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Abstract

Since the advent of highly pathogenic variants of avian influenza virus (HPAIV), the main focus of avian influenza research
has been the characterization and detection of HPAIV hemagglutinin (HA) from H5 and H7 subtypes. However, due to the
high mutation and reassortation rate of influenza viruses, in theory any influenza strain may acquire increased pathogenicity
irrespective of its subtype. A comprehensive antigenic characterization of influenza viruses encompassing all 16 HA and 9
neuraminidase subtypes will provide information useful for the design of differential diagnostic tools, and possibly,
vaccines. We have expressed recombinant HA proteins from 3 different influenza virus HA subtypes in the baculovirus
system. These proteins were used to generate polyclonal rabbit antisera, which were subsequently employed in epitope
scanning analysis using peptide libraries spanning the entire HA. Here, we report the identification and characterization of
linear, HA subtype-specific as well as inter subtype-conserved epitopes along the HA proteins. Selected subtype-specific
epitopes were shown to be suitable for the differentiation of anti-HA antibodies in an ELISA.
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Introduction

Influenza viruses (IV) belong to the family of Orthomyxoviridae,

which are characterized by a segmented and single-stranded

negative sense RNA genome. 8 segments encode 11 viral proteins,

the internal proteins (nucleoprotein, NP; matrix proteins, M1 and

M2; nonstructural proteins, NS1 and NS2; polymerase basic

proteins, PB1, PB1-F2 and PB2; polymerase acidic protein, PA)

and the 2 surface proteins (hemagglutinin, HA and neuraminidase,

NA). While the internal proteins are well conserved among all IV

strains, HA exists in 16 and NA in 9 different subtypes,

respectively. Hence, IV subtype classification is based on the

HA-NA combination. Wild aquatic birds are the natural reservoir

of all HA and NA subtypes of avian IV (AIV), however, the

theoretical subtype spectrum is reduced by a preference of each

HA to be associated with a certain subset of NA subtypes [1].

Several subtypes are able to infect also mammalian hosts, e.g.

humans (H1N1, H2N1, H3N2), horses (H7N7, H3N8) and pigs

(H1N1, H1N2, H3N2, H4N6) [2]. In wild aquatic birds, low

pathogenic AIV (LPAIV) replicates usually asymptomatically in

the intestinal tract. However, mutations in the viral genome of H5

and H7 subtypes, specifically in the HA gene, can lead to the

emergence of highly pathogenic AIV (HPAIV) upon transmission

to susceptible gallinaceous poultry [3]. HPAIV replicate in all

tissues causing peracute to acute fatal disease in poultry and mild

to severe disease in wild birds, depending on the virus strain and

bird species, age and condition [4]. Human influenza strains in

general cause seasonal flu characterized by respiratory symptoms

and, if accompanied by a secondary, mostly bacterial infection,

these IV can lead to fatal cases in young, immunocompromized or

elderly patients. However, the high mutation rate (antigenic drift)

of IV and random reassortation of genomic segments (antigenic

shift) in animals simultaneously infected with different IV subtypes

may lead to an adaptation of HPAIV to the human host,

generating a new highly virulent pandemic strain.

The major factor for IV infectivity is the HA surface protein

that mediates binding of the virus to the host-specific cell surface

receptors a2,3-sialic acid (SA) and a2,6-SA in birds and mammals,

respectively [2]. Thus, HA is the prime target for the development

of new diagnostic, therapeutic and preventive tools, and therefore

a comprehensive antigenic characterization of the IV HA is

needed. In order to rapidly recognize outbreaks of new IV strains

with increased pathogenicity, efficient surveillance is necessary,

which is able to detect all IV subtypes, not only the epidemically

most relevant ones.

Traditional identification and subtyping of IV prescribed by the

Office International des Epizooties (OIE) is based on virus

isolation followed by serological tests, namely agar gel immuno-

diffusion (AGID) to identify any IV, and hemagglutination

inhibition (HI) [5], using HA and NA subtype-specific reference

sera, for subtyping. These traditional methods have been mostly

replaced by molecular methods in recent years, i.e. using RT-PCR

and nucleotide sequencing of the HA and NA genes. Detection

and subtyping of IV antibodies on the other hand still mostly relies

on HI using (inactivated) IV reference strains representing the

entire repertoire of HA and NA subtypes. ELISA-based antibody
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subtyping has only been described very recently. However, these

ELISA employ only 1 individual antigen [6,7,8] and are,

tentatively, monospecific for a selected HA or NA subtype. Novel

technologies such as multiplex fluorescent microsphere immuno-

assays (FMIA) employing more than 1 IV antigen [9] show, that

antibody differentiating immunoassays are possible. Until now no

multiplex approach is available for the subtyping of IV antibodies

based on HA and NA serotype differentiation.

