18:7 and t = − 6:1 for human positions and angles, t = − 10:8 and t =

5:8 for fly positions and angles, p < 0.001 for all, paired t test). Overall, we find that the 3D

filters implemented in Anipose significantly improve pose estimation.

Improving estimation of derivatives—In addition to tracking body pose, it is often

valuable to track the speed of body movements. We compared the temporal derivative of 3D

joint positions estimated with Anipose to the derivative computed from manual annotations

(Figures 5B and 5D) and found both qualitative and quantitative improvements to estimation

of body-movement speed.

Filtered trajectories produced smoother derivatives, due to the fact that tracking errors are

corrected through 2D and 3D filtering, and the temporal regularization explicitly penalizes

deviations from smoothness (Figure 5B). It is challenging to evaluate the accuracy of

Anipose derivative estimates because computing finite difference derivatives of manual

annotations amplifies known errors in these annotations. Given that manual annotations

deviate from the ground truth tracking with a standard deviation of at most 3.5 pixels

in distance (Figure 3C), we expect computing the finite difference derivative of such

annotations to produce derivatives with error of 4.95 pixels (about 0.037 mm corresponding

to 11.1 mm/s over one frame in the fly dataset). Therefore, the manual annotations

(dark-green trace in Figure 5B) do not represent the true derivative but rather a noisy

approximation of the true derivative. The temporally regularized trajectory resembles this

estimate of the derivative but is more smooth because of temporal regularization. The

strength of this regularization, and the subsequent smoothness of the tracked keypoints, is

a parameter that users may fine-tune (see van Breugel et al., 2020 for a systematic way to

tune this parameter). We suggest some default values and provide guidance on choosing

parameters in the Discussion.

We found that the 2D filters (Viterbi and autoencoder in fly, only Viterbi in human)

improved the error in derivative by 2.78 mm/s for the fly dataset (t = −9.4, p < 0.001,

paired t test) and by 30.0 mm/s on the human dataset (t = −28.0, p < 0.001, paired t test)

relative to no filters. The 3D median filter improved the error in derivative by 1.65 mm/s in

the fly dataset (t = −4.8, p < 0.001, paired t test) and by 177.3 mm/s in the human dataset

(t = −324, p ≪ 0.001, paired t test). RANSAC improved error in the derivative estimate by

2.16 mm/s in the fly dataset (t = 7.07, p < 0.001, paired t test) but did not improve the error

in the human dataset. The spatiotemporal regularization improved the error in derivative

by an additional 0.67 mm/s for the fly dataset (t = −4.10, p < 0.001, paired t test) and by

217.7 mm/s on the human dataset (t = −213, p ≪ 0.001, paired t test) relative to the 2D

filters. Overall, we found that the filters implemented in Anipose significantly improved the

estimation of body movement in the fly and human datasets.

Karashchuk et al. Page 8

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Structured processing of videos

Animal behavior experiments are often high throughput, meaning that large numbers of

videos are recorded over many repeated sessions with different experimental conditions.

To make the process of 3D tracking scalable to large datasets, we designed a specific

file structure (Figure S5) to organize and process behavior videos, configuration files, and

calibration data. This file structure also facilitates scalable analysis of body kinematics

across individual animals and experimental conditions. For example, the command “anipose

analyze” detects keypoints for each video in the project folder, and “anipose calibrate”

obtains calibration parameters for all the cameras in all calibration folders. Each command

operates on all videos in the project, circumventing the need to process each video

individually. In addition, this design allows the user to easily reanalyze the same dataset

using different filtering parameters or with different 2D tracking libraries (e.g., to compare

DeepLabCut and SLEAP). For the users that prefer to set up their own pipelines, we also

package the calibration, triangulation, and filtering functions in a separate library called

aniposelib.

Visualization of tracking

The large number of videos and keypoints tracked in many behavior experiments make

it challenging to visualize the resulting data. In addition, the large files created with high

speed video often make it impractical to store and visualize an entire dataset on a laptop.

To facilitate evaluation and interpretation of data tracked with Anipose, we developed a

web-based visualization tool (Figure 6). The tool shows, for a given trial, each camera

view, 3D tracking, and 2D projections of the tracked keypoints. The user can speed up and

slow down the speed at which the videos play and rotate the tracked keypoints in 3D. By

taking advantage of the standardized file structure, the interface provides a dropdown menu

to navigate between trials and sessions. The interface also allows the user to annotate the

behaviors in each video, which is particularly useful for isolating specific behaviors for

further analysis. As this tool is web based, it may be run on a server, allowing users to

preview videos and inspect tracking from any computer. Furthermore, if the server is public,

users may easily share links to particular trials with collaborators to point out specific

behaviors (link to example here).

3D tracking with Anipose provides insights into motor control of Drosophila walking

We first used 3D tracking with Anipose to analyze the leg joint kinematics of fruit flies

walking on a spherical treadmill. Although fly walking has been studied in great detail from

a 2D perspective (DeAngelis et al., 2019; Mendes et al., 2013; Berendes et al., 2016), 3D

joint kinematics of walking flies have not previously been analyzed. Thus, it was not clear

how fly leg joints move during walking. Specifically, we sought to understand the relative

contributions of leg joint flexion and rotation.

Some limb joints are not restricted to movement in a single plane but can also rotate

around the long axis of a limb segment. Whereas the importance of rotation angles has long

been recognized for human gait analysis (Roberts et al., 2017), rotation angles have been

comparatively understudied in other animals. This gap exists largely because estimating

rotation angles requires precise tracking of joint kinematics in 3D.

Karashchuk et al. Page 9

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://faculty.washington.edu/tuthill/aniposeviz.html

The fly leg consists of five segments, whose movements are defined by 8 angles (1

abduction, 3 rotation, 4 flexion). We observed significant rotations between the coxa and

femur segments during walking. Figure 7A shows trajectories of coxa rotation, femur

rotation, and femur-tibia flexion angles for one walking bout.

Interestingly, the magnitude of joint rotation varied across different legs. Although the

femur-tibia flexion angle has a high range of motion in the front and back legs, the

femur-tibia flexion angle has a comparatively smaller range of motion in the middle legs

(Figure 7B). In contrast, the middle legs are primarily driven by coxa and femur rotation.

Furthermore, the coxa joints of contralateral legs rotate in opposing directions. These results

suggest that the circuitry that coordinates walking (e.g., the central pattern generator) cannot

be the same for all six legs. Rather, walking circuits must control different motor neurons

and muscles to generate unique joint kinematics for each leg.

In addition to comparing joint angle distributions across legs, we analyzed trajectories of 3D

leg kinematics across flies. We used the UMAP nonlinear embedding method (McInnes et

al., 2018) to embed coxa rotation, femur rotation, and femur-tibia flexion angles and their

derivatives of all legs (Figure 7C). The three-dimensional embedding of joint kinematics

formed a mushroom-shaped manifold. Individual flies reside at specific regions of the

manifold, but, for all flies, step phase is distributed along the circumference of the cap

(Figure 7D). These results are consistent with the existence of a continuum of walking gaits

across flies (DeAngelis et al., 2019) but also suggest that different flies have slightly distinct

walking kinematics. This analysis also demonstrates how 3D tracking can be used to dissect

the contributions of specific joints to complex motor behaviors. Visualizing a manifold of

3D joint kinematics provides a means to understand how joint kinematics vary within the

high-dimensional space of a motor control task (Figure 7E; Figure S6B).

Analysis of 3D mouse reaching and human walking kinematics

To illustrate the value of 3D tracking with Anipose for studying other animal species,

we analyzed data from reaching mice and walking humans. Joint positions and angles

have long been used to quantify movement in both healthy and impaired animals (Koch

et al., 2017; Balbinot et al., 2018; Fukuchi et al., 2018). However, previous quantification

has relied primarily on laborious manual tracking or marker-based tracking with extensive

manual corrections. Here, we demonstrate analysis of mouse and human behavior using

fully automated 3D tracking with the Anipose toolkit.

We first analyzed 3D hand trajectories from mice trained to reach for and grasp a pellet. This

task has been extensively used to study neural circuits for sensorimotor control underlying

skilled limb movements (Azim et al., 2014; Becker and Person, 2019; Guo et al., 2015;

Low et al., 2018; Farr and Whishaw, 2002; Esposito et al., 2014). Using the Anipose

visualization tool, we labeled the reach outcome and start/end frame for each trial. We

labeled the trial a “hit” if the mouse successfully grasped the pellet, a “miss” if the mouse

missed the pellet holder, and a “bump” if the mouse bumped into the pellet holder or the

pellet but failed to grasp the pellet. Each of the four mice in the dataset had multiple

instances of each outcome. Figure 7F shows example 3D reaching trajectories, which

demonstrate that reaching movements vary significantly from trial to trial (see also Figure

Karashchuk et al. Page 10

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

S7A). Although reaching is a challenging behavior to track due to its speed and variability,

Anipose was able to accurately reconstruct forelimb reaching trajectories. The trajectory of

each movement was variable, but plotting the distance to the pellet holder as a function of

time to contact revealed that each reach type has a stereotyped trajectory (Figures 7G and

S7B). Interestingly, the hit/bump and miss trajectories diverged around 50 ms prior to pellet

contact, suggesting that mice are unable to correct their reaching trajectories in this period.

We next analyzed 3D walking kinematics reconstructed from the human dataset using

methods similar to our analysis of fly walking. We extracted knee flexion, hip rotation, and

hip flexion angles from 3D joint positions tracked with Anipose (Figures 7H and S7C). The

distributions of these joint angles are symmetric across the two legs (Figures 7I and S7D)

and match previous characterizations of human gait (Fukuchi et al., 2018). To characterize

the structure of walking across the subjects, we used the UMAP nonlinear embedding

method (McInnes et al., 2018) to embed knee flexion, hip rotation, hip flexion, and their

derivatives into a 3D space, as for the fly dataset above. The UMAP embedding reveals a

manifold of angle coordination across subjects (Figure 7J). The manifold forms a cylindrical

structure with the knee flexion angle mapping circularly along the cylinder (Figure 7K).

The two trials that are to the left outside the main cylinder have lower variation of left leg

hip rotation (Figure S7E). These examples illustrate the ease and utility of tracking and

analyzing human walking behavior with Anipose. In the future, this approach could be used

to automatically identify individuals with distinct walking gaits or other motor patterns.

DISCUSSION

In this paper, we introduce Anipose, an open-source toolkit to accurately track animal

movement in 3D. Anipose is designed to augment DeepLabCut, a toolkit for 2D markerless

tracking (Mathis et al., 2018), with calibration, filters, and a visualization tool to facilitate

robust 3D tracking and analysis. Current users of DeepLabCut can easily upgrade to 3D

tracking with Anipose by adding and calibrating additional cameras to an existing behavioral

setup. We validated each optimization module and the full pipeline against ground truth

data from four different experimental datasets and three organisms, demonstrating accurate

reconstruction of 3D joint positions and angles. To help users get started, we developed

detailed tutorials for both the Anipose pipeline and aniposelib at anipose.org.

The Anipose tracking pipeline is designed to streamline structured processing of videos

recorded in high-throughput experiments. Users do not need to know Python to use the

Anipose pipeline. All that is required to get started is editing a small configuration file and

running the provided commands from a terminal. Although we designed Anipose to leverage

2D tracking with DeepLabCut (Mathis et al., 2018), it can be made compatible with other

2D markerless tracking methods, including SLEAP (Pereira et al., 2020) and DeepPoseKit

(Graving et al., 2019) by modifying a single file. Users with programming experience can

convert their 2D tracked data to the Anipose structure (see Figure S5) to take advantage of

the calibration, filters, and visualization tools. We also provide access to individual functions

via a separate library, aniposelib.

