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ABSTRACT
Introduction  The purpose of this study was to 
characterize using MRI the effects of a 10-week 
supervised exercise program on lower extremity skeletal 
muscle composition, nerve microarchitecture, and 
metabolic function in individuals with diabetic peripheral 
neuropathy (DPN).
Research design and methods  Twenty participants with 
DPN completed a longitudinal trial consisting of a 30-day 
control period, during which subjects made no change to 
their lifestyle, followed by a 10-week intervention program 
that included three supervised aerobic and resistance 
exercise sessions per week targeting the upper and lower 
extremities. The participants’ midcalves were scanned with 
multinuclear MRI two times prior to intervention (baseline1 
and baseline2) and once following intervention to measure 
relaxation times (T1, T1ρ, and T2), phosphocreatine 
recovery, fat fraction, and diffusion parameters.
Results  There were no changes between baseline1 
and baseline2 MRI metrics (p>0.2). Significant changes 
(p<0.05) between baseline2 and postintervention 
MRI metrics were: gastrocnemius medialis (GM) T1 
–2.3%±3.0% and soleus T2 –3.2%±3.1%. Trends toward 
significant changes (0.05<p<0.1) between baseline2 
and postintervention MRI metrics were: calf adipose 
infiltration –2.6%±6.4%, GM T1ρ –4.1%±7.7%, GM T2 
–3.5%±6.4%, and gastrocnemius lateral T2 −4.6±7.4%. 
Insignificant changes were observed in gastrocnemius 
phosphocreatine recovery rate constant (p>0.3) and tibial 
nerve fractional anisotropy (p>0.6) and apparent diffusion 
coefficient (p>0.4).
Conclusions  The 10-week supervised exercise 
intervention program successfully reduced adiposity and 
altered resting tissue properties in the lower leg in DPN. 
Gastrocnemius mitochondrial oxidative capacity and tibial 
nerve microarchitecture changes were not observed, 
either due to lack of response to therapy or to lack of 
measurement sensitivity.

INTRODUCTION
Approximately 34 million people have diabetes 
in the USA,1 and 30%–50% of patients with 
type 2 diabetes develop diabetic peripheral 
neuropathy (DPN).2 DPN is characterized by 

metabolic and microvascular impairment that 
damage peripheral nerves and cause isch-
emic conditions and muscle degeneration in 
the lower extremities.3 Prolonged DPN causes 
significant skeletal muscle deficits, including 
increased adiposity and loss of strength and 
endurance.4–6

Pharmacological options to treat or reverse 
the progression of DPN are not available and 
alternatively target pain response.7–9 Exercise 
training is an appealing option to potentially 
delay or reverse DPN progression because of 
its promise for improving glycemic control, 
insulin sensitivity, and adiposity in individ-
uals with diabetes.10–13 Among interventions 

Significance of this study

What is already known about this subject?
	► Pharmacological options to treat or reverse the pro-
gression of diabetic peripheral neuropathy (DPN) 
are not available. While exercise has been shown to 
improve pain interference, vascular health, and neu-
ropathic symptoms, muscle composition following 
short-term intervention has yet to be reported.

What are the new findings?
	► 10-week supervised exercise intervention reduced 
MRI relaxation times in calf muscles.

	► Changes in MRI relaxation times were associated 
with changes in clinical markers.

	► 10-week supervised exercise intervention reduced 
adiposity in the combined calf interstitial and muscle 
space but not in individual calf muscles.

How might these results change the focus of 
research or clinical practice?

	► Our study shows that short-term exercise interven-
tion improves muscle composition in DPN, which 
may provide clinicians with an appealing treat-
ment option that can complement pharmaceutical 
intervention.
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such as exercise therapy, electrotherapy, and other phys-
iotherapy methods, exercise therapy has been the most 
effective.14 Studies have shown that supervised exercise 
improves cardiorespiratory function, innervation,15–17 
nerve conduction,18 muscle strength, balance,19 and 
reduces pain interference.20 However, the effects of exer-
cise on key DPN markers such as lower extremity muscle 
adiposity, nerve microarchitecture, and muscle metabo-
lism have yet to be reported. MRI is an appropriate means 
to measure such markers, as proton-based Dixon MRI is 
well established for quantifying adipose content,4 6 diffu-
sion tensor imaging for assessing nerve integrity,21 while 
dynamic phosphorus and static proton MRI, respectively, 
provide information on mitochondrial function22 23 and 
muscle tissue composition.24–29 Therefore, the goals of 
this longitudinal, prospective study were to determine 
with multinuclear MRI whether short-term supervised 
exercise intervention improves lower extremity adipose 
infiltration, neuronal microarchitecture, skeletal muscle 
tissue composition, and muscle oxidative capacity.

