
entropy

Article

Investigation of Finite-Size 2D Ising Model with a
Noisy Matrix of Spin-Spin Interactions

Boris Kryzhanovsky ID , Magomed Malsagov and Iakov Karandashev *

Scientific Research Institute for System Analysis, Russian Academy of Sciences, 117218 Moscow, Russia;
kryzhanov@mail.ru (B.K.); malsagov@niisi.ras.ru (M.M.)
* Correspondence: karandashev@niisi.ras.ru

Received: 20 June 2018; Accepted: 2 August 2018; Published: 7 August 2018
����������
�������

Abstract: We analyze changes in the thermodynamic properties of a spin system when it passes
from the classical two-dimensional Ising model to the spin glass model, where spin-spin interactions
are random in their values and signs. Formally, the transition reduces to a gradual change in the
amplitude of the multiplicative noise (distributed uniformly with a mean equal to one) superimposed
over the initial Ising matrix of interacting spins. Considering the noise, we obtain analytical
expressions that are valid for lattices of finite sizes. We compare our results with the results of
computer simulations performed for square N = L × L lattices with linear dimensions L = 50 ÷ 1000.
We find experimentally the dependencies of the critical values (the critical temperature, the internal
energy, entropy and the specific heat) as well as the dependencies of the energy of the ground state
and its magnetization on the amplitude of the noise. We show that when the variance of the noise
reaches one, there is a jump of the ground state from the fully correlated state to an uncorrelated state
and its magnetization jumps from 1 to 0. In the same time, a phase transition that is present at a lower
level of the noise disappears.

Keywords: Ising model; noisy connections; ground state; free energy; internal energy; magnetization;
specific heat; entropy; critical temperature

1. Introduction

Calculation of the partition function is an essential of statistical physics and informatics.
A few conceptual models allow exact solutions [1–6]. Among these a 2D Ising model [7],
though simple, deserves special attention because of its importance for investigating critical effects.
Having contributed a lot to the development of the spin glass theory, the Edwards-Anderson model [8]
and Sherrington-Kirkpatrick model [9] are also worth mentioning. However, there are not many
models that permit exact solutions. This is the reason why numerical methods are mostly used for
tackling complex systems. Of them, two methods are most suitable for our purpose. The first is the
Monte-Carlo method [10,11]. It enables us to analyze a system and determine its critical parameters
quite accurately [12–16]. The thorough consideration of the method can be found in papers [17,18].
Unfortunately, the method needs a great deal of computations and does not allow direct calculation of
the free energy. The second method uses the approach [19,20], which has recently given rise to the fast
algorithm [21,22] that finds the free energy by computing the determinant of a matrix. The algorithm
is popular because it allows the user to compute the free energy quite accurately and at the same time
determine the energy and configuration of the ground state of a system.

The methods of statistical physics help researchers to understand the behavior of complex neural
nets and evaluate the capacity of neural-net storage systems [23–28]. The machine learning and
computer-aided image processing need fast calculations of the partition function of specific interconnect
matrices [29,30]. The realization of Hinton’s ideas [31,32] gave rise to algorithms of deep learning and
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image processing [33–36]. Based on the optimization of the free energy of a spin (neuron) system,
the algorithms, from the formal viewpoint, comes down to the optimization of the spin correlation in
neighboring layers or within a single layer of a neural net. It should be understood that the system has a
phase transition because the spin correlation grows abruptly at the critical point (the correlation length
becomes nearly as great as the size of the whole system). In this case the optimization of the neural
network becomes temperature dependent, which makes the learning algorithm almost impracticable.