Initial antigenic characterization of IV HA protein for basic

understanding of serological assays has revealed the importance of

epitope conformation at the receptor-binding site formed by HA

monomer folding and trimerisation [10]. The use of correctly

folded HA was considered as a prerequisite for the detection and

characterization of neutralizing epitopes, which are the mayor

target of the virus neutralizing humoral immune response. This

was supported by the observation that synthetic HA peptides failed

to function as epitopes recognized by neutralizing monoclonal

antibodies [11,12,13,14]. However, recent findings that neutral-

izing antibodies are produced upon experimental vaccination with

a bacterially expressed, detergent-treated and unfolded HA have

shown that a virus-neutralizing immune response is possible

independent of conformational epitope formation [15,16]. Recent

studies demonstrated that antibodies binding to linear HA epitopes

achieve neutralizing activity by inhibiting the pH-dependent HA

conformational rearrangement [17,18,19]. These findings show

the existence of linear epitopes on IV HA and support their role

during humoral immune response. The question is raised, if such

epitopes represent a new repertoire of tools for serologic

surveillance assays and if they are valid targets for serologic IV

subtype differentiation. If they are present in a sufficient number,

they may stimulate antibody production high enough to be

detectable independent of the property to be neutralizing or not.

Thus, linear epitopes present on HA should be included in the

antigenic characterization of IV.

With the antigenic analysis of all HA and NA subtypes, a

comprehensive picture of AIV HA antigenicity can be established

which can be used to design highly specific differentiation tools.

Several studies have provided evidence that both HA subtype-

specific as well as inter subtype-conserved epitopes do exist

[20,21,22,23,24]. The primary aim of the present study was to

determine, whether AIV subtype-specific linear epitopes on the

HA protein can be detected with sera from animals immunized

with recombinant AIV HA of the homologous subtype. We show

that numerous linear, both inter subtype-conserved as well as

subtype-specific epitopes exist on HA proteins derived from

different AIV HA subtypes, based on differences in the reactivity

patterns of homologous and heterologous antisera. Epitope

mapping was performed by peptide scanning using libraries of

overlapping peptides representing the entire HA from 3 different

HA subtypes (H4, H5, H12), and rabbit antisera raised against the

corresponding recombinant HA proteins. This approach allowed

to elucidate the repertoire of subtype-specific and inter subtype-

conserved epitopes among the studied AIV surface proteins. Our

data provide evidence that all 3 HA subtypes analyzed carry linear

epitopes in both the HA1 and HA2 ectodomains. In addition,

synthetic peptides representing such epitopes were shown to be

suitable as subtype-specific antigens for differential ELISA

development.

Results

To test the effect of recombinant protein conformation on

expression and secretion efficiency, recombinant H5, H4 and H12

HA was expressed via recombinant baculoviruses either as full

length protein or as transmembrane domain deleted (DTMD)

peptide containing the HA1 and HA2 ectodomains (Fig. 1A and

B). No significant difference in secretion efficiency was observed

using either the authentic AIV or the HBM secretion signal.

Recombinant proteins lacking the TMD were efficiently expressed

and secreted into the cell culture supernatant, and could be used as

starting material for His tag affinity purification. Buffer exchange

from cell medium to carbonate buffer and purification using

HisTrap-Ni-NTA columns with an imidazole gradient resulted in

highly pure and concentrated HA protein fractions, yielding up to

1 mg recombinant protein per 50 ml expression culture (Fig. 1C-

E). This preparations were used to immunize rabbits. Pre-immune

sera of all rabbits did not recognise the recombinant HA proteins

whereas sera after immunization were highly reactive with all 3

recombinant HA, both before (Fig. 2A-D) and after affinity

purification (Fig. 2E-G) of the HA proteins.

Epitope mapping: Homologous system
To identify peptides that represent epitopes recognised by

polyclonal antibodies, and to differentiate between subtype-specific

and inter subtype-conserved epitopes, peptide scanning was

performed with 15 amino acid (aa) long peptides overlapping by

12 aa and representing the complete set of linear epitopes of each

expressed HA on a nitrocellulose dot blot membrane. Unspecific

signals resulting from direct binding of the secondary antibody to

the peptides were subtracted from the raw signal in every

experiment to obtain sera-specific net reactivities. These signal

intensities, shown in arbitrary units, were normalized to the

highest value set as 100%. The normalized intensities of all

peptides representing 1 HA protein were plotted against the

peptide numbers along the HA protein in a diagram to show

antigenicity curves for each of the recombinant H5, H4 and H12

HA. H5 contained the fewest reactive peptides and H4 the most.

However, the integrated intensities were higher for H5 than for

H4 and H12. Furthermore, epitopes present on H5 HA were

found to be more concentrated to separated epitope-containing

areas (Fig. 3A and B) whereas epitopes on the H4 and the H12 HA

were found to be more evenly distributed along the entire protein

(data not shown).

To generate an antigenic map based on the protein primary

structure, the signal intensities from the antigenicity plots were

superimposed onto the aa sequences of the expressed proteins by

performing a semi quantitative and color-coded visualization of

reactive peptides. Interestingly, some peptides reacted strongly

whereas the next, overlapping peptide reacted only weakly or not

at all with the rabbit sera. Epitope scanning was analyzed first by

considering the complete length of strongly reacting peptides

(Fig. 4A). Such an analysis allows generating a map of the

localisation and distribution of epitope-containing regions (Fig. 5A).