RESEARCH DESIGN AND METHODS
Study design and participants
Individuals aged between 40 and 70 years with type 2 
diabetes and diabetic neuropathy or with type 2 diabetes 
and symptoms such as lack of monofilament and vibra-
tion perception were invited to enroll in this longitudinal 
study. The exclusion criteria were: difficulty walking 
without assistance, foot ulcer within 3 months of enroll-
ment, partial foot amputation, stroke, central nervous 
system pathology, stage 2 hypertension, acute medical 
conditions that were deemed incompatible with exercise 
intervention such as cardiac failure, peripheral arterial 
disease, alcoholism, chronic drug use, chronic gastroin-
testinal disease, renal or hepatic impairment, pregnancy, 
and contraindications for MRI (eg, body mass index 
(BMI) >40 kg/m2, claustrophobia, pacemaker, or other 
MRI incompatible implants). DPN status was confirmed 
prior to MRI using the Michigan Neuropathy Screening 
Instrument (MNSI);30 participants with MNSI physical 
exam score  <1 were excluded. Participants received 
normal medical care prescribed by their physicians during 
the study. Recruitment began in November 2018 and was 
suspended in March 2020 due to restrictions related to 
COVID-19. Subjects participated in examinations and 
exercise intervention in the following chronology: week 
0: baseline1 MRI and clinical tests; week 3: baseline2 MRI 
and aerobic fitness measurements; weeks 4–14: exercise 
intervention; week 15: postintervention MRI, clinical tests, 
and aerobic fitness measurements. Baseline2 MRI was 
carried out to potentially detect changes that reflect inad-
vertent lifestyle adjustment following study enrollment.

Clinical tests
Blood draws were administered at baseline1 and postin-
tervention to record glycosylated hemoglobin (HbA1c), 
C reactive protein and glucose levels at 30 min intervals 

during an oral glucose tolerance test (OGTT). The 
OGTT data were used to calculate the Matsuda index 
and homeostasis model assessment of insulin resistance 
(HOMA-IR). Participants were instructed to forego 
diabetes medications 1 day prior and fast 8–12 hours 
prior to blood draws.

Aerobic fitness
Peak heart rate, rating of perceived exertion, blood pres-
sure, and peak oxygen consumption (VO2peak) were 
assessed during a treadmill test administered at baseline2 
and postintervention. The test was performed according 
to the Balady Modified Ramp Protocol,31 aiming for 
age predicted heart rate maximum plateau and subject 
reported volitional exhaustion. Twelve-lead ECGs were 
monitored throughout exercise to screen for ischemic 
changes (≥1 mm horizontal or down-sloping ST-segments 
in an individual lead) and significant ectopy (three 
consecutive heartbeats with ventricular ectopy or onset 
of atrial fibrillation or tachyarrythmia).

Exercise intervention
The 10-week personalized exercise intervention program 
consisted of three sessions per week supervised by a phys-
ical therapist, which included moderate-intensity aerobic 
and resistance components. Moderate-intensity aerobic 
exercise (50%–70% of oxygen uptake (V̇O2) reserve) 
was performed on a treadmill or recumbent stepper and 
individually prescribed based on heart rate response to 
the graded maximum exercise test described previously. 
The aerobic exercise progressed from 30 to 50 min per 
session over the duration of the program. Resistance 
exercises included bicep and tricep curls, bent rows, leg 
press and standing heel raises. The resistance level for a 
given exercise was progressed every 3 weeks if the partic-
ipant was able to complete the prescribed number of 
repetitions with lower rate of perceived exertion. Blood 
glucose, blood pressure, heart rate, rate of perceived 
exertion, and adverse events were monitored at each 
session. A visual foot examination was performed once 
each week.