The aim of the paper is to study the properties of a finite spin system whose Hamiltonian is defined
as a quadratic Functional (1). The functional is often used in machine learning and image processing.
Quantities si = ±1 may stand for either pixel class (object/background) in an image [35], or the neuron
activity indication in a Bayes neural network [36]. We will use the physical notation calling quantities
si = ±1 spins. The model under consideration has two limiting cases. The conventional 2D Ising
model with regular interconnections presents the first case; the Edwards-Anderson model is the second
case. The properties of our model lie somewhere in between. We introduce adjusting parameters
in Functional (1), which allows us to go from the 2D Ising model to Edwards-Anderson model in a
smooth manner and investigate the thermodynamic characteristics of the system in the transient state.

To avoid misunderstanding, let us point out two things. First, our interest is finite systems.
For this reason, there is an expected discrepancy with Onsager results obtained at N → ∞ . Second,
we cannot use the results of the spin glass theory to the full because the finite system under
consideration is ergodic: it does not have multiple phase transitions caused by frustrations and
provide self-averaging [37,38].

2. Essential Expressions, the Equation of State

Let us consider a system described by the Hamiltonian:

E = − 1
N

N

∑
i>j

Jijsisj. (1)

This system consists of N Ising spins si = ±1(i = 1, 2, . . . , N), positioned at the nodes of a
planar grid, the nodes being numbered by index i. Only interactions with four nearest neighbors are
considered. Spin-to-spin interactions Jij are random and defined as

Jij = J · (1 + εij) (2)

where εij is a random zero-mean variable uniformly distributed over the interval εij ∈ [−η, η]. We have
chosen the uniform distribution of εij to be able to control Jij: when η ≤ 1, all interactions are positive(

Jij ≥ 0
)
. For the sake of simplicity, we assume that J = 1.

Our interest is the free energy of the system:

f = − 1
N

ln Z (3)

where the partition function Z = ∑S e−NβE(S) is defined as a sum over all possible configurations
S and β = 1/kT is the reverse temperature. The knowledge of the free energy makes it possible to
compute the basic measurable parameters of the system:

U =
∂ f
∂β

, σ2 = − ∂2 f
∂β2 , C = −β2 ∂2 f

∂β2 (4)

where free energy U = 〈E〉 is the ensemble average at given β, σ2 =
〈

E2〉− 〈E〉2 is the variance of
energy and C = β2σ2 is the specific heat.



Entropy 2018, 20, 585 3 of 13

Along with that, we are interested in the configuration S0 of the ground state, its energy E0 = E(S0)

and the magnetization M0 = 1
N

N
∑

i=1
S0i.

The properties of the system depend on the dimension of the system N and adjusting parameter
η. Unfortunately, we cannot allow for the effect of the both parameters simultaneously, so we consider
the contribution of each separately.

2.1. The Effect of the Finite Grid Dimension

Let us consider how the fact of the grid having a finite dimension affects its properties. Let us take
η = 0 as the starting point. In this case the behavior of the system can be described by the expression
(see reference [39]) which is true for finite systems with free boundary conditions:

f = − ln 2
2 − ln(cosh z)− 1

2π

πr

0
ln
(

1 +
√

1− κ2 cos2 θ
)

dθ,

U = − 1
1+∆

{
2tanhz + sinh2z−1

sinhz·cosh z
[ 2

π K1 − 1
]}

,

σ2 = 4J2coth2z
π(1+∆)2 ·

{
a1(K1 − K2)−

(
1− tanh2z

)[
π
2 +

(
2a2tanh2z− 1

)
K1

]}
,

(5)

where
z = 2βJ

1+∆ , κ = 2sinhz
(1+δ) cosh2 z

, ∆ = 5
4L , δ = π2

L2 ,

a1 = p(1 + δ)2, a2 = 2p− 1, p =
(1−sinh2z)

2

(1+δ)2 cosh4 z−4sinh2z
.