An alignment of the aa sequences of all 3 antigens used indicates

that antibodies presented in the homologous antisera recognize the

majority of peptides of H4 and H12 along the HA1 chain (aa 130

to 350), whereas in H5, the binding sites were allocated in clearly

separated regions located within the HA1. The HA2 ectodomain

shared only 1 antibody binding region in all 3 antigens.

To increase the resolution of antibody binding sites in all

reactive peptides, weakly or non-reacting peptides were subtracted

from neighbouring highly reactive ones (Fig. 4B). The peptides

were color-coded according to their normalized dot blot intensities

in steps of 100% to 70%, 70% to 40%, 40% to 20% and 20% to

10% integrated intensity, respectively. Furthermore, regions with

overlapping peptides of different signal intensities were color-

coded according to the less reactive peptide (net signal intensity) in

order to identify antibody binding sites within the epitopes [25].

AIV Subtype Specific Epitopes
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This analysis also demonstrated that the reactivity of antibody

binding sites differs within conserved antibody binding regions in

the HA H4, H5 and H12 (Fig. 5B).

Epitope mapping: Heterologous system and
subtype-specific epitopes

In Western blot analyses, all 3 sera recognized all 3 antigens. In

a second analysis the H5, H4 and H12 HA membranes were

scanned for subtype-specific and cross-reactive linear epitopes in 2

different approaches. First, all membranes were tested individually

with all sera to visualize cross-reactive epitopes, as shown for the

H5 antigen (Fig. 3C). Additionally, sera against 1 of the 3 antigens

were tested on membranes representing the 2 other antigens, to

visualize the cross reactivity of the sera as shown for the serum anti

H5 HA (Fig. 3D). The integrated membrane signals were plotted

as for the homologous sera. Subtype-specific epitopes were

obtained by subtracting the heterologous from the homologous

signals. The reduced number of reactive peptides in H5 HA and

the increased number of reactive peptides in H4 HA and H12 HA

found previously in the homologous mapping correlated with

fewer epitopes remaining on H5 compared to H4 and H12 HA

after subtraction of the heterologous from the homologous sera

signals (Fig. 6). When the epitope reactivities were compared, as

shown in figure 5B and figure 6, in all 3 antigens the subtype-

specific epitopes reacted moderately to strongly in the homologous

systems (see also suppl. Table S1).

ELISA
Based on the epitope mapping results the following peptides

were selected as HA subtype-specific antigens in ELISA: H5:

biotin-Ttds-ANNSTEQVDTIMEKNVTVTHAQD-OH; H4: bi-

otin-Ttds-DSEMNKLFERVRRQLRENAEDKGNGCF-OH and

for H12: biotin-Ttds- FTWAIHHPPTSDEQV-OH. As shown in

Fig. 7, antibody subtype differentiation was possible both with the

polyclonal rabbit sera (Fig. 7A-C) and with serum derived from a

chicken that had been vaccinated against H5N9 (Fig 7D) in the

indirect ELISA format, whereas in the blocking ELISA format no

differentiation was possible (data not shown).

Discussion

The HA of the 3 AIV HA subtypes H4, H5, and H12 were

expressed as soluble recombinant 6xHis-tagged fusion protein in

the baculovirus system. These 3 subtypes were chosen not

primarily based on their epidemiological relevance, but because

their HA genes are genetically quite different among each other,

making it more likely that the recombinant HA proteins exhibit

numerous differences in their epitopes. Immunization of rabbits

with Ni-NTA affinity-purified recombinant HA resulted in the

production of highly reactive antisera. However, these polyclonal

sera could not be used for subtype differentiation using full-length

antigens, because many of the epitopes presented on the antigens

reacted at least weakly with the heterologous sera (Fig. 2B-G,

Fig. 3C and D). Remarkably, the reactivity of the sera in Western

blot analysis was even stronger with the heterologous antigens

compared to their respective homologous antigens. This could be

due to different antibody titers in the sera used or to different total

antigen avidities caused by different numbers of homo- and

heterologously reactive epitopes accessible on antigens transferred

onto the nitrocellulose membrane. Nevertheless, the recognition of

AIV HA subtype-specific and intra subtype-conserved epitopes in

the form of overlapping linear synthetic peptides on PepSpot

membranes with these sera was possible.

Figure 1. Construction and purification of recombinant AIV HA.
Schematic drawing of the full-length HA protein and the relative
location of the domains (black boxes) used for recombinant protein
expression. The honeybee melittin (HBM) secretion signal (SS) is shown
in grey. (B) Schematic illustration of recombinant HA proteins, shown as
fusion of subtype-specific HA domains with the AIV ss or the HBM ss
and a C-terminal 6xHis tag. (C-E) Western blot and SDS-PAGE analyses of
cell culture supernatant (ccs) after Ni-NTA affinity chromatography. All
proteins were secreted in the ccs in an uncleaved form and purified
following an identical purification procedure. Differences in the number
of positive elution fractions in the Western blot result from different
quantities of recombinant protein bound to the Ni-NTA-column. SDS-
PAGE results indicated that the most concentrated elution fractions
contained almost exclusively the purified HA. Purification fractions are
indicated with numbers, F = flow through fraction, L = load fraction.
doi:10.1371/journal.pone.0009097.g001

AIV Subtype Specific Epitopes
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Since HA undergoes conformational changes mediated by an

endosomal pH shift during infection, antibodies to conforma-

tional sites can be classified in 3 categories depending on their

ability to recognize only the neutral form, only the acidified form,

or both. Thus, the repertoire of linear epitopes in the analyzed

HA proteins and of antibodies in the rabbit sera against the

recombinant HA proteins found in this study might be similar to

the repertoire of linear epitopes in and antibodies against native

AIV.