Multinuclear MRI
All MRI experiments were performed on a 3 Tesla scanner 
(Prisma, Siemens Medical Solutions, Erlangen, Germany) 
with an in-house developed, investigational multinuclear 
(proton/phosphorus) lower extremity coil.32 The scans 
were centered at the widest lateral midcalf dimension 
of the right leg at baseline1. The distance between the 
base of the foot and midcalf was measured using a ruler 
affixed to the system and subsequently used to landmark 
participants to reduce longitudinal position variability in 
baseline2 and postintervention scans.

To measure fat fraction, we acquired Dixon-based 
proton three-dimensional gradient echo data with 
the following parameters: echo time (TE)=2.1, 2.8 
and 3.7 ms; repetition time (TR)=12 ms, field of view 
(FOV)=220×220×200 mm3, resolution=1.7×1.7×5.0 mm3, 
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slices=40, and total acquisition time=3 min. The flip 
angle was set to 3° to minimize T1 bias.33 The proton 
density fat fraction maps were calculated by processing 
the gradient echo data using the Hierarchiacal IDEAL 
method in MATLAB (R2019a, The MathWorks, Natick, 
Massachusetts, USA).34

We measured proton relaxation times at rest using a 
two-dimensional magnetic resonance fingerprinting 
technique that encoded spin–lattice relaxation (T1), 
spin–spin relaxation (T2), and spin–lattice relaxation 
in the rotating frame (T1ρ).35 Four consecutive axial 
images were acquired with FOV=140×140 mm2, resolu-
tion=0.6×0.6×4.0 mm3, TE/TR=3.5/7.5 ms, BW=420 Hz/
pixel, number of shots=4, spin-lock power fsl=500 Hz, 
and acquisition time=4:45 min. The measured signal 
fingerprint was compressed using singular value decom-
position and matched using an iterative approach to 
simulated MR fingerprints for possible T1, T2, T1ρ, and 
B1

+ values, which were computed using extended phase 
graphs. All processing was performed using a MATLAB 
script written in-house.

Fractional anisotropy (FA) and apparent diffusion 
coefficient (ADC) were measured in the tibial nerve 
(TN) using a diffusion tensor imaging (DTI) sequence 
with the following parameters: TR/TE=5300/65 ms, 
resolution=0.5×0.5×3.0 mm3, image matrix=128×128, 
FOV=160 mm, b-value=0 and 1200, number of diffusion 
encoding directions=12, number of slices=60, and acqui-
sition time=5:17 min.

Following the resting measurements previously, we 
measured the phosphocreatine recovery rate time 
constant using a dynamic three-dimensional 31P-MRI 
FLORET (non-Cartesian Fermat looped, orthogo-
nally encoded trajectories) pulse sequence.36 The time 
constant was calculated from data acquired following an 
exercise routine in which participants performed plantar 
flexion for 90 s at 0.66 Hz according to an acoustic cue 
on an in-house developed, MR-compatible ergometer.37 
During plantar flexion, the participant moved the 
ergometer footplate through approximately 30° range of 
motion with resistance applied by rubber tubing designed 
to deplete phosphocreatine by 15%–40% from its value 
at rest. Images with the following parameters were 
acquired serially for 420 s: 30 s baseline reference before 
the plantar flexion routine, during the 90 s routine, and 
300 s after the routine. The following imaging param-
eters were used: FOV=550 mm isotropic, TR=0.5 s, flip 
angle=25°, 3 hubs at 45°, 4 interleaves per hub, 17 mm 
nominal isotropic resolution, 32 slices, and 6 s acquisi-
tion time per image.

Statistical analysis
To investigate fat fraction distribution, we manually 
segmented five axial slices (25 mm) into muscle compart-
ments: gastrocnemius medialis (GM), gastrocnemius 
lateralis (GL), and soleus (SOL). Secondarily, we created 
an ‘interior’ region of interest to quantify fat fraction in 
the merged muscle and interstitial regions; the interior 

region included all tissue within the muscle fascia except 
the tibia, and fibula (see figure 1, bottom row). All region 
of interests (ROIs) were eroded by 4 mm to minimize 
contamination from neighboring tissue. The proton 
relaxation values were measured in the GM, GL, and SOL 
in four slices (16 mm).