(6)

Here K1 = K1(κ) and K2 = K2(κ) are full elliptical integrals of the first and second type
correspondingly:

K1(κ) =
π/2w

o
(1− κ2 sin2 ϕ)

−1/2
dϕ, K2(κ) =

π/2w

o
(1− κ2 sin2 ϕ)

1/2
dϕ (7)

Expressions (5)–(7) are the well-known Onsager solution [7], which is true for N → ∞ , modified
for the case of finite N. Though true for N � 1, the expressions agree well with the experimental data
even at relatively small grid dimensions (L ∼ 25). As could be expected, when N → ∞ , Formula (6)
give p→ 1 , a1,2 → 1 , ∆→ 0 , δ→ 0 and Expression (5) turn into well-known ones [7].

Expression (5) agree excellently with experimental data: the relative error is less than 0.2% at
L = 50. With the growing L, the error decreases rapidly and is within the limits of experimental error
at L = 1000

(
10−5 for σ2). By way of comparison Figures 3, 6 and 7 gives the plots of Function (5) for

L = 400.
Expression (5) allow the N-dependences of the critical values of the reverse temperature, internal

energy and energy variance of the system:

βc0 = β∞

(
1 + 1

L

)
,

Uc0 = −
√

2
(

1− 1
L

)
,

σ2
c0 = 2.4 · (ln L− 0.5),

(8)

where β∞ = 1
2 ln
(√

2 + 1
)

is the critical value for L→ ∞ [7].



Entropy 2018, 20, 585 4 of 13

2.2. The Effect of Noise

Let us consider the random character of quantities Jij(η 6= 0). Let D(E) be the number of states of

energy E. Then the sum of states can be presented as Z = ∑E D(E)e−NβE. Passing from summation to
integration, we get (to within an insignificant constant):

Z ∼
∞w

−∞

eN[Ψ(E)−βE]dE (9)

where Ψ(E) = ln D(E)/N. Applying the saddle-point method to integral (9), we get
Z ∼ exp[−N f (β)], where

f (β) = βE−Ψ(E),
dΨ(E)

dE
= β. (10)

The first expression in (10) defines the free energy, the second determines E at the saddle point
where the derivative of function Ψ(E)− βE turns to zero.

The form of spectral function Ψ(E) is known only for the one-dimensional Ising model. That is
why we turn to the so-called n-vicinity method [28] to calculate the spectral function. The idea of the
method is to divide the whole space of 2N states into N classes (n vicinities) and approximate the
energy distribution in each class by a corresponding Gaussian. In brief, the approach is as follows:
Let us denote the ground-state configuration as S0. Let class Ωn be a set of configurations Sn that differs
from S0 in that they have n spins directed oppositely to the spins in S0. The number of configurations
in the class is equal to the number of compositions of N in n, all configurations having the same
(relative) magnetization m = N−1 · SmST

0 = 1− 2n/N. The distribution of state energies within the
n-vicinity was shown [28] to follow the normal distribution Dn(E):

Dn(E) ≈
(

N
n

)√
N

2πσ2
m

exp

[
−1

2
N
(

E− Em

σm

)2
]

, (11)

where
Em = E0m2, σ2

m = 2(1−m2)
(

1− αm2
)

, α = 1− σ2
h0/2. (12)

Here E0 is the ground state energy, σ2
h0 is the variance of ground-state local fields. In this case we

have σ2
h0 = σ2

η /(1 + σ2
η), where σ2

η = η2/3 is the variance of interconnections Jij.
The sought-for distribution D(E) is found by summing Dn(E) over all n. Using the Stirling

formula and passing from summation to integration with respect to variable m = 1− 2n/N, we get
for D(E):

D(E) =
N

∑
n=0

Dn(E) =
N
2π

1w

0

e−NF(m,E) dm
σn
√

1−m2
, (13)

where

F(m, E) = − ln N +
1
2

[
(1−m) ln(1−m) + (1 + m) ln(1 + m) +

(E− Em)
2

σ2
m

]
. (14)