Neutralizing epitopes in the HA1 receptor binding site are not

conserved between subtypes [24]. Our results indicate that HA1

contains subtype-specific linear epitopes as well with a subtype-

dependent variability in number and localisation among H4, H5

and H12 HA. The HA2 peptides of H4, H5 and H12 HA revealed

only few subtype-specific epitopes (1 in H5 HA, 2 in H4 HA and 4

in H12 HA, respectively). This finding supports the model, that the

fusion peptide-containing HA2 is less variable and harbours the

majority of inter subtype-conserved epitopes [24].

Figure 2. Western blot analyses with pre-immune sera and antisera derived from immunized rabbits. Unpurified recombinant H5 HA,
H4 HA and H12 HA and a C-terminal 6x His tagged porcine IFN were blotted onto nitrocellulose membranes and analyzed with a monoclonal
antibody against the His tag (A) or with serum from the 2nd bleeding (56 days post immunisation) from rabbits, immunized either with purified
recombinant HA H5 (B), H4 (C) or H12 (D), respectively. Purified recombinant H5, H12 and H4 HA were blotted onto nitrocellulose membranes and
analyzed with pre-immune rabbit sera (PI), a monoclonal antibody against the His tag and serum from the 3rd bleeding (114 days post infection) from
rabbits, immunized with purified recombinant HA H5 (E), H4 (F) or H12 (G).
doi:10.1371/journal.pone.0009097.g002

Figure 3. Visualization of data obtained from the peptide scanning analyses. The signal intensity of each peptide on the dot blot membrane is
shown as integrated intensity after subtraction of unspecific background and secondary antibody-related signals. Relative reactivity values are normalized
by setting the highest value of each experiment at 100%. Sera were tested on membranes containing their homologous antigen. Examples of H5 HA dot
blot and homologous reactivity patterns obtained by 3-fold probing and stripping of the membrane are shown in A and B, respectively. Cross-reactivity
of sera was identified by testing each serum with each heterologous membrane; a representative plot obtained with sera against H5, H4 and H12 on the
membrane containing H5-specific peptides is shown in C. Furthermore, cross-reactive epitopes were also identified by testing each of the sera on their
respective heterologous membranes, as shown for serum against H5 on membranes representing H4 or H12 (D).
doi:10.1371/journal.pone.0009097.g003
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Our results provide strong evidence, that several linear epitopes

exist in AIV HA some of which are subtype-specific, whereas

others are conserved among several subtypes. The location of the

antibody-binding peptides, but not their sequence, was found to be

conserved in all 3 antigens, suggesting that these peptides represent

protein regions on the surface of the folded protein accessible to

antibodies. The antibody binding sites differ within these

conserved antibody binding regions in the HA H4, H5 and H12

(Fig. 5B). The lower number of epitopes found in H5 compared to

H4 and H12 might explain the observation that in a mammalian

system H5 HA is a less immunogenic antigen than HA from other

subtypes [26]. Interestingly, this effect seems to be less pronounced

in poultry vaccines [27]. The reasons for this are unknown. Upon

analysis of the overall antigenic pattern recognized by hyperim-

mune rabbit sera compared to that recognized by hyperimmune

chicken sera, no significant differences were observed (data not

shown). This indicates that the species dependent immunogenicity

of H5 HA cannot be explained by differences in the antigenic

recognition of the aa primary structure. One explanation could be

that the traditional formulation of inactivated whole-virus H5N1

vaccines [26,27] contains additional epitopes of other viral

proteins that may stimulate the immune response in a host

species-dependent manner.

The peptide scanning approach provided informations which

could be useful for the development of subtype-specific antibody

differentiation tests. The antigenicity curves generated (Fig. 3C

and D) show peptides from H5 that react specifically with antisera

specific to H5. Such peptides can be assessed for their suitability

for subtype-specific antibody differentiation. Additionally, the

curves also show peptides from H5 HA with high reactivity to

antisera specific to H4, H5 and H12 HA. These peptides mediate

serologic cross-reactivity among different subtypes, hence they

may be interesting candidates for the development of tailored

multi HA-specific vaccines based on a combination of suitable

recombinant peptide antigens. However, the analysis of the

immunogenicity of these peptides was beyond the scope of this

study.

Some of the peptides that were recognised in the peptide

scanning analysis contain N-glycosylation sites. Since the insect

cell expression system is known to be suitable for eukaryotic

posttranslational glycan modifications, it is likely that the antigens

used for immunization were glycosylated, even if insect cell

glycosylation is not authentic to but a rudimentary form of

mammalian glycosylation [28]. However, the fact that unglycosy-

lated synthetic linear peptides are recognised by the sera raised

against the recombinant HA proteins indicates, that epitope

glycosylation is not a prerequisite for the detection by polyclonal

antibodies; hence, epitope antigenicity is likely to be dependent on

the protein primary structure, independent of their glycosylation

state.