Tractography was performed in manually defined TN 
ROIs using MRTrix3 software.38 A threshold was subse-
quently applied to exclude voxels outside the central 
37 slices or whose intensity was lower than 50% of the 
maximum in the tract. The mean ADC and FA were 
calculated in the resulting tracts.

To determine the phosphocreatine recovery time 
constant τ we normalized the signal amplitude such that 
its value at rest was 1 and fitted the signal after plantar 
flexion to a monoexponential model:

	﻿‍ PCr
(
t
)
= PCr0

(
1− e−t/τ

)
+ 1− PCr0‍,�

where ‍PCr0‍ is phosphocreatine depletion immediately 
following plantar flexion. Owing to the 6 s temporal reso-
lution of the measurement, cases with ‍PCr0‍ <15% were 
omitted since τ could not be fitted with confidence.

The paired, two-tailed Student’s t-test was used to 
determine the statistical significance between: baseline1 
and baseline2 MRI, baseline2 and postintervention MRI, 
and preintervention and postintervention clinical and 
diabetic markers. The Spearman rank correlation coef-
ficient (rs) was used to assess the association between 

Figure 1  MRI data from a DPN patient in their 50s at 
baseline1 (first column), baseline2 (middle column), and 
postintervention (last column). Row 1 shows fat fraction 
maps and values in the interior ROI, row 2 shows measured 
gastrocnemius phosphocreatine levels (blue) and fitted 
mono-exponential resynthesis curves (red) and time 
constants during recovery following plantar flexion exercise, 
and row 3 shows ROIs. Similar fat fraction in the interior ROI 
and phosphocreatine recovery time constant are observed at 
baseline1 and baseline2, while reduced values are observed 
postintervention. DPN, diabetic peripheral neuropathy; ROI, 
region of interest.
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changes in MRI variables (expressed as per cent change 
between baseline2 and postintervention) and changes in 
diabetic markers (expressed as per cent change between 
preintervention and postintervention). Statistical signifi-
cance was set at p<0.05, and all tests are reported without 
multiple comparison correction and without regard to 
sex due to the exploratory nature of the study.

RESULTS
Thirty-four individuals were enrolled in the study. Seven 
were unable to complete the study due to the COVID-19 
outbreak and seven withdrew prior to completion for the 
following reasons: one individual experienced ventricular 
ectopy with reduced systolic blood pressure during the 
treadmill VO2peak test and was deemed unfit for exer-
cise, two underwent surgery, two cited personal reasons 
and two provided no explanation.

Table  1 lists participant characteristics and exer-
cise intervention compliance for the 20 individuals 
that completed the study; those individuals attended 
89%±12% of the 30 prescribed intervention sessions and 
achieved the desired heart rate to within 1%. Medications 
prescribed by participants’ physicians were maintained 
during the study: 16 of 20 participants used metformin, 
14 used statins, 9 used insulin, and 1 used beta-blockers. 
The metformin, statin, and beta-blocker dosages were 
maintained throughout the study. In one participant, 
insulin was discontinued between baseline2 and postin-
tervention. In another participant, insulin dosage was 
reduced from 200 to 100 units between baseline1 and 
baseline2.

Table 1 lists clinical and diabetic markers before and 
after 10-week intervention. No significant change was 

observed in BMI, MNSI score, VO2peak, and blood 
markers related to diabetic risk (p>0.1). Due to tech-
nical developments being carried out during the study, 
relaxation time measurements are reported only at base-
line2 and postintervention in a subset of 12 subjects, 8 of 
which were included in a previous study.35 No changes 
were observed in the clinical and diabetic markers in the 
12-participant subset (p>0.1) (online supplemental table 
1).