If we evaluate integral (13) by the saddle-point method, for the spectral function we get
Ψ(E) = −F(m, E), where m is the solution of equation ∂F(m, E)/∂m = 0. Let us combine (13)–(14) and
(9)–(10). Then the free energy can be written as

f (β) = F(m, E) + βE, (15)

where variables m = m(β) and E = E(β) are derived from the equations:

ln
1 + m
1−m

+ 2
E− Em

σm

∂

∂m

(
E− Em

σm

)
= 0,

E− Em

σ2
m

+ β = 0. (16)
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It is easy to notice that set of Equation (16) is solvable when m = 0. Correspondingly, when the
values of β are less than certain critical value βc, (16) and (12) gives us Em = 0, σ2

m = 2 and E = −2β,
the free energy taking the form f (β) = − ln N − β2. The phase transition occurs when β allows yet
another solution to (16) at m 6= 0. Note that substituting the second equation from (16) into the first
one allows us to eliminate variable E. Doing things this way and performing several transformations,
we obtain the equation of state that holds only one variable m:

1
4m

ln
1 + m
1−m

= β− β
2
(

1−m2
)(

1 +
1
2

σ2
η

)
, (17)

where β = β/r. Here we introduced adjusting coefficient r to allow for the finite grid dimension:
r = 1 when L→ ∞ , r = 1.11 giving the excellent agreement with experiments at L ∼ 400. The critical
temperature is defined as value β = βc at which there is a nontrivial solution of (17). This solution
has to be found by a numerical method: when β > βc, we find m 6= 0 that satisfies (17) and compute
the corresponding value of energy E = Em − βσ2

m. Substitution of these values in (15) yields the
corresponding value f (β).

Unfortunately, the n-vicinity method has an essential fault: it is applicable only when the condition(
∑ Jij

)2/
(

N∑ J2
ij

)
≥ 4 ln 2 holds. In our case this condition works when (1 + σ2

η) · ln 2 ≤ 1, that is
when η < 1.2. For such relatively small values of η Formulae (15)–(17) gives βc and f (β) that predict
the experimental results well (see Figures 1 and 2).
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2.3. Evaluating the Spectral Density

The algorithm we use allows us to compute function f = f (β) and its derivatives. In turn, this
allows us to investigate how energy distribution D(E) = exp[NΨ(E)] varies with the noise amplitude.
Indeed, it is easy to derive from Formulae (10) the equation for the spectral function:

Ψ(E) = βE− f (β), E =
d f
dβ

(18)

and its derivatives
dΨ
dE

= β,
d2Ψ
dE2 =

(
d2 f
dβ2

)−1

(19)

Note that Ψ(E) is entropy up to a constant and Equation (18) are well-known Legendre
transformations, which are applicable for analyzing the spectral density of finite-dimension
models [40,41]. It follows from these equations that when β varies from β = 0 to β = ∞, E changes
from 0 to E0 and for each value of β we have a pair of values of E and Ψ(E). In so doing we determine
the form of function Ψ(E) and its derivatives. The plots of function Ψ(E) and its derivatives presenting
experimental data are given in Section 4.

The minimum of function d2Ψ/dE2 at point E = 0 changes into the maximum as the noise
amplitude grows. Let us find η at which it occurs. It can be noticed that with E→ 0 the entropy can
be presented as the series:

Ψ(E) = ln 2− 1
2

E2

σ2
J
+

µ4

4!
E4

σ4
J

, σ2
J = 2

〈
J2
ij

〉
= 2(1 + σ2

η) (20)

where µ4 =
〈

E4〉/σ4
J is the fourth cumulant, which in our case is described by the expression [28]:

µ4 = 4
(

5− 6σ2
η −

9
5

σ4
η

)
/σ4

J . (21)

From (20)–(21) it follows that in the center point of the curve (E = 0) quantity d2Ψ/dE2 is
determined by expression:

d2Ψ
dE2

∣∣∣∣
E=0

= − 1
2(1 + σ2

η)
(22)

and the fourth derivative d4Ψ/dE4
∣∣
E=0 = µ4/σ4

J changes its sign at η = ηc, when µ4 = 0:

ηc =
[
5
(√

2− 1
)]1/2

. (23)

3. The Experiment Description

We make an intensive use of the Kasteleyn-Fisher algorithm [19,20] here to compute the free
energy of the 2D square spin system. The algorithm gives exact results because the finding of the
partition function is reduced to computation of the determinant of a matrix generated in accordance
with the model under consideration. The algorithm permits us to exactly calculate the free energy of a
spin system for an arbitrary planar graph with arbitrary links in a polynomial time. More information
about the algorithm can be found in [21]. In this paper, we use the realization [22] of the algorithm that
can give the same results in a shorter time. Using this algorithm, we were able to examine the behavior
of free energy f = f (β; η) and its derivatives for a few lattices of different dimensions N = L× L.
Additionally, paper [22] offers the algorithm for searching the ground state. This algorithm helped
us to investigate the energy and magnetization of the ground state as functions of noise amplitude.
For each value, we generated a great number of matrices but the results were practically the same
when we changed one matrix to another.
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Let us point out that the both algorithms we use are only applicable to planar lattices. It means
that we considered only lattices with free boundary conditions because lattices with periodic boundary
conditions do not belong to a planar graph. The length of the lattice varied from L = 25 to L = 103.
Most of the plots present the results for L = 400. The results for other sizes did not differ qualitatively.

The free energy is computed to 15-digit accuracy after the decimal point. Because we use the
finite-difference method to compute the derivatives, the number of significant digits after the decimal
point is about 7 for U(β) and 4 for σ2(β). With large grid dimensions (L ∼ 1000) and with β > 1 the
computation error becomes too big and the plots of second derivatives start exhibiting oscillations. It is
interesting to notice that introduction of little noise into grid interconnections allows us to decrease
these oscillations.

4. Experimental Results

In the experiments, we calculate the free energy and its derivatives and find the ground-state
configuration and energy. The accent is given to the finding of the critical point and corresponding
quantities. The location of the maximum of curve σ2 = σ2(β) is used to find the critical temperature.
Most important experimental data are presented in Figures 1–7 and Table 1.
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Table 1. The energy of ground state E0 and its magnetization M0, critical values βc, fc, Uc and σ2
c for

different noise amplitudes.

η E0 M0 βc fc Uc σ2
c

0 −1.995 1 0.442 −0.6931 −1.978 × 105 12.958
0.1 −1.995 1 0.443 −0.6931 −1.986 × 105 11.427
0.2 −1.995 1 0.444 −0.6932 −0.0101 12.566
0.3 −1.995 1 0.445 −0.6932 −0.0103 11.627
0.4 −1.996 1 0.452 −0.6933 −0.0211 11.476
0.5 −1.994 1 0.454 −0.6934 −0.0324 10.666
0.6 −1.993 1 0.459 −0.6936 −0.0447 9.719
0.7 −1.994 1 0.465 −0.6939 −0.0581 8.328
0.8 −1.996 1 0.476 −0.6946 −0.0849 7.642
0.9 −1.996 1 0.484 −0.6957 −0.1143 6.518
1.0 −1.993 1 0.503 −0.6979 −0.1599 5.603
1.1 −1.996 0.9998 0.515 −0.7010 −0.2109 4.656
1.2 −1.995 0.9987 0.536 −0.7065 −0.2815 3.629
1.3 −1.994 0.9943 0.562 −0.7156 −0.3747 2.775
1.4 −1.996 0.9839 0.591 −0.7327 −0.5107 1.998
1.5 −2.002 0.9602 0.623 −0.7527 −0.6414 1.380
1.6 −2.014 0.9060 - - - -
1.7 −2.033 0.2155 - - - -
1.8 −2.065 0.0312 - - - -
1.9 −2.098 0.0241 - - - -
2.0 −2.139 0.0058 - - - -

4.1. The Free and Internal Energy

Experimental dependencies f = f (β) and U = U(β) are shown in Figures 1 and 2. It is seen from
Figure 1 that the curves go down with η because the ground-state energy grows. When noise is small
(η < 1.2), the curves of free energy f (β) and internal energy U(β) almost merge (Figures 1 and 2).
When η < 1.7 the curves U(β) demonstrate a cusp (Figure 2) which corresponds to the phase transition.
When η ∼ 1.7, the cusp disappears and the further increase of noise changes only the asymptotic
behavior of curves f (β) and U(β) according to (26).