The development of new technologies for the generation of

monoclonal antibodies, the expression of native recombinant

antigens as well as improved analyses of protein structure and

modification led to many detailed and important insights into the

correlation of IV HA structure and antigenicity. However, after

initial studies carried out in the 1980s the concept of linear

epitopes to be used for AIV diagnostics and control by vaccination

has not been further examined. Our data clearly show that such

epitopes exist and could be further evaluated for their suitability as

diagnostic or vaccine tools. During humoral immune response,

viral antigens are presented to B cells either as intact or as recycled

antigens, depending on the type of antigen presenting cell involved

(for a comprehensive review see [29]). Viral antigen can be

recycled and presented as short peptides that differ in their

conformation from the native antigen. This might explain the

selection of B cell clones that express antibodies reacting

independent of the native antigen conformation. Recent studies

have shown that some linear epitopes are immunogenic and can

induce neutralizing antibodies [15,18]. Such antibodies against

linear epitopes should be detectable in serologic diagnostic tests. In

this study, rabbit as well as chicken sera were differentiable in an

indirect ELISA employing H4, H5 and H12 HA-specific peptide

antigens.

For practical purposes, it should be possible to examine sera

from different host species in a blocking ELISA, where antibodies

in positive test sera block antibody binding sites for the antibodies

present in the indicator serum. In this study, however, it was not

possible to set up a blocking ELISA based on the subtype-specific

HA peptide antigens and the rabbit sera as source for indicator

antibodies. Even when the rabbit sera were diluted up to 1:6400,

and a chicken serum known to contain high titers of H5 antibodies

was used in a high concentration (i.e. diluted 1:5), a subtype-

specific differentiation of the chicken antibodies was not possible

(data not shown). This might be due to a high avidity of the

antibodies presented in the H5 rabbit serum leading to a

displacement of chicken antibodies. Eventually, this problem

could be solved by the use of monoclonal antibodies reactive to the

used peptide, instead of the polyclonal sera.

Our data provide evidence that IV HA proteins harbour more

linear epitopes than found until now, and that some of these

epitopes are recognized as subtype-specific by antibodies in

hyperimmune animal sera. In addition, to our knowledge, this is

the first study showing that AIV subtype-specific antibody

differentiation is possible in an indirect ELISA assay using

polyclonal sera and synthetic linear peptides representing

subtype-specific epitopes. Based on these findings, further

validation studies are required based on more than 1 serum

Figure 4. Principle of generation of semi-quantitative antigenic
maps. Integrated intensities from peptide scanning analyses were
transferred to the aa sequence as shown here for the HA aa sequence
from HPAIV A/tufted duck/Switzerland/V504/06(H5N1) within the
sequence range from aa position 20 to 63, as indicated. (A) Semi
quantitative display of the gross signal intensities in color-coded
categories: 100%–40% (red), 40%–30% (yellow). (B) Semi-quantitative
display of the net signal intensities in color code categories: 100%–70%
(red), 70%–40% (green) and 40%–20% (light blue).
doi:10.1371/journal.pone.0009097.g004

AIV Subtype Specific Epitopes
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sample from different host species. The most challenging part of

the validation of such an antibody subtype differentiation ELISA

is, to determine if the number of subtype-specific linear epitopes

per subtype is reduced by the inclusion of additional subtypes in

the peptide scanning analysis, and if the differential recognition of

subtype-specific epitopes, in terms of ELISA sensitivity and

Figure 6. Subtype-specific epitopes. Integrated intensities from peptide scanning were transferred to the aa sequence of each AIV HA after
subtraction of the heterologous from the homologous sera signals (H5, light blue; H4, green; H12, pink). All remaining epitopes are shown
independent of their signal intensity in the homologous system.
doi:10.1371/journal.pone.0009097.g006

Figure 5. Antigenic maps of AIV HA domains reacting with their homologous sera. Color code indicates (A) the gross signal intensities
found (compare to Fig. 4A, 100%–40% (red) and 40%–30% (yellow)) and (B) the net signal intensities found (compare to Fig. 4B, 100%–70% (red),
70%–40% (yellow) and 40%–20% (light blue)).
doi:10.1371/journal.pone.0009097.g005

AIV Subtype Specific Epitopes
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specificity, is compromised by the use of other heterologous sera

raised against genetically more closely related IV subtypes or sera

from multiple IV-infected hosts. It might be necessary to use a

different set of subtype-specific peptide antigens or a combination

of several antigens in a final ELISA protocol. Therefore, more

efforts should be undertaken to investigate the role of linear

epitopes on IV surface proteins and their classification in subtype-

specific and inter subtype-conserved epitopes in order to improve

AIV diagnostic and vaccination concepts. Such studies involving

the majority of the remaining HA subtypes are currently under

way.

Materials and Methods

Ethics Statement
Animal experiments have been conducted according to the

national and institution’s guideline (SR 455.1, Tierschutzverord-

nung (TSchV) 23. April, 2008) of the Swiss government.