Karashchuk et al. Page 11

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://anipose.readthedocs.io/en/latest/

Impact of robust markerless 3D tracking

A key technical advantage of tracking with Anipose is the ability to interpret and analyze

movement speed from 3D pose trajectories that are smooth in space and time, due to

filtering and interpolation from multiple camera views. The resulting improvements in

tracking smoothness make it easier to analyze pose and movement dynamics. Specifically,

interpolated data enable the user to obtain better estimates of behavior statistics, such as

mean and variance, and to perform dimensionality reduction techniques, such as principal

component analysis (PCA). Additionally, temporal regularization reduces noise in the first

derivative and thus enables the user to obtain more precise estimates of movement speed

(Figures 5D and S4).

This ability to analyze 3D pose trajectories may open up opportunities for behavioral

neuroscience, where key insights have been gained through carefully controlled behavioral

paradigms. In particular, experiments are often designed to accommodate the practical

limitations of movement tracking, recording neural activity, and perturbing the animal in

real time (e.g., Tzschentke, 2007; D’Hooge and De Deyn, 2001; Olton, 1979; Branson

et al., 2009; Berman et al., 2014). Recent advances in experimental technologies (e.g.,

high-density extracellular recording probes [Jun et al., 2017], optical imaging of fluorescent

reporters [Dana et al., 2019; Abdelfattah et al., 2019], and optogenetics [Bernstein et al.,

2012]) have made it feasible to precisely record and perturb neural activity from animals

behaving freely in three dimensions. Complementing these technologies, a comprehensive

toolbox for high-throughput 3D tracking will not only enable deeper analysis of current

experiments but also make it possible to study more natural behaviors.

A robust 3D markerless tracking solution could also greatly expand the accessibility of

quantitative movement analysis in humans. Many neurological disorders, including some

commonly thought of as cognitive disorders, affect walking gait (Stolze et al., 2005; Wittwer

et al., 2010) and upper-limb coordination (Solaro et al., 2007; Tippett et al., 2007). Many

clinicians and basic researchers currently rely on qualitative evaluations or expensive clinical

systems to diagnose motor disorders and assess recovery after treatment. While clinical

approaches are commercially available (Windolf et al., 2008), they are costly, require

proprietary hardware, rely on the addition of markers to the patient, and cannot assess

walking gait in natural contexts such as a patient’s home. Anipose could be used as a tool in

the diagnosis, assessment, and rehabilitative treatment of movement and neurodegenerative

disorders.

Insights into the motor control of Drosophila walking

By analyzing 3D joint kinematics of tethered walking Drosophila, we found that each leg

has a unique set of joint angle distributions. One valuable insight, which was not evident

from 2D tracking alone, is that the movement of the middle legs is driven primarily by

femur rotation, in contrast to the front and hind legs, which are driven primarily by femur

tibia flexion. We also observed small differences in femur-tibia flexion and femur rotation

distributions between front and hind legs (Figure 7B). Thus, the neural circuits that move

each leg during walking must be specialized for controlling joints with distinct forces and

dynamics within each leg. Previous models of Drosophila walking have used an identical

Karashchuk et al. Page 12

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

control architecture for intra-leg joint coordination for all six legs (Aminzare et al., 2018;

Goldsmith et al., 2020). Our results provide a framework for constructing more biologically

plausible neuromechanical models using distinct architectures for controlling different joints

within each leg.

Inter-leg differences in joint kinematics also raise questions about limb proprioception.

Proprioceptors in the fly femoral chordotonal organ (FeCO) encode femur-tibia flexion and

movement (Mamiya et al., 2018). Does the role of the FeCO differ for the middle legs,

for which the femur-tibia generally does not flex in a rhythmic pattern during walking?

Which proprioceptors, if any, are used to sense femur and coxa rotation of the middle

legs? Answering these questions will be facilitated by combining Anipose with in vivo
measurements and perturbations of proprioceptive neural circuits (Dallmann et al., 2021).

Rythmic motor behaviors, such as walking, are thought to be controlled by central pattern

generators (CPGs): neural circuits that generate intrinsic rhythmic activity (Bidaye et al.,

2018). If fly walking is controlled by CPGs, our results suggest that the CPG for each leg

must control different muscles. For example, we would predict that a walking CPG for

the front legs would connect to motor neurons that control the tibia flexor and extensor

muscles in the femur (Azevedo et al., 2020). In contrast, a CPG for the middle legs might

connect to motor neurons innervating muscles in the trochanter that control femur rotation.

These insights will be useful in guiding ongoing efforts to trace motor control circuits using

connectomic reconstruction of the Drosophila ventral nerve cord (Maniates-Selvin et al.,

2020) and leg (Kuan et al., 2020).

Femur rotation is also likely to be important for walking in other insect species. Fransevich

and Wang tested the passive rotation of the trochanter-femur articulation in 23 insect species

and found rotation ranges from 10° to 120°, depending on the species (Frantsevich and

Wang, 2009). Our estimate for the physiological range for walking Drosophila is about 70°

(Figure 7B), which falls within the trochanter-femur articulation range observed in other

insects. Thus, it is plausible that articulation of the trochanter-femur joint is sufficient to

account for the femur rotation we measured during walking, and that other insects rely

on femur rotation during walking as well. As an example, Bender et al. reported different

kinematics across legs in walking cockroaches, with larger femur rotation and smaller

femur-tibia flexion in the middle legs relative to the hind legs (Bender et al., 2010). The

application of Anipose to track 3D joint kinematics in other species will enable further

comparative studies of the biomechanics and neural control of walking.

Potential for future improvement based on related work

Camera calibration has long been a rich topic in computer vision research. The most

commonly used calibration code, based on Zhang’s work (Zhang, 2000) and part of

OpenCV (Bradski, 2000), can calibrate up to 2 cameras using images of checkerboards

from multiple angles. Although this method can be used to calibrate 3 or more cameras

by calibrating pairs of cameras, in practice, precise calibration requires an additional

optimization step called bundle adjustment (Triggs et al., 2000). Bundle adjustment has

been a key part of structure from motion toolkits (Agarwal et al., 2011; Schönberger, 2018),

but the method has received comparatively little attention as a solution to camera calibration

Karashchuk et al. Page 13

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for markerless tracking. An exception is DeepFly3D, which supports calibration based on

animal keypoints but not based on a calibration board, which hinders its ability to handle

setups with arbitrary camera positions (Günel et al., 2019). Our key innovation is to provide

an open-source implementation of sparse bundle adjustment targeted for camera calibration

for motion tracking. Our current implementation could eventually benefit from incorporating

other methods from the literature. For instance, using a neural network to detect the

calibration board may yield more detected keypoints and lead to more robust calibration

under difficult conditions (Hu et al., 2018). Currently, Anipose requires a calibration board

to initialize camera parameters (even with animal calibration), but it may be possible to

initialize camera parameters based on commonly detected points, as is commonly done in

the structure from motion literature (Agarwal et al., 2011; Schönberger, 2018), or perhaps

by using a neural network directly (Ummenhofer et al., 2017). Bundle adjustment itself may

be made more robust by incorporating gauge constraints in the optimization function, further

reducing the number of parameters (Triggs et al., 2000). Finally, the calibration process itself

may be streamlined if it were made interactive (Richardson et al., 2013).

There has been extensive recent work to improve markerless tracking based on deep learning

approaches. One common approach has been to improve the neural network architecture

for training. For instance, this approach has been used to induce priors in the neural

network based on occlusions (Sárándi et al., 2018; Cheng et al., 2019), multi-view geometry

(Iskakov et al., 2019; Zimmermann et al., 2020; Dunn et al., 2021; Yao et al., 2019), limb

lengths (Zhou et al., 2017), or time (Núñez et al., 2019). We note that this approach is

complementary to our work, as the Anipose filters could be used with keypoint detection

by any neural network. Another approach is to resolve tracking by using pictorial structures

to add priors on limb lengths (Yang et al., 2016; Amin et al., 2013; Günel et al., 2019) or

motion (Wu et al., 2020) or both (Zhang et al., 2021). The Viterbi filter used in Anipose

is analogous to the motion based pictorial structures and could be further extended to

handle priors on limb lengths based on insights from these papers. Beyond tracking single

animals, toolboxes like SLEAP (Pereira et al., 2019), Open-Pose (Cao et al., 2021), and

DeepLabCut (Nath et al., 2019) have some support for multi-animal pose estimation in

2D. For tracking multiple animals in 3D, a promising approach is to build correspondences

based on geometry and appearance (Dong et al., 2019) across multiple views. As automated,

high-throughput tracking of animal behavior grows in scale, new methods for data analysis,

visualization, and modeling will also be needed to gain insight into the neural control of

dynamic behavior (York et al., 2020; Marshall et al., 2021; Berman et al., 2014; Dallmann et

al., 2021).

Limitations and practical recommendations

There are several common scenarios under which Anipose may fail to produce accurate

3D tracking. Below, we enumerate some of the scenarios we have encountered in applying

Anipose on different datasets and suggest practical strategies for troubleshooting.

As is the case for any tracking system, the ability of Anipose to track and estimate body

pose is fundamentally limited by the quality of the underlying data. High-quality videos

are well illuminated, contain minimal motion blur, and provide coverage of each keypoint

Karashchuk et al. Page 14

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from different views. A common failure mode we encountered was when the neural network

misplaced 2D keypoints in some frames. If the errors are uncorrelated across camera views,

then the Anipose filters can compensate and still produce accurate tracking in 3D. But in

some cases, multiple views have correlated errors or these errors persist in time. These type

of errors most commonly arise when the neural network has not been trained on a subset of

rare behaviors, so that the animal adopts poses unseen by the trained network. One solution

to reducing the frequency of such errors involves systematically identifying outlier frames,

manually relabeling them, then retraining the network. Anipose supports this functionality,

as do other tracking toolboxes (Mathis et al., 2018; Pereira et al., 2019; Graving et al., 2019;

Günel et al., 2019).

Poor multi-camera calibration also results in tracking errors. A good calibration should have

an average reprojection error of less than 3 pixels, and ideally less than 1 pixel. To obtain

a quality calibration, the calibration videos should be recorded so that the board is clearly

visible from multiple angles and locations on each camera. If it is not possible to achieve

this, we suggest exploring a preliminary calibration module in Anipose that refines an initial

calibration based on the detected points on the animal itself. This module was inspired by

the animal based calibration in DeepFly3D (Günel et al., 2019), but our implementation uses

the initial calibration from a calibration board as a starting guess, permitting generalization

in different setups. It also takes advantage of our iterative calibration procedure to yield

robust calibration even with errors in tracking.

An effective experimental setup needs to have an appropriate number of cameras to track

all keypoints across possible pose configurations. In particular, each joint must be visible

from at least 2 cameras at all times. Thus, for tracking multiple limbs or body parts, we

recommend at least 3 equally spaced cameras, so that half of the body is visible from any

single camera. We evaluated this quantitatively in the human dataset (Table S2), where there

is a dramatic reduction in error from 2 to 3 cameras.

The mouse reaching dataset is one example where tracking was reasonably accurate without

filters, but filters did not further improve tracking accuracy. There are several potential

explanations for this result. The reaches are very short (about 40–100 frames or 200–500

ms), and the hand is hard to see when it is on the ground, so temporal filters such as

the Viterbi filter or temporal regularization lack the information to resolve tracking errors.

There are very few keypoints (only 3 per hand), and these can change in distance relative

to each other, so the spatial regularization cannot impose strong constraints. With only 2

cameras, the spatiotemporal regularization cannot fully leverage multiple views to remove

outliers (Table S2), and the autoencoder has limited utility. In this situation, using basic

linear least-squares triangulation works well enough for analysis (Figures 7F and 7G). The

accuracy of tracking mouse reaching might be improved by labeling more keypoints on each

hand, increasing the camera frame rate, and adding more cameras.