Figures 1 and 2 show fat fraction maps, phosphocreatine 
signal plots, and relaxation time maps in a participant in 
their 50s. Table 2 summarizes MRI measurements from 
the cohort. The following data sets were excluded: one 
fat fraction case and two DTI cases due to corrupt MRI 
files, one DTI case due to patient motion that prevented 
tractography, and five phosphocreatine cases due to less 
than 15% depletion. No significant change between base-
line1 and baseline2 was observed in fat fraction in the leg 
interior or in individual muscle ROIs (p>0.4). There was 
a trend toward significant fat fraction reduction after 
intervention in the leg interior ROI: −2.6±6.4% (p<0.1), 
while insignificant change was observed in individual calf 
muscles (p>0.5). T1 (−2.3±3.0%), T2 (−3.5±6.4%), and 
T1ρ (−4.1±7.7%) changes were observed in GM (p<0.1), 
and T2 changes were observed in GL (−4.6±7.4%) and 
SOL (−3.2±3.1%) (p<0.1). No changes in FA or ADC 
were observed between baseline1 and baseline2 (p>0.3) 
or between baseline2 and postintervention (p>0.4). No 
change in phosphocreatine recovery time constant was 
observed between baseline1 and baseline2 (p>0.5) or 
between baseline2 and postintervention (p>0.3).

Table 3 lists pairs of MRI measurements and diabetic 
markers whose values changed between preintervention 

Table 1  Participant characteristics, intervention compliance, and clinical tests (n=20)

Characteristic Value

Age (years) 60±6.9

Sex (women/men) 7/13

Exercise sessions completed (%) 89±12

Time in exercise protocol (days) 69±5

Variation from heart rate goal (%) −0.24±7.12

Metric Pre Post P value

 � BMI (kg/m2) 31.3±4.4 30.5±4.1 0.139

 � MNSI physical exam score 2.9±1.0 2.9±1.7 0.950

 � HbA1c (%) 7.2±1.2 7.1±1.3 0.770

 � Fasting glucose (mg/dL) 139.7±47.5 143.4±45.9 0.616

 � Glucose 120 min (mg/dL) 265.0±104.8 257.6±106.0 0.378

 � Matsuda index 6.0±5.5 4.1±2.9 0.400

 � HOMA-IR 13.9±29.1 12.5±22.8 0.161

 � C reactive protein (mg/L) 4.4±3.7 4.7±4.5 0.693

 � VO2peak (mL/kg/min) 19.4±4.6 19.4±4.3 0.984

Pre indicates preintervention and post indicates postintervention. P indicates statistical differences between preintervention and postintervention values (paired, 
two-tailed Student’s t-test).
Two VO2 peak data sets were excluded due to scheduling and technical difficulties.
BMI, body mass index; HbA1c, glycosylated hemoglobin; HOMA-IR, homeostasis model assessment of insulin resistance; MNSI, Michigan Neuropathy Screening 
Instrument.

https://dx.doi.org/10.1136/bmjdrc-2021-002312
https://dx.doi.org/10.1136/bmjdrc-2021-002312
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and postintervention in a correlated manner (p<0.05). 
We observed unexpected negative correlation between 
fat fraction in the interior ROI and HbA1c as well as 

unexpected positive correlations between relaxation 
times in the gastrocnemius muscles and VO2peak. A 
significant positive association was found between MNSI 
physical exam score and SOL T2.

DISCUSSION
Recently modified therapeutic recommendations for 
individuals with DPN include physical exercise to improve 
muscle and nerve function.39 The early results from the 
combined resistance and aerobic exercise training inter-
vention in this study show promise for improving skeletal 
muscle composition in individuals with DPN. The major 
findings are reductions in skeletal muscle adipose tissue 
and relaxation times in response to short-term exercise 
training.

No signficant difference in intramuscular fat fraction 
was observed after intervention in individual calf muscles. 
However, we observed a reduction in fat fraction in the 
global interior region of the leg. Improvement in muscle 
composition is important because DPN is associated with 
severely reduced muscle mass and increased interstitial 
fat and intramuscular fat. These skeletal muscle defi-
cits are associated with loss of muscle strength, power 
and endurance as well as reduced physical function and 
ability to complete daily activities.

Relaxation times represent a range of muscle properties 
that reflect macromolecule makeup including proteins 
and membranes. Prior studies showed prolonged T2 
and T1ρ in myositis, Duchenne muscular dystrophy, 
and DPN.24–28 Meanwhile T1 may also be prolonged in 
myopathic dermatomyositis.22 The reduced relaxation 

Figure 2  Relaxometry maps from the same subject as in 
figure 1 show reduced postintervention T1 (row 1), T2 (row 2), 
and T1ρ (row 3). Text overlays indicate average values in the 
gastrocnemius medialis (GM).