Isolation of viral RNA, cloning of recombinant HA and
generation of recombinant baculoviruses

HPAIV A/tufted duck/Switzerland/V504/06(H5N1) originat-

ed from a dead tufted duck found during the H5N1 HPAIV

epidemic in 2006 in Switzerland [30]. LPAIV A/mallard/

Switzerland/WV4060166/2006(H12N2) was isolated from a

healthy mallard in Switzerland (Baumer, submitted). The virus

isolate A/duck/Cz/56(H4N6) (LP) was kindly provided by R.

Hoop, Swiss National Reference Laboratory for Avian and Rabbit

Diseases, Vetsuisse Faculty, Zurich. Total RNA was extracted

from these isolates with TrizolH, hybridised with primer SZA+ [31]

at 65uC for 10 min and reverse transcribed into cDNA with

SuperScriptTM III Reverse Transcriptase (Invitrogen) for 10 min

at room temperature followed by 1h at 50uC.

The full-length ORF of the HA genes was amplified using primer

SZAHA+ and SZAHA- [32] and PlatinumH Taq DNA polymerase

(Invitrogen) in a touch-down PCR [30]. Amplified HA cDNA was

agarose gel purified and subsequently cloned into the vector plasmid

pCRH 4-TOPOH (Invitrogen) and sequenced. Full-length HA ORF

sequences were either newly deposited or already available on

GenBank under the accession numbers AB295611 (H4), EF547197

(H5), and GQ415321 (H12). The HA ORF were reamplified with

Pfu Turbo DNA Polymerase (Sigma) in fusion with a C-terminal

6xHis tag and excluding the transmembrane domain (H5-DTMD

and H12-DTMD) as well as the authentic secretion signal sequence

(H4-ECD) with primers AI_H5_HA_BamH1fw (atggatccgatg-

gaaaaaatagtgcttcttc) and AI_H5_ECDHind3rev (ataagcttaatggt-

gatggt gatggtgttggtaagttcctattgattcc), H4_ECD_BamH1fwd

(agatccgcaaaactacacaggaaaccctg) and AI_H4_ECD_PstIrev (atctg-

cagttaatggtgatggtgatggtggtccttatatccctgggtcaatt), or AI_H12_HA_-

BamH1fwd (atcggatccgatggagaagttcattgtactgag) and AI_H12_-

HA_SpeIrev (atcactagttaatggtgatggtgatggtgtttgtatgtagaattctcttcaag),

respectively. Truncated HA genes were subsequently cloned in

pCRH 4-TOPOH (Invitrogen), resequenced and transferred by

DNA restriction with enzymes cutting at the primer-encoded

restriction sites and ligation into the corresponding restriction sites

in the baculovirus expression vector pFastBac1 (Invitrogen). For the

N-terminal fusion of the truncated HA ORF to the signal sequence

of the honeybee melittin (HBM) in order to enhance secretion of the

recombinant HA protein [33], the expression vector pFastBacHBM

was designed. A DNA cassette encoding the polypeptide

MKFLVNVALVFMVVYISYIYA was cloned into the pFastBac1

vector at the authentic translation initiation site of the polyhedrin

gene. To this end a PCR fragment was generated with primers

FBacMBacU (gttggctacgtatactccggaatattaatagatcatggagataattaaaat-

gataacca) and BacHBML (ctcggatccgcatagatgtaagaaat) using plas-

mid pMelBacB (Invitrogen) as template. This DNA fragment was

digested with the restriction endonucleases SnaBI and BamHI and

ligated into the corresponding sites of pFastBac1. In this vector, the

gene of interest must be inserted in frame with the HBM signal

sequence at any restriction site upstream of the stop codon-

containing SpeI site in the multiple cloning site. The insertion was

verified by nucleotide sequencing. Generation and amplification of

recombinant baculoviruses was performed with the Bac-to-Bac-

System (Invitrogen) according to the manufacturer’s protocol.

Figure 7. Antibody differentiation with polyclonal animal sera against different AIV HA subtypes tested in ELISA. (A) HA subtype-
specific biotinylated peptide antigens (H5: biotin-Ttds-ANNSTEQVDTIMEKNVTVTHAQD-OH; H4: biotin-Ttds-DSEMNKLFERVRRQLRENAED KGNGCF-OH
and for H12: biotin-Ttds-FTWAIHHPPTSDEQV-OH) were coated on ELISA plates at indicated amounts and tested with the 3 rabbit antisera (diluted
1:500); H5 antigen (A), H4 (B), and H12 (C). Antigens H4, H5 and H12 HA were also tested with a chicken serum against H5 HA (diluted 1:10) (D).
doi:10.1371/journal.pone.0009097.g007
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Expression and purification of recombinant AIV HA
For expression of recombinant HA, suspension cultures with 20