As a practical starting point, we recommend users start with no filters to first evaluate

the quality of the tracking. If outliers or missing data impede data analysis, then we

recommend enabling the default filter parameters in Anipose, which we have found to

produce good tracking results across multiple datasets. In some cases, some additional

Karashchuk et al. Page 15

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

tuning of parameters may be required, especially on datasets with unique constraints or

when studying behaviors with unusual dynamics. If any joints are not visible for an

extended period of time in certain videos, we recommend disabling the spatiotemporal

optimization, as can hallucinate trajectories, increasing overall error (as in Table S2). We

provide suggestions for tuning parameters in our documentation at anipose.org.

Outlook

We designed Anipose to make markerless 3D tracking simple and broadly accessible for

the scientific community. With this goal in mind, we built Anipose on DeepLabCut, a

widely used 2D tracking toolkit. As many labs develop machine learning tools for behavior

tracking and analysis, we advocate for pooling efforts around common frameworks that

emphasize usability (Kane et al., 2020; Saunders and Wehr, 2019). In particular, we suggest

that tools be built in a modular way, so that code can be extended and reused in other

frameworks. We hope that the Anipose toolkit contributes to these community efforts. We

welcome contributions to improve and extend the Anipose toolkit and conversely are ready

to contribute the ideas and code from Anipose to other toolkits.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and

will be fulfilled by the lead contact, John Tuthill (tuthill@uw. edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Data has been deposited at https://doi.org/10.5061/dryad.nzs7h44s4 and are

publicly available as of the date of publication. DOIs are listed in the key

resources table.

• All original code has been deposited at https://zenodo.org/record/5224213.

Documentation for the software is available at anipose.org. DOIs are listed in

the key resources table.

• Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse—Reaching data were obtained from four adult C57BL/6 mice (JAX:000664, ~8–12

weeks old, two male and two female) trained to reach for a pellet. Procedures performed

in this study were conducted according to US National Institutes of Health guidelines for

animal research and were approved by the Institutional Animal Care and Use Committee of

The Salk Institute for Biological Studies.

Karashchuk et al. Page 16

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://anipose.readthedocs.io/en/latest/
https://zenodo.org/record/5224213
https://anipose.readthedocs.io/en/latest/

Fly—Male and female Berlin wild-type Drosophila melanogaster (RRID:BDSC_8522), 4

days post-eclosion, were used for all experiments. Flies were reared on standard cornmeal

agar food on a 14 hr/10 hr light-dark cycle at 25 °C in 70% relative humidity.

Human—We evaluated 3D tracking with Anipose on the Human 3.6M dataset (Ionescu et

al., 2014; Catalin Ionescu, 2011). The Human 3.6M dataset contains data from 5 subjects as

a training dataset (2 female and 3 male), 2 subjects as a validation dataset, and 4 subjects as

a testing dataset (2 female and 2 male).

METHOD DETAILS

ChArUco dataset—To evaluate the performance of Anipose compared to physical ground

truth, we collected videos of a precision-manufactured ChArUco board (Garrido-Jurado et

al., 2014). The ChArUco board was manufactured by Applied Image Inc (Rochester, NY)

with a tolerance of 2 μm in length and 2° in angle. It is a 2 mm × 2 mm etching of opal and

blue chrome, on a 5 mm × 5 mm board. The ChArUco pattern itself has 6 × 6 squares, with

4 bit markers and a dictionary size of 50 markers. With these parameters, the size of each

marker is 0.375 mm and the size of each square is 0.5 mm. We filmed the ChArUco board

from 6 cameras (Basler acA800–510μm) evenly distributed around the board (Figure 1A), at

30Hz and with a resolution of 832 × 632 pixels, for 2–3 minutes each day over 2 separate

days. While filming, we manually rotated the ChArUco board within the field of view of the

cameras. These videos were used as calibration videos for both the ChArUco dataset and the

fly dataset detailed below.

We chose 9 of the corners as keypoints for manual annotation and detection (Figures 1A and

3A). We extracted and manually annotated 200 frames from each camera from day 1, and

an additional 200 cameras per camera from day 2 (1200 frames per day, 2400 frames total).

We used the frames for day 1 for training the neural network and the frames from day 2 for

evaluation of all methods.

Mouse dataset—The reaching task is described in detail elsewhere (Azim et al., 2014).

Briefly, the training protocol consisted of placing the mouse in a 20 cm tall × 8.5 cm wide

× 19.5 cm long clear acrylic box with an opening in the front of the box measuring 0.9 cm

wide and 9 cm tall. A 3D-printed, 1.8 cm tall pedestal designed to hold a food pellet (20

mg, 3 mm diameter; Bio-Serv) was placed 1 cm away from the front of the box opening

and displaced to one side by 0.5 cm (to encourage mice to use their preferred forelimb), and

food pellets were placed on top as the reaching target (Figure 1B). Mice were food deprived

to ~85% of their original body weight and trained to reach for food pellets for either 20

minutes or until 20 successful reaches (defined as pellet retrieval) were accomplished. Mice

were trained in this setup for 14 consecutive days before reaches were captured with 2

cameras (Sentech STC-MBS241U3V with Tamron M112FM16 16mm lens) placed in front

and to the side of the mouse (~85° apart). Videos were acquired at a frame rate of 200 Hz at

a resolution of 1024 × 768 pixels.

We chose 6 points on the mouse hands as keypoints (Figure 1B). On each mouse hand, we

labeled 3 points: the dorsal wrist, the base of digit 5, and the proximal end of digit 3. In

total, we manually labeled 2200 frames (1100 frames per camera) for training the neural

Karashchuk et al. Page 17

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

network from 2 mice. For test data to evaluate the post estimation performance, we labeled

an additional 400 frames (200 frames per camera) taken from videos of 2 mice that were not

in the training set.

Fly dataset—We next evaluated 3D tracking with Anipose on walking fruit flies. The

flies’ wings were clipped 24–48 hours prior to the experiment in order to increase walking

and prevent visual obstruction of the legs and thorax. For all experiments, a tungsten wire

was tethered to the dorsal thorax of a cold-anesthetized fly with UV cured glue. Flies were

starved with access to water for 2–15 hours before they were tethered. After 20 minutes of

recovery, tethered flies were positioned on a frictionless spherical treadmill (Buchner, 1976;

Götz, 1973) (hand-milled foam ball, density: 7.3 mg/mm3, diameter: 9.46 mm) suspended

on a stream of compressed air (5 L/min). Six cameras (imaging at 300 Hz, Basler acA800–

510 μm with Computar zoom lens MLM3X-MP) were evenly distributed around the fly,

providing full video coverage of all six legs (Figure 1C). Fly behavior was recorded in 2

s trials, capturing a range of behaviors such as walking, turning, grooming, and pushing

against the ball. The recording region of each video was cropped slightly so that the fly filled

the frame and the camera was able to acquire at 300Hz. For all training and test evaluation

data, the interval between trials was 25 s. For some of the flies in the larger walking dataset

used in Figure 7, the interval between trials was set to 9 s.

We selected 30 points on the fly as keypoints (Figure 1C). On each fly leg, we labeled 5

points: the body-coxa, coxa-femur, femur-tibia, and tibia-tarsus joints, as well as the tip of

the tarsus. In total, we manually labeled 6632 frames (about 1105 frames per camera) for

training the neural network. For test data to evaluate the post estimation performance, we

labeled an additional 1200 frames (200 frames per camera) taken from videos of 5 flies that

were not in the training set. For analyzing flexion and rotation of angles during walking in

Figure 7, we used a larger dataset of videos from 39 flies, all collected with the methods

described above.

Human dataset—We evaluated 3D tracking with Anipose on the Human 3.6M dataset

(Ionescu et al., 2011, 2014). Because this dataset has been used extensively for human pose

estimation, it provides a useful comparison to existing computer vision methods. It consists

of 11 professional actors performing a range of actions, including greeting, posing, sitting,

and smoking. The actors were filmed in a 4 m × 3 m space with 4 video cameras (Basler

piA1000) at a resolution of 1000 × 1000 pixels at 50Hz (Figure 1D). To gather ground-truth

pose data, the actors were also outfitted with reflective body markers and tracked with

a separate motion capture system, using 10 Vicon cameras at 200 Hz. Leveraging these

recordings, the authors derived the precise 3D positions of 32 body joints and their 2D

projections onto the videos. For camera calibration, we used the camera parameters from the

Human 3.6M dataset, converted by Martinez et al. (Martinez et al., 2017).

To compare the performance of Anipose against previous methods, we used a protocol from

the literature (Iskakov et al., 2019). We used frames from the training dataset to train the

network and evaluated the predictions on the validation dataset. We also removed frames

from the training dataset in which the subject did not move relative to the previous frame

(<40mm movement of all joints from the previous frame). We evaluated the tracked human

Karashchuk et al. Page 18

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dataset on every 64th frame. We used 17 of the 32 provided joints as keypoints (Figure 1D).

Iskakov et al. (Iskakov et al., 2019) showed that some scenes from the S9 validation actor

(parts of the Greeting, SittingDown, and Waiting actions) have ground-truth shifted in global

coordinates compared to the actual position (Iskakov et al., 2019), so we exclude these

scenes from the evaluation set. Furthermore, for subject S11, one of the videos is corrupted

(part of the “Directions” action), so we exclude this from the dataset as well. In total, we

obtained 636,724 frames (159,181 per camera) for training the neural network, and 8608

frames (2152 per camera) frames for evaluation.

Manual annotation of datasets—To produce neural network training data, we

annotated the fly dataset using Fiji (Schindelin et al., 2012) and the VGG Image Annotator

(VIA) (Dutta et al., 2016; Dutta and Zisserman, 2019). All the images in the fly test set were

annotated with VIA. We annotated all the images in the ChArUco dataset and mouse dataset

with VIA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural network keypoint detections—Detection of keypoints in each of the datasets

was performed with DeepLabCut 2.1.4 (Nath et al., 2019). Briefly, to produce training

data, we used k-means clustering to pick out unique frames from each of the views, then

manually annotated the keypoints in each frame. We trained a single Resnet-50 (He et al.,

2016) network for all camera views for each of the fly, mouse, and ChArUco datasets,

starting from a network pretrained on Imagenet. For the human dataset, we started with a

Resnet-101 network pretrained on the MPII human pose dataset (Insafutdinov et al., 2016).

During training, we augmented the training dataset with cropping, rotation, brightness, blur,

and scaling augmentations using Tensorpack (Wu et al., 2016). We then used the Anipose

pipeline to run the network on each video. For each keypoint, the network produced a list of

predicted positions, each associated with a confidence score (between 0 and 1). We saved the

top-n most likely predictions of each joint location for each frame for use in Viterbi filtering

of likely keypoints in 2D, as described below.

Filtering of 2D keypoint detections—The raw keypoint detections obtained with

DeepLabCut were often noisy or erroneous (Figure 4). Thus, filtering the detections from

each camera was necessary before triangulating the points. Anipose contains 3 main

algorithms to filter keypoint detections; we elaborate on each algorithm below. Example

applications of these filters and results are compared in Figure 4.

Median filter: The first algorithm identifies outlier keypoint detections by comparing

the raw detected trajectories to median filtered trajectories for each joint. We started by

computing a median filter on the detected trajectory for each joint’s x and y positions,

which smooths the trajectory estimate. We then compared the offset of each point in the raw

trajectory to the median filtered trajectory. If a point deviated by some threshold number of

pixels, then we denoted this point as an outlier and removed it from the data. The missing

points were then interpolated by fitting a cubic spline to the neighboring points. The median

filter is simple and intuitive, but it cannot correct errors spanning multiple frames.