Table 2  MRI results

Metric N ROI Baseline1 Baseline2 Pbase Δbase (%) Post P value Δpost (%)

FF (%) 19 Interior 10.8±3.4 10.8±3.7 0.932 0.3±8.4 10.5±3.3 0.097 −2.6±6.4

19 GM 8.6±4.6 8.5±4.0 0.733 1.7±11.3 8.4±4.0 0.564 −1.8±8.7

19 GL 7.4±4.0 7.6±3.8 0.402 3.9±11.6 7.5±3.9 0.520 −2.5±12.0

19 SOL 9.9±4.0 9.8±4.1 0.718 −0.5±7.7 9.9±4.2 0.855 0.0±9.5

‍τ ‍(s) 15 GM+GL 34.1±20.6 35.4±21.8 0.551 7.4±27.4 32.3±21.7 0.309 −4.6±30.2

FA 17 TN 0.34±0.06 0.32±0.07 0.319 −4.2±20.6 0.33±0.05 0.694 4.2±17.7

ADC (x103 mm2/s) 17 TN 1.77±0.31 1.76±0.20 0.922 2.0±20.4 1.81±0.19 0.463 3.9±16.6

T1 (ms) 12 GM 940.9±43.3 918.3±20.0 0.023 −2.3±3.0

12 GL 947.5±42.4 935.0±18.7 0.274 −1.2±3.8

12 SOL 938.3±34.4 935.7±23.6 0.727 −0.2±2.7

T1ρ (ms) 12 GM 31.0±3.7 29.6±1.8 0.078 −4.1±7.7

12 GL 30.0±4.5 29.1±2.0 0.365 −1.8±10.6

12 SOL 31.7±3.0 31.6±2.8 0.974 0.2±7.3

T2 (ms) 12 GM 25.3±2.6 24.2±1.2 0.095 −3.5±6.4

12 GL 26.6±2.7 25.2±1.8 0.055 −4.6±7.4

12 SOL 23.9±1.3 23.1±1.4 0.003 −3.2±3.1

Pbase indicates statistical differences between baseline1 and baseline2 values (paired, two-tailed Student’s t-test). P indicates differences between baseline2 and 
postintervention values. P values in bold type indicate statistically significant differences or trends toward significance (p<0.1).
ADC, apparent diffusion coefficient; Δbase, percentage change between baseline1 and baseline2 values; FA, fractional anisotropy; FF, fat fraction; GL, gastrocnemius 
lateralis; GM, gastrocnemius medialis; Δpost, percentage change between baseline2 and postintervention values; post, postintervention; ROI, region of interest; SOL, 
soleus; TN, tibial nerve.
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times observed in this study following exercise interven-
tion suggest a reduction of pathologic conditions in the 
muscle. We found the greatest T1 and T1ρ reduction in 
GM, while GL and SOL showed less change. This finding 
could be related to increased GM recruitment during calf 
exercises prescribed in the intervention of compared with 
GL and SOL. Interestingly, diabetic myopathy is more 
likely to be associated with GM deterioration than other 
calf muscles.40 While it has been suggested that skeletal 
muscle relaxation times may be entangled with adiposity, 
we found insignificant change in fat infiltration in GM, 
GL, and SOL. Thus, reduced relaxation times are more 
likely to represent atrophy reversal and muscle remod-
eling than adipose reduction, consistent with the finding 
of unchanged intramuscular fat within the calf muscles.