million High Five cells (Invitrogen) were infected with recombinant

baculovirus at an m.o.i. of 10 pfu/cell for 2 h at RT, shaking. Cells

were then incubated at 27uC on a shaker (150 rpm) in ESF 921

(Expression Systems, Woodland, CA, U.S.A.) or Express Five serum

free medium (Gibco). After 96 h cells were separated from the cell

culture supernatant (ccs) by centrifugation (10 min, 10006g, 4uC),

resuspended in carbonate buffer (100 mM carbonate, 500 mM

NaCl, 10 mM imidazole, pH 9.6, with proteolysis inhibitor P8849

(Sigma) 1 ml/106 cells) and sonicated 3610 sec on ice. Sonicated

cells were centrifuged for 15 min at 14000 rpm and 4uC and

resuspended in carbonate buffer. Aliquots of the ccs, the supernatant

after sonication and the resuspended sonicated cells were used for

SDS-PAGE and Western blot analysis to determine expression

efficiency and solubility of the HA proteins. Positive ccs were buffer-

exchanged into carbonate buffer prior to purification using a stirred

ultrafiltration cell (Amicon) or by dialysis. Recombinant HA were

purified with HisTrap HP 1 ml Ni-NTA-columns and the AEKTA

FPLC system (Amersham Biosciences). Columns were equilibrated

with carbonate buffer and loaded with the buffer-exchanged

recombinant protein preparations at a flow rate of 1 ml/min,

washed with 20 ml carbonate buffer containing 10 mM imidazole

(1 ml/min) and eluted with an imidazole gradient from 10 mM to

500 mM in 20 ml carbonate buffer (1 ml/min). 1 ml eluate

fractions were collected and analyzed by Western blot. Fractions

containing the affinity-purified HA were pooled and concentrated

with CentriconH YM-10 filters (Amicon).

SDS-PAGE and Western Blot
SDS-PAGE was performed with the Mini Protean Electropho-

resis system (Bio-Rad) and analyzed with the Odyssey Infrared

Imaging System (LI-COR Biosciences). For Western blot, proteins

were blotted after SDS-PAGE onto nitrocellulose membranes

(Porablot NCL, Macherey-Nagel) using a Trans Blot SD transfer

cell (Bio-Rad). After blocking with blocking buffer (LI-COR

Biosciences), the recombinant HA were detected with an anti

6xHIS tag monoclonal antibody (Roche) diluted 1:400 in blocking

buffer and a polyclonal goat anti-mouse IRDyeH 800CW conjugate

(LI-COR Biosciences) diluted 1:10.000 in blocking buffer and the

OdysseyH Infrared Imaging System (LI-CORH Biosciences).

Immunization of rabbits
Before immunization, the concentrated HA fractions were dialyzed

in PBS (8.1 mM Na2HPO4, 1.4 mM KH2PO4, 137 mM NaCl,

2.7 mM KCl, pH 7.3) with a Slide_A_Lyzer Dialysis Cassette, 3.500

MWCO, 0.1–0.5 ml capacity (Pierce). 200–500 mg of antigen were

used for each of 3 consecutive immunizations of female New Zealand

White Rabbits, 1.8 kg (Charles River Laboratories) every 4 weeks.

Epitope mapping
PepSpotsH membranes for the mapping of linear and confor-

mational epitopes were obtained from jpt Peptide Technologies

GmbH, Germany. The mapping of linear epitopes was performed

following the manufacturer’s protocol using rabbit sera, diluted

1:1000 and goat anti rabbit IRDyeH 800CW conjugate. The

signals on the PepSpotsH membranes were quantified with the

Odyssey Infrared Imaging System (LI-COR Biosciences).

Epitopes were identified in a homologous and a heterologous

way. In the homologous system serum against H5 HA was tested

on membranes displaying peptides derived from H5 HA, serum

against H4 HA on membranes with peptides derived from H4 HA

and serum against H12 HA on membranes with peptides derived

from H12 HA. In the heterologous system polyclonal serum raised

against 1 of the 3 HA antigens was tested on membranes

displaying the 2 other antigens (e.g. serum against H5 was tested

on membranes displaying H4 and H12 HA).

ELISA
Peptide ELISA was performed using Reacti-BindTM Streptavi-

din High Binding Capacity Coated 96-Well Plates (Pierce) and

biotin-labeled synthetic subtype-specific peptides as antigens.

Plates were washed with TBS washing buffer (25 mM Tris,

150 mM NaCl; pH 7.2, 0.1% BSA, 0.05% Tween-20) and coated

over night at 4uC with peptides diluted in washing buffer. After

coating, plates were washed and incubated either with the rabbit

antisera or with an anti-H5N9 chicken serum, generated by

intramuscular vaccination of chicken with a commercial inacti-

vated H5N9 poultry vaccine and kindly provided by our in-house

vaccine registration department, diluted in washing buffer for 1 h

at 37uC. For indirect ELISA, sera were removed and plates were

washed in washing buffer prior to incubation for 1 h 37uC with

species-specific HRP-conjugates (polyclonal swine anti-rabbit

HRP, Dako Cytomation) diluted 1:4000 in washing buffer; or

undiluted anti-chicken/turkey hen-IgY-HRP (Labor Diagnostik

Leipzig, Germany). After removal of the conjugate and final

washing, plates were incubated at room temperature with ABTS

substrate containing 1% of 1% H2O2. OD values were recorded

after 15, 30, 45, 60, 90 and 120 minutes at 405 nm. For blocking

ELISA, plates were incubated first with test serum and then with

rabbit serum without to remove the test serum, 1 h 37uC each.

Conjugates and substrate were added and measurements were

performed as described for indirect ELISA.