4.2. The Energy Variance

Curves σ2 = σ2(β) are shown in Figure 3. It should be noted that because the n-vicinity method
gives a piecewise-linear approximation of the energy variance, the red marks in Figure 3 indicates
values obtained by using the generalization of Onsager solution to a finite-dimension case according
to Formula (5). The formula gives a perfect agreement with experimental data, yet it is applicable only
in a zero-noise case.

The behavior of curves σ2 = σ2(β) near point β = 0 is quite expected for any η: when β = 0,
the energy variance is equal to σ2

0 and, according to (20), grows gradually in proportion to noise
variance σ2

η = η2/3. With great β the behavior of curves σ = σ(β) is much dependent on η. It is
seen in Figure 3 that the energy variance peaks corresponding to the phase transition are observed
only at η < 1.7. The peaks become lower with growing η and move to the right at the same time.
When η > 1.8, the peaks disappear at all, only the maximum at β = 0 remains.

It is interesting that all the curves in Figure 3a have the common intersection point near β ≈ 0.29.
We could not find out why it is so. The intersection moves to the right slowly with the growing
noise amplitude.

4.3. The Critical Temperature

The critical temperature is defined by the location of the maximum of curve σ = σ(β) or by the
presence of a cusp on it. Figure 4 shows how the variance peak location and height vary with the
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growing noise. Holding true only for η < 1.2, the numerical solution of the equation of state (17) gives
βs that agrees with the experimental data perfectly. For greater η it is possible to use the approximate
expression resulting from the experiment:

βs ' βc0

(
1 +

σ2
η

2

)
, (24)

where βc0 is the zero-noise critical value resulted from (8). The peak height lowers linearly with the
growing noise amplitude:

σ2
s ' σ2

s0
(
1− ση

)
, (25)

where σ2
s0 is the variance at η = 0 defined in (8). It follows that if η ≈

√
3, σ2

s falls to zero. It means that
when η >

√
3, the variance peak disappears and we can say that the critical temperature is zero.

4.4. The Ground State

The results we obtained testify that when the noise amplitude η ≈ 1.7 (at ση ≈ 1), the quality of the
system changes. The ground state configuration experiences the most noticeable changes (see Figure 5).
Clear that with zero noise the ground state is fully correlated, that is, all spins are the same si = 1.
The situation keeps as long as all matrix elements Jij > 0, that is, η < 1. However, (see Figure 5) the
ground-state energy proved to remain almost the same for ση as big as ση ≈ 1. Then it starts decreasing
gradually and comes to an asymptotic value [42]:

E0 = −1.317ση , (26)

corresponding to the energy of the ground state in the Edwards-Anderson model. The ground-state
magnetization changes stepwise from 1 to 0 when the noise deviation comes close to unit ση ≈ 1.
A similar instability was discussed in [43,44].

4.5. The Entropy

The change of the ground-state configuration and energy results in a change of energy distribution
density Ψ(E). The curves of Ψ(E) and its derivatives are shown in Figures 6 and 7.