Karashchuk et al. Page 19

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Viterbi filter: To correct for errors that persist over multiple frames, we implemented the

Viterbi algorithm to obtain a single most consistent path in time from the top-n predicted

keypoints in each frame for each joint. To be specific, we expressed this problem as a hidden

Markov model for each joint, wherein the possible values at each frame are the multiple

possible detections of this keypoint. To obtain a cleaner model, we removed duplicate

detections (within 7 pixels of each other) within each frame. To compensate for missed

detected keypoints over many frames, we augmented the possible values at each frame

with all detections up to F previous frames, weighted in time elapsed by multiplying their

probability 2−F. We then identified the best path through the hidden Markov model using

the Viterbi algorithm (Forney, 1973). This procedure estimates a consistent path, even with

missed detections of up to F frames.

Autoencoder filter: We found that the network would often try to predict a joint location

even when the joint was occluded in that view. This type of error is particularly problematic

when used in subsequent 3D triangulation. The convolutional neural network confidence

scores associated with these predictions can be high, making them difficult to distinguish

from correct, high-confidence predictions. To remove these errors, inspired by (Murphy,

2019), we implemented a neural network that takes in a set of confidence scores from all

keypoints in one frame, and outputs a corrected set of confidence scores. To generate a

training set, we made use of the fact that human annotators do not label occluded joints but

label all of the visible joints in each frame. Thus, we generated artificial scores from biased

distributions to mimic what the convolutional neural network might predict for each frame,

with visible joints given a higher probability on average. Specifically, we sample the scores

from a normal distribution, with standard deviation of 0.3 and mean 0 for invisible and 1

for visible joints, clipped to be between 0 and 1. To mimic false positive or false negative

detections, we flip 5% of the scores (x →1 − x) at random. The task of the network is to

predict a high score for each joint that is truly visible in that frame and a low score for any

occluded joint. The network is a multilayer perceptron network with a single hidden layer

and tanh activation units to perform this task. The size of the hidden layer is the number of

joints (e.g., if there are 10 joint scores to predict, we set the hidden layer to 10 units). We

trained the network using the Adam optimizer (Kingma and Ba, 2017) implemented in the

scikit-learn library (Pedregosa et al., 2011)

Camera model—A camera captures 2D images of light reflecting from 3D objects; thus,

we can think of each camera as a projection, transforming 3D vectors to 2D vectors. To

establish our notation, for a point p = (x, y, z)T or u = (x, y)T, we use a tilde to denote

that point in homogeneous coordinates (with a 1 at the end), so that p = (x, y, z, 1)T or

u = (x, y, 1)T .

A camera model specifies a transformation from a 3D point p to a 2D point u. We use

the camera model described by Zhang (Zhang, 2000), which consists of a product of an

intrinsics matrix A, an extrinsics matrix P, and a distortion function D.

Karashchuk et al. Page 20

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The extrinsics matrix P ∈ ℝ4 × 3 describes how the camera is positioned relative to the world.

We represent P as the product of a rotation matrix and a translation matrix. Both rotations

and translations may be fully specified with 3 parameters each, for 6 parameters total in P.

The intrinsics matrix A ∈ ℝ3 × 3 describes the internal coordinate system of the camera. It is

often modeled using 5 parameters: focal length terms fx and fy, offset terms cx and cy, and a

skew parameter s:

A =
f s cx
0 fy cy
0 0 1

.

In practice, we found that we obtain a more robust calibration by reducing the number of

parameters, setting f = fx = fy, s = 0, and (cx, cy) to be at the center of the image, so that we

need to estimate only the focal length parameter f for the intrinsics matrix.

The distortion function models nonlinear distortions in the camera pixel grid. This distortion

is typically modeled with 3 parameters as

D([x, y]) =
x + x k1 x2 + y2 + k2 x2 + y2 2 + k3 x2 + y2 4

y + y k1 x2 + y2 + k2 x2 + y2 2 + k3 x2 + y2 4 .

In practice, we found that the higher-order distortion terms k2 and k3 are often small for

modern cameras, so we assume k2 = k3 = 0 and only estimate a single parameter k1.

Thus, the full mapping may be written as

u = D(APp) .

In total, the camera model involves estimating 8 parameters per camera: 6 for extrinsics, 1

for intrinsics, and 1 for distortion.

For the camera calibration and triangulation methods described below, we define the

projection T from p to u as

T p, θc = u = D(APp),

where θc are the 8 parameters for the camera model of camera c.

Initial estimate of camera parameters—In order to calibrate the cameras and estimate

parameters of the camera models, we start by obtaining an initial estimate of the camera

parameters. We detected calibration board keypoints in videos simultaneously captured from

all cameras. We then initialized intrinsics based on these detections following the algorithm

from Zhang (Zhang, 2000). We initialized the distortion coefficients to zero.

Karashchuk et al. Page 21

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We developed the following method to initialize camera extrinsics from arbitrary locations.

For each pair of cameras, the number of frames in which the board is seen simultaneously

is counted and used to build a graph of cameras. To be specific, each node is a camera, and

edges represent pairs of cameras whose relation we will use to seed the initialization.

The greedy graph construction algorithm is as follows. Starting with the pair of cameras for

which the number of frames the board is simultaneously detected is the largest, connect the

two camera nodes with an edge. Next, proceed with iterations in decreasing order of the

number of boards simultaneously detected. At each iteration, if the two nodes (cameras) are

not already connected through some path, connect them with an edge. Processing iteratively

through all pairs of cameras in this manner, a graph of camera connectivity is produced. Full

3D calibration is possible if and only if the graph is fully connected.

To initialize the extrinsics using this graph, we start with any camera and set its rotation

and translation to zero. Then, we initialize its neighbors from the estimated relative pose of

the calibration board between them using the initial intrinsics. This procedure is continued

recursively until all cameras are initialized. A diagram of the camera initialization for an

example dataset is provided in Figure S1A.

Bundle adjustment—To refine the camera parameters from initial estimates, we

performed a bundle adjustment by implementing a nonlinear least-squares optimization

to minimize the reprojection error (Triggs et al., 2000). Given all uc, j, t, the detected jth

keypoints from the calibration board at cameras c in frames t, we solve for the best camera

parameters θc and 3D points pj, t such that the reprojection loss ℒ is minimized:

ℒ = ∑
c

∑
j

∑
t

E uc, j, t − T pj, t, θc .

Here, E(·) denotes the norm using which the error is computed. This norm may be the

least-squares norm, but in practice, we used a robust norm, such as the Huber or soft ℓ1 norm,

to minimize the influence of outliers.

This optimization is nonlinear because the camera projection function T is nonlinear. We

recognized that it is a nonlinear least-squares problem with a sparse Jacobian and thus

solved it efficiently using the Trust Region Reflective algorithm (Byrd et al., 1988; Branch et

al., 1999), as implemented in SciPy (Virtanen et al., 2020).

Iterative bundle adjustment—When calibrating cameras, we found that outliers have

an outsized impact on calibration results, even when using robust losses such as the Huber

loss or soft ℓ1 loss. Thus, we designed an iterative calibration algorithm, inspired by the

fast global registration algorithm from Zhou et al. (Zhou et al., 2016), which solves a

minimization with a robust loss efficiently through an alternating optimization scheme.

We approximate this alternating optimization in the camera calibration setting through an

iterative threshold scheme. In our algorithm, at each iteration, a reprojection error threshold

is defined and the subset of points uc;i with reprojection error below this threshold is

Karashchuk et al. Page 22

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

chosen. Bundle adjustment is then performed on these points alone. The threshold decreases

exponentially with each iteration, to refine the points to be calibrated. The pseudocode for

the algorithm is listed in Algorithm 1.

Triangulation and 3D filtering—The 3D triangulation task seeks 3D points pj;t for joint j
at frame t, given a set of detected 2D points uc;j;t from cameras c with camera parameters θc.

There are several common methods for solving this triangulation task. Below, we describe 3

of these methods, then describe our method for spatiotemporally constrained triangulation.

For illustration, a comparison of the performance of these methods is shown on an example

dataset in Figure 5.

Linear least-squares triangulation—The first method triangulates 3D points by using

linear least-squares (Hartley and Sturm, 1997). Linear least-squares is the fastest method

for multi-camera triangulation, but it may lead to poor results when the 2D inputs contain

noisy or inaccurate keypoint detections. To be specific, we start with a camera model with

parameters estimated from the calibration procedure described above, so that the extrinsics

matrix Pc, intrinsics matrix Ac, and distortion function Dc are known for each camera c. By

rearranging the camera model, we may write the following relationship:

Dc−1 uc, j, t = AcPcpj, t .

We solved this linear system of equations using the singular value decomposition (SVD)

of the product AcPc to approximate the solutions for the unknown pj, t (Hartley and Sturm,

1997).

Median-filtered least-squares triangulation—As a simple extension of least-square

triangulation to correct some of the noisy detections, we applied a median filter to the

resulting 3D points tracked across frames. This filtering improves the tracking, but at the

cost of losing high frequency dynamics. Furthermore, a median filter does not improve

triangulation if the original tracking is consistently poor.

RANSAC triangulation—Random sample consensus (RANSAC) triangulation aims to

reduce the influence of outlier 2D keypoint detections on the triangulated 3D point,

by finding the subset of keypoint detections that minimizes the reprojection error. We

implemented RANSAC triangulation by triangulating all possible pairs of keypoints

detected from multiple views and picking the resulting 3D point with the smallest

reprojection error.

Karashchuk et al. Page 23

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Formally, let pi, t
a, b be the triangulated 3D point for keypoint j at frame t computed using

the 2D keypoint detections from cameras a and b, then our algorithm finds pj, t using the

following relation:

pj, t = argmin
pj, t

a, b
T pj, t

a, b, θa − ua, j, t 2 +

T pj, t
a, b, θb − ub, j, t 2 .

Spatiotemporally regularized triangulation—We formulated triangulation as an

optimization problem, which allowed us to specify soft spatiotemporal constraints (i.e.,

regularization) on the triangulated points. We propose that the points must satisfy three

soft constraints: (1) the projection of the 3D points onto each camera should be close to

the tracked 2D points, (2) the 3D points should be smooth in time, and (3) the lengths

of specified limbs in 3D should not vary too much. Each of these constraints may be

formulated as a regularization in the full objective function.

First, the reprojection loss is written as

Lproj = ∑
c

∑
j

∑
t

E T pj, t, θc − uc, j, t .

Here, E(·) is a robust norm function such as the Huber or soft-ℓ1 norm, to minimize the

influence of outlier detections.

Second, the temporal loss is formulated as follows:

Ltime = ∑
j

∑
t

pj, t − pj, t − 1 2

We extend this penalty to minimize higher-order (e.g., 2nd or 3rd) finite-difference

derivatives, which produces smoother trajectories but has less impact on important high

frequency dynamics (see Figure S4).

Third, the limb loss may be formulated by adding an additional parameter dl for each limb l,
defined to consist of joints j1 and j2:

Llimb = ∑
l, j1, j2 ∈ limbs

∑
t

pj1, t − pj2, t 2 − dl
dl

2
.

The limb error is normalized relative to the limb length so that each limb contributes equally

to the error.

Given each of the losses above, the overall objective function to minimize may be written as:

Karashchuk et al. Page 24

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ℒ = Lproj + αtime Ltime + αlimb Llimb .

We solve this sparse nonlinear least-squares problem efficiently using the Trust Region

Reflective algorithm (Byrd et al., 1988; Branch et al., 1999), as implemented in SciPy

(Virtanen et al., 2020), similarly to the bundle adjustment optimization. To initialize

the optimization, we use linear least-squares triangulation. When formulated as a sparse

nonlinear least-squares problem, the time and memory requirements of the optimization

scale linearly relative to the number of input time points.

The parameters αtime and αlimb may be tuned to adjust the strength of the temporal or limb

loss, respectively. Note, however, that the temporal loss is in units of distance, which may

vary substantially across datasets. Thus, to standardize these parameters, we break down the

parameter αtime in terms of a user-tunable parameter βtime and an automatically computed

scale γ such that

αtime = βtime γ .