The lack of change in ADC, FA, and PCr recovery time 
constant indicates that TN microstructure and muscle 
energetics did not change to the extent necessary for 
detection with MRI. The potential disconnect between 
muscle composition and nerve remodeling and meta-
bolic function suggests that more research is needed to 
explore whether exercise dosage or type can be modified 
to drive a response, to potentially determine the point 
at which nerve damage or metabolic dysfunction cannot 
be reversed in DPN, and whether DTI and 31P-MRI are 
sensitive enough to track therapy response. While the 
phosphocreatine recovery time constant following brief 
exercise directly probes muscle oxidative capacity, which 
cannot currently be accessed with proton MRI, the exper-
iment is susceptibile to patient compliance. In our expe-
rience, some patients had difficulty following the pedal 
flexion acoustic cue due to competing noise from MRI 
gradient switching and were separately predisposed to 
performing inadequate or inconsistent flexion required 
for phosphocreatine depeletion. Other aspects such as 
epigenomic factors41 and medication use42 43 have been 
found to impact exercise response and also deserve 
further consideration. In parallel, the lack of change in 
MNSI, VO2peak, and blood markers related to diabetic 
risk may be related to participants’ relatively mild 
neuropathy and low baseline HbA1c, leaving little room 
for improvement.

One of the strengths of this study is the use of quantita-
tive MRI. The Dixon-based method quantifies fat fraction 
with robustness against magnetic field heterogeneity, 

which can confound methods that, for example, rely on 
pixel intensity thresholds to distinguish between fat and 
muscle in a binary manner. Magnetic resonance finger-
printing is similarly robust against system imperfections 
and allows simultaneous quantitative T1, T1ρ, and T2 
mapping that do not require subjective interpretation 
typical of ‘contrast-weighted’ images. Together, the tech-
niques provide the means to monitor important diabetic 
markers during treatment.

One of the study limitations is lack of a control cohort, 
which makes it unclear whether the effects of exercise would 
be observed in matched BMI individuals without DPN. 
Indeed, weight and adipose reduction has been reported in 
overweight and obese individuals with T2DM, but without 
neuropathy, following 1-year diet and exercise intervention.44 
Others have shown promising improvements in pain inter-
ference, vascular health, and neuropathic symptoms in indi-
viduals with DPN following 16-week20 45 and 12-week exercise 
interventions.46 While there is no consensus on an optimal 
exercise regimen,47 our study suggests that adipose infiltra-
tion and muscle composition improve within 10 weeks. We 
acknowledge that the small sample size is a limitation and 
point out that multiple comparison corrections were not 
performed, which increase the possibility of false correla-
tions between changes in MRI and clinical measurements 
(table  3). Another consideration concerning associations 
in table 3 is that MRI measurements are localized, whereas 
VO2peak and HbA1c are global fitness metrics. Nonetheless, 
these exploratory associations merit further study.

An additional potential limitation is the heterogeneous 
nature of the cohort in which MNSI physical exam scores 
ranged from 1 to 7. A natural extension of this work will be 
to relate change in clinical measures such as muscle strength 
to MRI measurements in a randomized controlled trial with 
a larger cohort of BMI-matched individuals with a range of 
DPN severity. A final limitation is that dietary factors were not 
tracked, which could contribute to posintervention changes 
detected with MRI.

CONCLUSION
Individuals with long-standing diabetes are at high risk 
for wide-ranging musculoskeletal complications such as 
pain, plantar ulcers, Charcot arthropathy, and ampu-
tations. Effective interventions are essential to reverse 

Table 3  Significant associations (p<0.05) between preintervention and postintervention percentage based changes in MRI 
and clinical variables

MRI measurement ROI Clinical measurement N rs P value

FF Interior HbA1c 19 −0.459 0.048

T1 GM VO2peak 11 0.646 0.037

T1ρ GM VO2peak 11 0.800 0.005

T2 GL VO2peak 11 0.627 0.044

T2 SOL MNSI physical exam score 12 0.587 0.045

FF, fat fraction; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; HbA1c, glycosylated hemoglobin; MNSI, Michigan Neuropathy Screening Instrument; 
ROI, region of interest; SOL, soleus.
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musculoskeletal complications in DPN, while quantita-
tive markers are needed to monitor patient response. 
Others have shown that supervised exercise interven-
tion improves glycemic control, reduces inflammation, 
and improves muscle strength and quality in type 2 
diabetes. The results in this work used quantitative MRI 
to show that supervised exercise intervention reduced 
adiposity and relaxation times in the leg muscles in indi-
viduals with DPN. The results of a larger cohort may 
allow further assessment of improvements in muscle 
composition and potential associations between local 
MRI measurements and global measures of fitness, while 
interventions can be extended beyond the 10-week 
period tested here in attempt to instigate mitochondrial 
and nerve adaptations.
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