The disappearance of the phase transition is easy to notice if we look at the curve of the second
derivative d2Ψ/dE2. It is seen in Figure 7a that the sink in the middle of the curve (E = 0) rises with
growing η and, according to (23) the minimum of d2Ψ/dE2 at E = 0 turns into a maximum when
η ≈ 1.5. The peaks at points E = ±Uc separate with growing η (Uc → E0 ) and become lower like
d2Ψ/dE2 = −σ−2

c until full disappearance at η ≈ 1.7.
When η > 1.7, curve d2Ψ/dE2 has a noticeably convex shape and the phase transition peaks

disappear. Moreover, in this case function d2Ψ/dE2 is well described by the expression:

d2Ψ
dE2 = − 1

σ2
J (1− ε2)

, ε =
E

2E0

(
1 +

E2

E2
0

)
. (27)

Formula (27) gives good approximation of experimental data (accurate to 0.5% over the energy
interval 0 ≤ |E| ≤ 0.91|E0|).

5. Conclusions

In this paper, we have considered the Ising model on a two-dimensional grid with noise-polluted
interconnections. In the limiting case N → ∞ such system demonstrates the following properties: with
low noise the system have all characteristics of conventional Ising model, with high noise it turns into
the Edwards-Anderson spin glass model. The goal of our experiments was to observe the transition
between these two limiting cases in the finite-dimension system

(
N ≤ 106). It proved that when the
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noise is weak (ση < 1), the behavior of the system is much like the behavior of the conventional Ising
model. We expected that with heavy noise (ση >> 1), the behavior of the system would be like that of
the Edwards-Anderson model. However, the experimental results are significantly different from the
expectation. It turned out that even when the noise is relatively weak ( ση ∼ 1), the system undergoes
considerable changes.

First, when ση ∼ 1, the energy spectrum D(E) changes radically (it is clearly seen in Figure 7):
the curves of d2Ψ/dE2 has a two-humped form at ση < 1 and with ση > 1 become simply convex.
Moreover, the ground-state magnetization changes to zero when ση > 1. It means that when the
threshold value η =

√
3 is surpassed, the ground-state configuration goes off the initial state by

distance of 1
2 N in the Hamming’s terms. In other words, the system undergoes a zero-temperature

phase transition. The transition is followed by the change of the ground-state energy from E0 = −2J
to asymptotic value (26).

Second, the experimental relation between the critical temperature and noise divergence differs

greatly from the well-known [8] expression kTc =
( 2

9 ∑α

〈
J2
iα
〉)1/2

, which in our terms takes the form:

βc =
3

2
√

2(1 + σ2
η)

(28)

We can see that the classical theory predicts that βc should fall with the growing deviation of
noise. Moreover, Expression (28) predicts finite values of βc for any large η. The experiment yields the
opposite result: in accordance with (24) βc grows in proportion with σ2

η . The experiment also shows
that βc grows with η and when η →

√
3 it reaches its maximum βc = 0.625, the phase transition

disappears at η >
√

3 (ση > 1). It can be said conceptually that when the threshold value η =
√

3 is
surpassed, the jump Tc → 0 occurs.

In our opinion, the difference between the experiment and theoretical predictions is due to the
finite dimension of the system. First, the finite system is ergodic and even at low temperatures does not
have spontaneous magnetization, which can be tested easily with the help of Monte-Carlo algorithm.
Second, the self-averaging principle used for building the theory for N → ∞ is not realizable for finite
N. Additionally, the use of terms “critical temperature” and “phase transition” is not quite correct in
description of finite-dimension systems. For our estimates, we use approximate Expressions (5) and (6),
which are valid for a special case of the free boundaries conditions and finite L. More general and more
accurate estimates can be obtained using the results of papers [45,46], where the authors analyzed the
Ising random-bond model with a tunable fraction of negative bonds and the paper [47], where the
finite size of the lattice was taken into account accurately.

Finite-dimension grids are of interest in image processing and machine learning. In our paper,
the grid dimensions were N = L× L with L = 25÷ 1000. If we consider a planar grid as a model of a
flat pixel image, such dimensions are very popular. The main conclusion that can be drawn from our
results is that the learning algorithms based on free energy optimization are temperature insensitive in
the most popular condition of η >> 1 because there is no observable phase transition in this case.
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