We compute the scale γ as

γ = N
∑j ∑t pj, t − pj, (t − 1) 2

,

where pj, t is an initial estimate obtained from linear least-squares triangulation. We found

that the parameters βtime = 2 and αlimb = 2 work well across a variety of datasets, and

we used these parameters for tracking all four datasets in this manuscript. The user may

additionally specify weaker constraints for the lengths of certain limbs to allow for some

flexibility, such as the shoulder length in humans or the length of the tarsus in flies.

Estimating joint angles—We estimated joint angles from the tracked 3D positions. To

compute the flexion angle defined by the three 3D points surrounding the joint (pi,pj,pk),

where point pj lies at the joint, the angle ϕj is

ϕj = arccos pi − pj ⋅ pk − pj .

To estimate rotation and abduction angles, we solve an inverse kinematics problem treating

the set of limb joints as a kinematic chain. When estimating limb angles from 3D

coordinates of joints, the rotation of a joint is indistinguishable from the abduction of the

next joint in the chain. We observed that fly and human limbs can be approximated to only

have abduction at the joint closest to the body, so we resolve this ambiguity by assuming

that only the first (most proximal) joint may abduct and the last (most distal) joint may not

rotate.

The solution proceeds in two stages. In the first stage, we estimate the absolute rotation

of each joint based on its {x, y, z} coordinate axes. The axes of the first joint match the

Karashchuk et al. Page 25

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

coordinate system for the body. For other joints, the z axis is in the direction of the limb

segment pointing from that joint away from the body, the x axis is in direction of proximal

limb segment (toward the body) orthogonalized to the z axis, and the y axis is the cross

product of the z axis with the x axis. In the second stage, the relative rotation between

joints is computed and transformed to an Euler angle with an order of {z, y, x} for axis

rotations. The rotations about the {z, y, x} axis represent rotation, flexion, and abduction

angles, respectively. For more details of the implementation, see the accompanying code.

Comparison of bundle adjustment algorithms—To evaluate the different bundle

adjustment algorithms (Figures S1B and S1C), we ran the algorithms with different

parameters on the calibration videos from the fly setup. There were 4475 frames where

the calibration board was detected in 2 or more cameras. To demonstrate the usefulness of

our iterative bundle adjustment procedure with lower number of detections, we evaluated

all bundle adjustment algorithms after subsampling the frames with board detections to

313 (7%) and 4475 (100%). At each of these frame counts, we initialized the camera

parameters and then ran our iterative bundle adjustment procedure, as well as traditional

bundle adjustment with a linear least-squares loss, a Huber loss, and soft L1 loss. As the

Huber and soft L1 losses are sensitive to the outlier threshold parameter, we evaluated them

at multiple outlier thresholds on our dataset (Figure S1C). We picked the loss with the best

outlier threshold, as evaluated by the reprojection error at the 75th percentile, to plot in the

main calibration figure. The iterative bundle adjustment procedure was run with the default

parameters in Anipose: Niter = 12,μstart = 15, μend = 1.

Evaluation against physical ground truth—To evaluate the calibration and

triangulation, we compared the accuracy of manual keypoint annotations, neural network

keypoint detections, and OpenCV keypoint detections (Figure 3). The ground truth was

considered to be known physical length and angles of the ChArUco board. The physical

lengths were calculated between all pairs of keypoints by taking the length between the

known positions of pairs of corners. Similarly, the physical angles were estimated between

all triplets of non-collinear keypoints. The sub-pixel OpenCV detections were done using

the Aruco module (Garrido-Jurado et al., 2014). The manual annotation and neural network

methods are detailed above. Given the keypoint detections from each method, we used linear

least-squares triangulation to obtain 3D points and computed angles using the dot product

method detailed above. If a keypoint was detected in fewer than 2 cameras at any time, we

could not triangulate it and therefore did not estimate the error at that frame.

Evaluation of 3D tracking error for different filters—To evaluate the contribution of

2D and 3D filters, we applied each filter and measured the reduction in error. For the 2D

filters, we applied each of the filters (2D median filter, Viterbi filter, and autoencoder filter)

and computed the 3D position using linear least-squares triangulation. We could not train the

autoencoder filter on the human dataset, as the filter relies on occluded keypoints not being

present in the annotated dataset and, due to the nature of the human dataset, all keypoints are

annotated from every view at every frame. When applying the spatiotemporal regularization,

we assumed a low variance in length of the coxa, femur, and tibia in flies and of the arm,

the forearm, pelvis, femur, and tibia in the human. We assumed a slightly higher variance for

Karashchuk et al. Page 26

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the length of the tarsus in each fly and of the neck and shoulders in each human, because

these body segments are more flexible. The parameters for each filter are listed in Table S1.

We measured the error in joint positions and angles relative to those computed from manual

annotations, using the ℓ2 norm. To evaluate the effect of the filter addition, as there was a

lot of variance in error across points, we computed the difference in error for each point

tracked. We treated points with reprojection error above 20 pixels as missing. The procedure

for evaluating the 3D filters was similar, except that we compared the error in joint position

and angle relative to the error from 3D points obtained with a Viterbi filter and autoencoder

filter with linear least-squares triangulation.

Evaluation of derivative error for different filters—To evaluate the contribution of

different 2D and 3D filters to the error in derivative estimation, we applied each filter to

the 3D trajectory of each joint and estimated the derivative by using the finite difference

method. For each joint, each frame, and each filter, we obtain a 3D vector representing a

derivative. We compare the error between this derivative vector and the true derivative vector

from manual annotations by using the ℓ2 norm, as in the previous section.

Evaluation of 3D tracking error for different number of cameras—To evaluate

how the number of cameras contributes to the estimate of error, we ran Anipose on all

combinations of 2, 3, and 4 cameras for the human dataset. We measured the error in joint

position and angles relative to manual annotations as described above. We plotted the mean

error across all joint positions or angles and across all possible combinations of cameras

(Table S2) at each number of cameras.

Evaluation of temporal regularization on synthetic dataset—To evaluate how

minimizing higher order derivatives affects tracking of high frequency movement dynamics,

we evaluated the temporal regularization on a synthetic dataset (Figure S4). We synthesized

30 ground-truth keypoint trajectories, each of length 500, by applying a low-pass filter

with a cutoff of 0.12 cycles/sample on white noise. We then corrupted these trajectories

by adding white noise and removing 10% of the points, simulating observed triangulated

points (for example, as in the “No filters” trace in Figure 5A). We reconstructed the signal

using temporal regularization and minimizing the 1st, 2nd, or 3rd derivative across different

levels of smoothing factor βtime. We estimated the power spectrum of the ground truth,

corrupted, and reconstructed signals by taking the average power spectral density at each

frequency across all 30 simulated trajectories. We estimated the power spectral density using

the Welch’s method as implemented in SciPy (Virtanen et al., 2020). We computed the root

mean squared error (RMSE) between the ground truth and reconstructed signals for each

derivative minimized at different levels of smoothing. We evaluated the RMSE of median

filters with window size of 3 to 25 samples on the same trajectories, and found the median

filter with a window size of 9 samples to have the lowest RMSE, which we plot as a

reference.

Analysis of fly walking kinematics—For the analysis in Figure 7, we used data from

39 wild-type Berlin flies on a spherical treadmill (details of experimental setup above).

We tracked the flies using Anipose with spatiotemporal regularization and Viterbi and

Karashchuk et al. Page 27

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

autoencoder filters. We confirmed by visual inspection and by checking reprojection errors

that all flies were well tracked.

To restrict the data to only walking, we manually labeled fly behavior for a random subset of

videos using the VGG Image Annotation tool (Dutta and Zisserman, 2019). The categories

of behaviors labeled were abdomen grooming, antennae grooming, ball push, ball tapping,

eye grooming, head grooming, standing, t1 grooming, t3 grooming, walking. To detect

walking behavior across the entire dataset, we fit a logistic classifier to predict the type of

behavior. The input data to the classifier for each time point was a chunk of 24 samples

around that time of 3D joint positions and angles and the Fourier transform of the 24

samples of each variable. The confusion matrix for the classifier on a test set is shown in

Figure S6C. The false negative rate was 0%, whereas the false positive rate was about 3%.

To detect bouts of walking, we used the classifier to predict a walking probability for each

sample in a video, applied a mean filter with a window of 16 samples to the probability,

then kept bouts where the probability was above 0.5 for at least 40 consecutive samples. To

further reduce spurious walking bout detections, we removed any bout where the femur-tibia

flexion of the left front and hind legs varied less than 10 degrees over the full bout. We

confirmed with visual inspection that all bouts removed in this way did not include walking.

To perform the UMAP embeddings, we followed a procedure inspired by DeAngelis et

al. (DeAngelis et al., 2019), which mapped the manifold structure of Drosophila walking

from 2D tracking data. We took chunks of 32 samples, advancing by 8 samples, of the

coxa rotation, femur rotation, and femur-tibia flexion angles and their derivatives. Thus, we

obtained a set of vectors of size 1152 (32 samples * 6 legs * 3 angles * 2 raw & derivatives),

which we standardized by subtracting the mean and dividing by the standard deviation

along each dimension. We embedded this set of vectors in 3 dimensions using the UMAP

algorithm (McInnes et al., 2018), with effective minimum distance of 0.4 and 30 neighbors

as parameters. To compute the phase of the step cycle, we applied a band-pass filter (1st

order Butterworth over 3–60Hz) to front left leg femur-tibia flexion and estimated the phase

from the analytic signal obtained using the Hilbert transform.

Analysis of mouse reaching kinematics—In Figures 7 and S7, we analyzed videos

from 4 mice recorded over 2 different days (details of experimental setup above). We tracked

3 keypoints on the hand for each mouse using Anipose with no filters. To obtain accurate 3D

tracking for all trajectories, we removed all points with reprojection error above 10 pixels,

then filled in missing data (about 11% of the data) using linear interpolation. We used the

proximal end of digit 3 as a marker for the overall hand position. Mice 1 and 3 reached

with their left hand, whereas mice 2 and 4 reached with their right hand. Accordingly, we

quantified the movement of the hand each mouse reached with. We labeled the start and end

of each reach, along with the reach type using the Anipose visualizer (Figure 6). To obtain

the 3D position of the pellet holder, we labeled the pellet holder for each mouse and day

from both views using the VGG Image Annotation tool (Dutta and Zisserman, 2019), then

triangulated the labeled points for each pair of views using aniposelib. We measured the

distance of the hand (proximal end of digit 3) to the pellet holder by using the ℓ2 norm.

Karashchuk et al. Page 28

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Analysis of human walking kinematics—In Figures 7 and S7, we analyzed videos

from all 7 publicly available subjects in the Human 3.6M dataset (dataset described above).

We tracked 17 keypoints for each human using Anipose with spatiotemporal regularization

and Viterbi filters.

To focus on walking, we restricted our analysis on the “Walking-1,” “Walking-2,”

“WalkingTogether-1,” and “WalkingTogether-2” actions in the dataset. We estimated the

knee flexion, hip flexion, and hip rotation angles as described in the “Estimating joint

angles” section above. For the UMAP embedding, we followed a procedure similar to our

analysis of fly kinematics. Specifically, we took chunks of 24 samples, advancing by 8

samples, of the knee flexion, hip rotation, and hip flexion angles and their derivatives.

Thus, we obtained a set of vectors of size 288 (24 samples * 2 legs * 3 angles * 2 raw &

derivatives), which we standardized by subtracting the mean and dividing by the standard

deviation along each dimension. We embedded this set of vectors in 3 dimensions using the

UMAP algorithm (McInnes et al., 2018), with effective minimum distance of 0.4 and 30

neighbors as parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank Su-Yee Lee and Chris Dallmann for help with annotating keypoints on flies, John So for help with
annotating keypoints on the ChArUco board, and Sam Mak for help with annotating mice keypoints and fly
behavior. We thank Stephen Huston for loan of his calibration board and Julian Pitney for contributing code to
check calibration board detections to Anipose. Finally, we thank the Tuthill and Brunton labs and Mackenzie and
Alexander Mathis for support, suggestions, and feedback on the manuscript. P.K. was supported by a National
Science Foundation Graduate Research Fellowship. K.L.R. was supported by fellowships from the University
of Washington’s Institute for Neuroengineering (UWIN) and Center for Neurotechnology (CNT). E.S.D. was
supported by a fellowship from University of Washington’s Institute for Neuroengineering. E.S. was supported by
the National Institutes of Health (F31NS115477). E.A. was supported by the National Institutes of Health (R00
NS088193, DP2NS105555, R01NS111479, and U19NS112959), the Searle Scholars Program, The Pew Charitable
Trusts, and the McKnight Foundation. B.W.B. was supported by a Sloan Research Fellowship and the Washington
Research Foundation. J.C.T. was supported by the Searle Scholar Program, the Pew Biomedical Scholar Program,
the McKnight Foundation, and National Institute of Health grants R01NS102333 and U19NS104655. J.C.T. is a
New York Stem Cell Foundation - Robertson Investigator.

REFERENCES

Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y-C, Campagnola L,
Seeman SC, Yu J, et al. (2019). Bright and photostable chemigenetic indicators for extended in vivo
voltage imaging. Science 365, 699–704. [PubMed: 31371562]

Agarwal S, Furukawa Y, Snavely N, Simon I, Curless B, Seitz SM, and Szeliski R (2011). Building
Rome in a day. Commun. ACM 54, 105–112.

Alexander DE (2017). Nature’s Machines: An Introduction to Organismal Biomechanics, First Edition
(Academic Press).

Amin S, Andriluka M, Rohrbach M, and Schiele B (2013). Multi-view Pictorial Structures for 3D
Human Pose Estimation. In Proceedings of the British Machine Vision Conference 2013 (British
Machine Vision Association, Bristol), 45.1–45.11.

Aminzare Z, Srivastava V, and Holmes P (2018). Gait Transitions in a Phase Oscillator Model of an
Insect Central Pattern Generator. SIAM J. Appl. Dyn. Syst 17, 626–671.

Karashchuk et al. Page 29

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Azevedo AW, Dickinson ES, Gurung P, Venkatasubramanian L, Mann RS, and Tuthill JC (2020).
A size principle for recruitment of Drosophila leg motor neurons. eLife 9, e56754. [PubMed:
32490810]

Azim E, Jiang J, Alstermark B, and Jessell TM (2014). Skilled reaching relies on a V2a propriospinal
internal copy circuit. Nature 508, 357–363. [PubMed: 24487617]

Bala PC, Eisenreich BR, Yoo SBM, Hayden BY, Park HS, and Zimmermann J (2020). Automated
markerless pose estimation in freely moving macaques with OpenMonkeyStudio. Nat. Commun 11,
4560. [PubMed: 32917899]

Balbinot G, Schuch CP, Jeffers MS, McDonald MW, Livingston-Thomas JM, and Corbett D (2018).
Post-stroke kinematic analysis in rats reveals similar reaching abnormalities as humans. Sci. Rep 8,
8738. [PubMed: 29880827]

Becker MI, and Person AL (2019). Cerebellar Control of Reach Kinematics for Endpoint Precision.
Neuron 103, 335–348. [PubMed: 31174960]

Bender JA, Simpson EM, and Ritzmann RE (2010). Computer-assisted 3D kinematic analysis of all leg
joints in walking insects. PLoS ONE 5, e13617. [PubMed: 21049024]

Berendes V, Zill SN, Büschges A, and Bockemühl T (2016). Speed-dependent interplay between local
pattern-generating activity and sensory signals during walking in Drosophila. J. Exp. Biol 219,
3781–3793. [PubMed: 27688052]

Berman GJ, Choi DM, Bialek W, and Shaevitz JW (2014). Mapping the stereotyped behaviour of
freely moving fruit flies. J. R. Soc. Interface 11, 20140672. [PubMed: 25142523]

Bernstein JG, Garrity PA, and Boyden ES (2012). Optogenetics and thermogenetics: technologies for
controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol 22,
61–71. [PubMed: 22119320]

Bidaye SS, Bockemühl T, and Büschges A (2018). Six-legged walking in insects: how CPGs,
peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms.
J. Neurophysiol 119, 459–475. [PubMed: 29070634]

Bradski G (2000). The OpenCV Library. Dr. Dobbs J Softw. Tools Prof. Program

Branch MA, Coleman TF, and Li Y (1999). A subspace, interior, and conjugate gradient method for
large-scale bound-constrained minimization problems. SIAM J. Sci. Comput 21, 1–23.

Branson K, Robie AA, Bender J, Perona P, and Dickinson MH (2009). High-throughput ethomics in
large groups of Drosophila. Nat. Methods 6, 451–457. [PubMed: 19412169]

Buchner E (1976). Elementary movement detectors in an insect visual system. Biological Cybernetics
24, 85–101.

Byrd RH, Schnabel RB, and Shultz GA (1988). Approximate solution of the trust region problem by
minimization over two-dimensional subspaces. Math. Program 40, 247–263.

Cao Z, Hidalgo G, Simon T, Wei SE, and Sheikh Y (2021). OpenPose: Realtime Multi-Person 2D
Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell 43, 172–186.
[PubMed: 31331883]

Cheng Y, Yang B, Wang B, Wending Y, and Tan R (10. 2019). Occlusion-Aware Networks for 3D
Human Pose Estimation in Video. ICCV, 723–732.

Chiba H, Ebihara S, Tomita N, Sasaki H, and Butler JP (2005). Differential gait kinematics between
fallers and non-fallers in community-dwelling elderly people. Geriatr. Gerontol. Int 5, 127–134.

D’Hooge R, and De Deyn PP (2001). Applications of the Morris water maze in the study of learning
and memory. Brain Res. Brain Res. Rev 36, 60–90. [PubMed: 11516773]

Dallmann CJ, Karashchuk P, Brunton BW, and Tuthill JC (2021). A leg to stand on: Computational
models of proprioception. Curr. Opin. Physiol 21, 100426.

Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, Tsegaye G, Tsang A, Wong A, Patel R,
et al. (2019). High-performance calcium sensors for imaging activity in neuronal populations and
microcompartments. Nat. Methods 16, 649–657. [PubMed: 31209382]

DeAngelis BD, Zavatone-Veth JA, and Clark DA (2019). The manifold structure of limb coordination
in walking Drosophila. eLife 8, e46409. [PubMed: 31250807]

Dong J, Jiang W, Huang Q, Bao H, and Zhou X (2019). Fast and Robust Multi-Person 3D Pose
Estimation from Multiple Views. arXiv, 1901.04111.

Karashchuk et al. Page 30

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dunn TW, Marshall JD, Severson KS, Aldarondo DE, Hildebrand DGC, Chettih SN, Wang WL, Gellis
AJ, Carlson DE, Aronov D, et al. (2021). Geometric deep learning enables 3D kinematic profiling
across species and environments. Nat. Methods 18, 564–573. [PubMed: 33875887]

Dutta A, and Zisserman A (2019). The VIA annotation software for images, audio and video.
Proceedings of the 27th ACM International Conference on Multimedia. MM ‘19. (ACM).

Dutta A, Gupta A, and Zissermann A (2016). VGG image annotator (VIA). https://
www.robots.ox.ac.uk/~vgg/software/via/.

Esposito MS, Capelli P, and Arber S (2014). Brainstem nucleus MdV mediates skilled forelimb motor
tasks. Nature 508, 351–356. [PubMed: 24487621]

Farr TD, and Whishaw IQ (2002). Quantitative and qualitative impairments in skilled reaching in
the mouse (Mus musculus) after a focal motor cortex stroke. Stroke 33, 1869–1875. [PubMed:
12105368]

Forney DG (1973). The viterbi algorithm. Proc. IEEE 61, 268–278.

Frantsevich L, and Wang W (2009). Gimbals in the insect leg. Arthropod Struct. Dev 38, 16–30.
[PubMed: 18765299]

Fukuchi CA, Fukuchi RK, and Duarte M (2018). A public dataset of over-ground and treadmill
walking kinematics and kinetics in healthy individuals. PeerJ 6, e4640. [PubMed: 29707431]

Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, and Marín-Jiménez MJ (2014). Automatic
generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47,
2280–2292.

Goldsmith CA, Szczecinski NS, and Quinn RD (2020). Neurodynamic modeling of the fruit fly
Drosophila melanogaster. Bioinspir. Biomim 15, 065003. [PubMed: 32924978]

Götz KG (1973). Visual control of locomotion in the walking fruitfly Drosophila. J. Comp. Physiol 85,
235–266.

Graving JM, Chae D, Naik H, Li L, Koger B, Costelloe BR, and Couzin ID((2019). Deepposekit, a
software toolkit for fast and robust animal pose estimation using deep learning. eLife 8, e47994.
[PubMed: 31570119]

Günel S, Rhodin H, Morales D, Campagnolo J, Ramdya P, and Fua P (2019). Deepfly3d, a deep
learning-based approach for 3d limb and appendage tracking in tethered, adult Drosophila. eLife 8,
e48571. [PubMed: 31584428]

Guo J-Z, Graves AR, Guo WW, Zheng J, Lee A, Rodríguez-González J, Li N, Macklin JJ, Phillips
JW, Mensh BD, et al. (2015). Cortex commands the performance of skilled movement. eLife 4,
e10774. [PubMed: 26633811]

Halberstadt J, Jackson JC, Bilkey D, Jong J, Whitehouse H, McNaughton C, and Zollmann S (2016).
Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking. PLoS ONE 11, e0149880.
[PubMed: 27007952]

Hartley RI, and Sturm P (1997). Triangulation. Comput. Vis. Image Underst 68, 146–157.

He K, Zhang X, Ren S, and Sun J (2016). Deep Residual Learning for Image Recognition. arXiv,,
1512.03385.

Hu D, DeTone D, Chauhan V, Spivak I, and Malisiewicz T (12. 2018). Deep ChArUco: Dark ChArUco
Marker Pose Estimation. arXiv, 1812.03247.

Insafutdinov E, Pishchulin L, Andres B, Andriluka M, and Schiele B (2016). Deepercut: A deeper,
stronger, and faster multi-person pose estimation model. arXiv, 1605.03170.

Ionescu C, Li F, and Sminchisescu C (2011). Latent structured models for human pose estimation. In:
International Conference on Computer Vision. 10.1109/ICCV.2011.6126500.

Ionescu C, Papava D, Olaru V, and Sminchisescu C (2014). Human3.6m: Large scale datasets and
predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal.
Mach. Intell 36, 1325–1339. [PubMed: 26353306]

Iskakov K, Burkov E, Lempitsky V, and Malkov Y (2019). Learnable triangulation of human pose. In:
International Conference on Computer Vision. 10.1109/ICCV.2019.00781.

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei
A, Aydın Ç, et al. (2017). Fully integrated silicon probes for high-density recording of neural
activity. Nature 551, 232–236. [PubMed: 29120427]

Karashchuk et al. Page 31

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.robots.ox.ac.uk/~vgg/software/via/
https://www.robots.ox.ac.uk/~vgg/software/via/

Kane GA, Lopes G, Saunders JL, Mathis A, and Mathis MW (2020). Real-time, low-latency closed
loop feedback using markerless posture tracking. eLife 9, e61909. [PubMed: 33289631]

Kingma DP, and Ba J (1. 2017). Adam: A Method for Stochastic Optimization. arXiv, 1412.6980.

Koch SC, Del Barrio MG, Dalet A, Gatto G, Günther T, Zhang J, Seidler B, Saur D, Schüle R, and
Goulding M (2017). RORβ spinal interneurons gate sensory transmission during locomotion to
secure a fluid walking gait. Neuron 96, 1419–1431. [PubMed: 29224725]

Kuan AT, Phelps JS, Thomas LA, Nguyen TM, Han J, Chen C-L, Azevedo AW, Tuthill JC,
Funke J, Cloetens P, et al. (2020). Dense neuronal reconstruction through X-ray holographic
nano-tomography. Nat. Neurosci 23, 1637–1643. [PubMed: 32929244]

Low AYT, Thanawalla AR, Yip AKK, Kim J, Wong KLL, Tantra M, Augustine GJ, and Chen AI
(2018). Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal
Subpopulation in the Interposed Anterior Nucleus. Cell Rep. 22, 2322–2333. [PubMed: 29490269]

Machado AS, Darmohray DM, Fayad J, Marques HG, and Carey MR (2015). A quantitative
framework for whole-body coordination reveals specific deficits in freely walking ataxic mice.
eLife, e07892. [PubMed: 26433022]

Mamiya A, Gurung P, and Tuthill JC (2018). Neural Coding of Leg Proprioception in Drosophila.
Neuron 100, 636–650. [PubMed: 30293823]

Maniates-Selvin JT, Hildebrand DGC, Graham BJ, Kuan AT, Thomas LA, Nguyen T, Buhmann J,
Azevedo AW, Shanny BL, Funke J, et al. (2020). Reconstruction of motor control circuits in adult
Drosophila using automated transmission electron microscopy. bioRxiv, 2020.01.10.902478.

Marshall JD, Aldarondo DE, Dunn TW, Wang WL, Berman GJ, and Ölveczky BP (2021). Continuous
whole-body 3d kinematic recordings across the rodent behavioral repertoire. Neuron 109, 420–
437. [PubMed: 33340448]

Martinez J, Hossain R, Romero J, and Little JJ (2017). A simple yet effective baseline for 3d human
pose estimation. In International Conference on Computer Vision. 10.1109/ICCV.2017.288.

Mathis MW, and Mathis A (2020). Deep learning tools for the measurement of animal behavior in
neuroscience. Curr. Opin. Neurobiol 60, 1–11. [PubMed: 31791006]

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, and Bethge M (2018).
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat.
Neurosci 21, 1281–1289. [PubMed: 30127430]

Mathis A, Schneider S, Lauer J, and Mathis MW (2020). A Primer on Motion Capture with Deep
Learning: Principles, Pitfalls, and Perspectives. Neuron 108, 44–65. [PubMed: 33058765]

McInnes L, Healy J, Saul N, and Grossberger L (2018). Umap: Uniform manifold approximation and
projection. J. Open Source Softw 3, 861.

Mendes CS, Bartos I, Akay T, Márka S, and Mann RS (2013). Quantification of gait parameters
in freely walking wild type and sensory deprived Drosophila melanogaster. eLife 2, e00231.
[PubMed: 23326642]

Murphy D (2019). Markerless 3d pose estimation from RGB data. Bachelor’s thesis (Brown
University).

Nath T, Mathis A, Chen AC, Patel A, Bethge M, and Mathis MW (2019). Using DeepLabCut for 3D
markerless pose estimation across species and behaviors. Nat. Protoc 14, 2152–2176. [PubMed:
31227823]

Núñez JC, Cabido R, Vélez JF, Montemayor AS, and Pantrigo JJ (2019). Multiview 3D human pose
estimation using improved least-squares and LSTM networks. Neurocomputing 323, 335–343.

Olton DS (1979). Mazes, maps, and memory. Am. Psychol 34, 583–596. [PubMed: 484923]

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, et al. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res
12, 2825–2830.

Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SS-H, Murthy M, and Shaevitz JW (2019).
Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–125. [PubMed:
30573820]

Pereira TD, Tabris N, Li J, Ravindranath S, Papadoyannis ES, Wang ZY, Turner DM, McKenzie
Smith G, Kocher SD, Falkner AL, et al. (9. 2020). SLEAP: Multi-animal pose tracking. bioRxiv,
2020.08.31.276246.

Karashchuk et al. Page 32

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Richardson A, Strom J, and Olson E (2013). AprilCal: Assisted and repeatable camera calibration. In
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IEEE, Tokyo), pp.
1814–1821.

Rinehart NJ, Bellgrove MA, Tonge BJ, Brereton AV, Howells-Rankin D, and Bradshaw JL (2006).
An Examination of Movement Kinematics in Young People with High-functioning Autism and
Asperger’s Disorder: Further Evidence for a Motor Planning Deficit. J. Autism Dev. Disord.
Disorders 36, 757–767.

Roberts M, Mongeon D, and Prince F (2017). Biomechanical parameters for gait analysis: A
systematic review of healthy human gait. Phys. Ther. Rehabil 4, 6.

Sárándi I, Linder T, Arras KO, and Leibe B (2018). Synthetic Occlusion Augmentation with
Volumetric Heatmaps for the 2018 ECCV PoseTrack Challenge on 3D Human Pose Estimation.
arXiv, 1809.04987.

Saunders JL, and Wehr M (2019). Autopilot: Automating behavioral experiments with lots of
raspberry pis. bioRxiv. 10.1101/807693.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B, et al. (2012). Fiji: an open-source platform for biological-image analysis.
Nat. Methods 9, 676–682. [PubMed: 22743772]

Schönberger JL (2018). Robust Methods for Accurate and Efficient 3D Modeling from Unstructured
Imagery. Doctoral Thesis (ETH Zurich).

Schwager M, Detweiler C, Vasilescu I, Anderson DM, and Rus D (2008). Data-driven identification of
group dynamics for motion prediction and control. J. Field Robot 25, 305–324.

Seethapathi N, Wang S, Saluja R, Blohm G, and Kording KP (2019). Movement science needs
different pose tracking algorithms. arXiv, 1907.10226.

Solaro C, Brichetto G, Casadio M, Roccatagliata L, Ruggiu P, Mancardi GL, Morasso PG, Tanganelli
P, and Sanguineti V (2007). Subtle upper limb impairment in asymptomatic multiple sclerosis
subjects. Mult. Scler 13, 428–432. [PubMed: 17439914]

Souza RB (2016). An Evidence-Based Videotaped Running Biomechanics Analysis. Phys. Med.
Rehabil. Clin. N. Am 27, 217–236. [PubMed: 26616185]

Stolze H, Klebe S, Baecker C, Zechlin C, Friege L, Pohle S, and Deuschl G (2005). Prevalence of gait
disorders in hospitalized neurological patients. Mov. Disord 20, 89–94. [PubMed: 15390043]

Tippett WJ, Krajewski A, and Sergio LE (2007). Visuomotor integration is compromised in
Alzheimer’s disease patients reaching for remembered targets. Eur. Neurol 58, 1–11. [PubMed:
17483579]

Triggs B, McLauchlan PF, Hartley RI, and Fitzgibbon AW (2000). Bundle adjustment — a modern
synthesis. In Vision Algorithms: Theory and Practice. Vol. 1883, Triggs B, Zisserman A, and
Szeliski R, eds., eds. (Springer), pp. 298–372.

Tzschentke TM (2007). Measuring reward with the conditioned place preference (CPP) paradigm:
update of the last decade. Addict. Biol 12, 227–462. [PubMed: 17678505]

Ummenhofer B, Zhou H, Uhrig J, Mayer N, Ilg E, Dosovitskiy A, and Brox T (7. 2017). DeMoN:
Depth and Motion Network for Learning Monocular Stereo. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5622–5631. 10.1109/CVPR.2017.596.

van Breugel F, Kutz JN, and Brunton BW (2020). Numerical differentiation of noisy data: A unifying
multi-objective optimization framework. IEEE Access 8, 196865–196877. [PubMed: 33623728]

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,
Weckesser W, Bright J, et al. ; SciPy 1.0 Contributors (2020). SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat. Methods 17, 261–272. [PubMed: 32015543]

Windolf M, Götzen N, and Morlock M (2008). Systematic accuracy and precision analysis of video
motion capturing systems–exemplified on the Vicon-460 system. J. Biomech 41, 2776–2780.
[PubMed: 18672241]

Wittwer JE, Webster KE, and Menz HB (2010). A longitudinal study of measures of walking in people
with Alzheimer’s Disease. Gait Posture 32, 113–117. [PubMed: 20447826]

Wu Y, et al. (2016). Tensorpack https://github.com/tensorpack/.

Karashchuk et al. Page 33

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/tensorpack/

Wu A, Buchanan EK, Whiteway MR, Schartner M, Meijer G, Noel J-P, Rodriguez E, Everett C,
Norovich A, Schaffer E, et al. (10. 2020). Deep Graph Pose: A semi-supervised deep graphical
model for improved animal pose tracking. bioRxiv, 2020.08.20.259705.

Yang W, Ouyang W, Li H, and Wang X (6. 2016). End-to-End Learning of Deformable Mixture of
Parts and Deep Convolutional Neural Networks for Human Pose Estimation. (CVPR), pp. 3073–
3082.

Yao Y, Jafarian Y, and Park HS (2019). MONET: Multiview semi-supervised keypoint detection
via epipolar divergence. In International Conference on Computer Vision (ICCV). 10.1109/
ICCV.2019.00084.

York RA, Giocomo LM, and Clandinin TR (2020). TREBLE: A generalizable framework for high
throughput behavioral analysis. bioRxiv, 2020.09.30.321406.

Zhang Z (2000). A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach.
Intell 22, 1330–1334.

Zhang L, Dunn T, Marshall J, Olveczky B, and Linderman S (2021). Animal pose estimation from
video data with a hierarchical von Mises-Fisher-Gaussian model. In International Conference on
Artificial Intelligence and Statistics (PMLR), pp. 2800–2808.

Zhou Q-Y, Park J, and Koltun V (2016). Fast global registration https://link.springer.com/
10.1007/978-3-319-46475-6_47.

Zhou X, Huang Q, Sun X, Xue X, and Wei Y (2017). Towards 3D Human Pose Estimation in the Wild:
A Weakly-supervised Approach. arXiv, 1704.02447.

Zimmermann C, Schneider A, Alyahyay M, Brox T, and Diester I (2020). FreiPose: A
Deep Learning Framework for Precise Animal Motion Capture in 3D Spaces. bioRxiv.
10.1101/2020.02.27.967620.

Karashchuk et al. Page 34

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://link.springer.com/10.1007/978-3-319-46475-6_47
https://link.springer.com/10.1007/978-3-319-46475-6_47

Highlights

• Open-source Python toolkit for 3D animal pose estimation, with DeepLabCut

support

• Enables camera calibration, filtering of trajectories, and visualization of

tracked data

• Tracking evaluation on calibration board, fly, mouse, and human datasets

• Identifies a role for joint rotation in motor control of fly walking

Karashchuk et al. Page 35

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1. Four experimental datasets were used for evaluating 3D calibration and tracking with
Anipose
(A) To evaluate tracking errors, a 2×2mm precision manufactured ChArUco board was

simultaneously filmed from 6 cameras focused on the same point in space. We manually

annotated and tracked 9 keypoints on the ChArUco board, a subset of the points that can be

detected automatically with OpenCV.

(B) Adult mice were trained to reach for food pellets through an opening in a clear

acrylic box. After training, reach attempts were captured from 2 cameras. To quantify reach

kinematics, we labeled and tracked 3 keypoints on each hand.

(C) Fruit flies were tethered and positioned on a spherical treadmill, where they were able

to walk, groom, etc. Fly behavior was filmed from 6 cameras evenly distributed around the

treadmill. We labeled and tracked 5 keypoints on each of the 6 legs, one keypoint for each of

the major leg joints.

Karashchuk et al. Page 36

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(D) As part of the Human 3.6M dataset, professional actors performing a range of actions

were filmed from 4 cameras. We tracked 17 joints on each human, covering the major joints

of the human body.

Karashchuk et al. Page 37

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2. Overview of the Anipose 3D tracking pipeline
(A) The user collects simultaneous video of a calibration board from multiple cameras.

(B) Calibration board keypoints are detected from calibration videos and processed

to calculate intrinsic and extrinsic parameters for each camera using iterative bundle

adjustment (see Figure S1).

(C) With the same hardware setup as in (A), the user collects behavior videos.

(D) Behavior videos are processed by a neural network (e.g., DeepLabCut) to detect 2D

keypoints.

(E) 2D keypoints are refined with 2D filters to obtain refined 2D detections (Figure 4).

(F) The filtered 2D keypoints are triangulated to estimate 3D poses.

(G) The estimated 3D poses are passed through an additional spatiotemporal filtering step to

obtain refined 3D poses (Figure 5).

(H) Joint angles are extracted from the refined 3D poses for further analysis.

Karashchuk et al. Page 38

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3. Anipose can consistently estimate positions and angles of keypoints across four
different datasets
(A) We identified 9 corners as keypoints on the ChArUco board in 200 frames from each of

6 cameras.

(B) For comparison, we used manual annotation of the same ChArUco board dataset to train

a neural network. We then compared tracking errors of the manual annotations, the neural

network, and OpenCV.

(C) Error in manually annotated keypoints relative to the sub-pixel precision of OpenCV

detections. Manually annotated keypoints had a mean error of (0.52, −0.75) pixels and

standard deviation of (2.57, 2.39) pixels.

(D) Lengths between all possible pairs of keypoints were computed and compared to the

physical lengths. Similarly, all possible angles between triplets of keypoints were computed

and compared to known physical angles. OpenCV keypoints provided the most reliable

estimates, followed by neural network predictions, then manual annotations. Note that

OpenCV generally detected only a small fraction of the keypoints detected by the neural

network or through manual annotation (19.3% of frames had keypoints detected by OpenCV,

compared to 78.1% by the neural network and 75% by manual annotations). (E) At this

Karashchuk et al. Page 39

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

stage, prior to filtering, outlier and missing keypoint detections are apparent. Shown at left

is an example trace of the tracked 3D position of the base of the mouse hand, projected

onto the direction of the reach. On the right, we quantified the distribution of errors when

estimating all joint positions and angles, relative to manual annotations. For the mouse

dataset, 1 pixel corresponds to approximately 0.09 mm.

(F) Same layout as (A), but for 3D position of the fly hind-leg tibia-tarsus joint, projected

onto the longitudinal axis of the fruit fly. For the fly dataset, 1 pixel ≈ .0075 mm.

(G) Same layout as (A), but for tracked 3D position of a human wrist, projected onto an

arbitrary axis. Note that the human (and their wrist) is moving throughout the room. For the

human dataset, 1 pixel ≈ 4.8 mm.

Karashchuk et al. Page 40

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4. 2D filters improve accuracy of 2D pose estimation by taking advantage of the temporal
structure of animal behavior
(A) An example trace of the x coordinate of the 2D position of a fly’s tibia-tarsus joint

before and after each step in filtering. Filtering reduces spurious jumps while preserving

correct keypoint detections. See Figure S2 for a demonstration of the autoencoder filter.

(B) Comparison of error in joint position before and after filtering. The mean difference in

error for the same tracked points is plotted, along with the 95% confidence interval. Viterbi

and autoencoder filters significantly improved the estimation of joint position in flies (p <

0:001, paired t test). The Viterbi filter significantly improved estimation of joint position in

humans (p < 0:001, paired t test). For the fly dataset, 1 pixel ≈.0075 mm. For the human

dataset, 1 pixel ≈4.8 mm. The absolute error values are indicated in parentheses above the 0

tick mark for each dataset.

(C) Comparison of angle estimates before and after filtering. The mean difference is plotted

as in

(B). Viterbi and autoencoder filters significantly improved the estimation of angles in flies

and humans (p < 0:001, paired t test).

The results in (B) and (C) are evaluated on a validation dataset withheld from the training

(1,200 frames for the fly, 8,608 frames for the humans). See Table S1 for filter parameters.

Karashchuk et al. Page 41

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5. Spatiotemporal filters further improve 3D pose estimation
See Figure S3 for example angle and segment length traces with different filters. See Figure

S4 for detailed evaluation of temporal regularization on a synthetic dataset.

(A) An example trace of the tracked 3D position of the fly tibia-tarsus joint, before and after

filtering. To plot a single illustrative position value, the 3D x-y-z coordinate is projected onto

the longitudinal axis of the fly. Also included are comparisons with standard 3D filtering

algorithms RANSAC and a 3D median filter, along with manual annotations. Filtering leads

to reduction of sudden jumps and keypoint jitters, even compared to 2D filters alone.

(B) An example trace of the derivative of the 3D position of the fly tibia-tarsus joint, before

and after filtering. To plot a single illustrative derivative value, the 3D x-y-z joint coordinates

is projected onto the longitudinal axis of the fly. Spatiotemporal regularization produces

smooth derivative estimates, which are closer to the manual annotations compared to other

filtering approaches.

Karashchuk et al. Page 42

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(C) Comparison of error in joint position before and after filtering. The mean difference in

error for the same tracked points is plotted, along with the 95% confidence interval. The

absolute error values are indicated in parentheses above the 0 tick mark for each dataset. The

2D filters are the Viterbi filter followed by the autoencoder for the fly dataset and Viterbi

filter alone for the human dataset. Spatiotemporal regularization improves the estimation of

joint position significantly above 2D filters in both datasets (p, 0.001, paired t test). The 3D

median filter improves pose estimation on the human dataset (p, 0.001, paired t test) but

not on the fly dataset. RANSAC triangulation does not improve pose estimation for either

dataset. For the fly dataset, 1 pixel corresponds to 0.0075 mm. For the human dataset, 1

pixel corresponds to 4.8 mm.

(D) Comparison of error in joint position derivative before and after filtering. The mean

difference in error for the same tracked points is plotted, along with the 95% confidence

interval. The absolute error values are indicated in parentheses above the 0 tick mark for

each dataset. The 2D filters are the Viterbi filter followed by the autoencoder for the fly

dataset and Viterbi filter alone for the human dataset. For the human dataset, due to the large

number of labeled points, the confidence intervals are smaller than the size of the points.

Adding filters significantly improves the estimate of the derivative.

Karashchuk et al. Page 43

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6. A web tool for visualizing 3D kinematics tracked with Anipose, taking advantage of the
Anipose file structure shown in Figure S5
The videos from all views are displayed synchronously, with overlaid projections of 3D

keypoints from Anipose. To the right of the videos, a dynamic 3D visualization allows the

user to interact with the 3D keypoints by rotating or zooming in. Above the videos, the user

can alter the playback speed or jump to different time points in the video. The user can also

annotate the behavior of the animal for further analysis. Menus at the top allow the user to

select specific recording dates, experimental trials, or filter trials by a specific behavior.

Karashchuk et al. Page 44

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7. 3D tracking of fly walking reveals difference in rotation and flexion angles across legs
3D tracking enables quantification of fly, mouse, and human joint position and angles to

reveal structure in behavior.

(A–E) 3D tracking of fly walking reveals difference in rotation and flexion angles across

legs. See Figure S6 for analyses across all angles.

(A) Representative traces of coxa rotation, femur rotation, and femur-tibia flexion angles

from tethered-walking flies. The median angle value is indicated for each angle as a

reference point.

(B) Probability distribution functions of coxa rotation, femur rotation, and femur-tibia

flexion angles from 39 flies (1,480 total seconds of walking). Only walking bouts are

included. The distribution of femur-tibia flexion angles is broader for the front and rear legs,

whereas the distribution of femur rotation angles is broader for the middle legs.

Karashchuk et al. Page 45

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(C) UMAP embedding of coxa rotation, femur rotation, femur-tibia flexion angles across all

legs, and their derivatives. Axis units are arbitrary. Although each fly has a characteristic

gait, there is a continuum across most flies, with some flies offset from the rest.

(D) UMAP embedding as in (C), colored by the phase of the step cycle, revealing the match

between the circular structure of the embedding and the step phase.

(E) UMAP embedding as in (C), colored by front-right leg femur-tibia flexion and femur

rotation, and middle right leg femur-tibia flexion and femur rotation. Across multiple flies,

the dynamics of the middle legs are dominated by femur rotation, whereas the dynamics of

the front legs are dominated by femur-tibia flexion.

(F) Example 3D trajectories of a mouse reaching for a food pellet. The pellet is indicated as

a black dot.

(G) Mean distance to pellet holder as a function of time across all 4 mice (88 hits, 69 bumps,

28 misses). Shaded areas are 95% confidence intervals. When reaches are aligned to the

grasp attempt (0 ms), the hand is farther from the pellet holder on miss trials compared to hit

or bump trials. Averaging across all mice reveals a clear difference between reach types.

(H) Representative trace of knee flexion from a walking human, tracked with Anipose. Data

are from the Human 3.6M dataset. The median angle value is indicated at left as a reference

point.

(I) Probability distribution function of knee flexion angle from 7 humans. Only sessions that

include walking are included.

(J) UMAP embedding of knee flexion, hip rotation, and hip flexion angles across all

legs, and their derivatives. Axis units are arbitrary. Although each human subject has a

characteristic gait, most of the walking patterns map onto a common cylinder manifold.

(K) UMAP embedding as in (E) but colored by knee flexion for each leg. Coloring by knee

flexion angle reveals the common phase alignment of the circles across subjects. See also

Figures S6 and S7.

Karashchuk et al. Page 46

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karashchuk et al. Page 47

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data This paper https://doi.org/10.5061/dryad.nzs7h44s4

Human 3.6M dataset Ionescu et al., 2014 http://vision.imar.ro/human3.6m/description.php

Experimental models: Organisms/strains

Mouse: C57BL/6 mice The Jackson Laboratory JAX: 000664; RRID:IMSR_JAX:000664

D. melanogaster: Berlin K Bloomington RRID:BDSC_8522

Software and algorithms

Anipose This paper https://doi.org/10.5281/zenodo.5224213

Cell Rep. Author manuscript; available in PMC 2021 October 08.

http://vision.imar.ro/human3.6m/description.php

	SUMMARY
	Graphical Abstract
	In brief
	INTRODUCTION
	RESULTS
	Robust calibration of multiple camera views
	Accurate reconstruction of physical lengths and angles in 3D
	Animal tracking in 3D
	Addition of filters to improve tracking accuracy
	Refining keypoints in 2D
	Refining poses and trajectories in 3D
	Improving estimation of derivatives

	Structured processing of videos
	Visualization of tracking
	3D tracking with Anipose provides insights into motor control of Drosophila walking
	Analysis of 3D mouse reaching and human walking kinematics

	DISCUSSION
	Impact of robust markerless 3D tracking
	Insights into the motor control of Drosophila walking
	Potential for future improvement based on related work
	Limitations and practical recommendations
	Outlook

	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Mouse
	Fly
	Human

	METHOD DETAILS
	ChArUco dataset
	Mouse dataset
	Fly dataset
	Human dataset
	Manual annotation of datasets

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Neural network keypoint detections
	Filtering of 2D keypoint detections
	Median filter
	Viterbi filter
	Autoencoder filter

	Camera model
	Initial estimate of camera parameters
	Bundle adjustment
	Iterative bundle adjustment
	Triangulation and 3D filtering
	Linear least-squares triangulation
	Median-filtered least-squares triangulation
	RANSAC triangulation
	Spatiotemporally regularized triangulation
	Estimating joint angles
	Comparison of bundle adjustment algorithms
	Evaluation against physical ground truth
	Evaluation of 3D tracking error for different filters
	Evaluation of derivative error for different filters
	Evaluation of 3D tracking error for different number of cameras
	Evaluation of temporal regularization on synthetic dataset
	Analysis of fly walking kinematics
	Analysis of mouse reaching kinematics
	Analysis of human walking kinematics

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