Supporting Information

Table S1 Epitope-displaying peptides. Subtype-specific epitope

sequences are underlined. Reactivities were quantified and

categorised into 100% to 70% (++) and 70% to 30% (+). Peptides

containing glycosylation sites are indicated with underlined

numbers.

Found at: doi:10.1371/journal.pone.0009097.s001 (0.04 MB

XLS)

Author Contributions

Conceived and designed the experiments: MM MAH. Performed the

experiments: MM SR RB NR. Analyzed the data: MM. Wrote the paper:

MM MAH.

References

1. Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, et al. (2008) The

evolutionary genetics and emergence of avian influenza viruses in wild birds.

PLoS Pathog 4: e1000076.

2. Suzuki Y (2005) Sialobiology of influenza: molecular mechanism

of host range variation of influenza viruses. Biol Pharm Bull 28: 399–
408.

3. Kalthoff D, Globig A, Beer M (2009) (Highly pathogenic) avian influenza as a

zoonotic agent. Vet Microbiol.

4. Kelly TR, Hawkins MG, Sandrock CE, Boyce WM (2008) A review of highly

pathogenic avian influenza in birds, with an emphasis on Asian H5N1 and

recommendations for prevention and control. J Avian Med Surg 22: 1–16.

5. OIE (2008) Manual of Diagnostic Tests and Vaccines for Terrestrial Animals.

ISBN, 978-92-9044-718-4. Vol. 1. Chapter 2.3.4.

6. Prabakaran M, Ho HT, Prabhu N, Velumani S, Szyporta M, et al. (2009)

Development of epitope-blocking ELISA for universal detection of antibodies to

human H5N1 influenza viruses. PLoS ONE 4: e4566.

AIV Subtype Specific Epitopes

PLoS ONE | www.plosone.org 8 February 2010 | Volume 5 | Issue 2 | e9097



7. Starick E, Werner O, Schirrmeier H, Kollner B, Riebe R, et al. (2006)

Establishment of a competitive ELISA (cELISA) system for the detection of
influenza A virus nucleoprotein antibodies and its application to field sera from

different species. J Vet Med B Infect Dis Vet Public Health 53: 370–375.

8. Velumani S, Du Q, Fenner BJ, Prabakaran M, Wee LC, et al. (2007)
Development of an antigen-capture ELISA for detection of H7 subtype avian

influenza from experimentally infected chickens. J Virol Methods.
9. Watson DS, Reddy SM, Brahmakshatriya V, Lupiani B (2009) A multiplexed

immunoassay for detection of antibodies against avian influenza virus. J Immunol

Methods 340: 123–131.
10. Nayak DP, Davis AR, McQueen NL, Bos TJ, Jabbar MA, et al. (1985) Biological

and immunological properties of haemagglutinin and neuraminidase expressed
from cloned cDNAs in prokaryotic and eukaryotic cells. Vaccine 3: 165–171.

11. Schulze-Gahmen U, Klenk HD, Beyreuther K (1986) Immunogenicity of loop-
structured short synthetic peptides mimicking the antigenic site A of influenza

virus hemagglutinin. Eur J Biochem 159: 283–289.

12. Nestorowicz A, Tregear GW, Southwell CN, Martyn J, Murray JM, et al. (1985)
Antibodies elicited by influenza virus hemagglutinin fail to bind to synthetic

peptides representing putative antigenic sites. Mol Immunol 22: 145–154.
13. Caton AJ, Brownlee GG, Yewdell JW, Gerhard W (1982) The antigenic

structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell

31: 417–427.
14. Green N, Alexander H, Olson A, Alexander S, Shinnick TM, et al. (1982)

Immunogenic structure of the influenza virus hemagglutinin. Cell 28: 477–487.
15. Shen S, Mahadevappa G, Oh HL, Wee BY, Choi YW, et al. (2008) Comparing

the antibody responses against recombinant hemagglutinin proteins of avian
influenza A (H5N1) virus expressed in insect cells and bacteria. J Med Virol 80:

1972–1983.

16. Khurana S, Suguitan AL Jr, Rivera Y, Simmons CP, Lanzavecchia A, et al.
(2009) Antigenic fingerprinting of H5N1 avian influenza using convalescent sera

and monoclonal antibodies reveals potential vaccine and diagnostic targets.
PLoS Med 6: e1000049.

17. Huang H, Dan H, Zhou Y, Yu Z, Fan H, et al. (2007) Different neutralization

efficiency of neutralizing monoclonal antibodies against avian influenza H5N1
virus to virus strains from different hosts. Mol Immunol 44: 1052–1055.

18. Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, et al. (2009)
Antibody Recognition of a Highly Conserved Influenza Virus Epitope. Science.

19. Gerdon AE, Wright DW, Cliffel DE (2005) Hemagglutinin linear epitope
presentation on monolayer-protected clusters elicits strong antibody binding.

Biomacromolecules 6: 3419–3424.

20. Kaverin NV, Rudneva IA, Govorkova EA, Timofeeva TA, Shilov AA, et al.

(2007) Epitope Mapping of the Hemagglutinin Molecule of a Highly Pathogenic

H5N1 Influenza Virus by Using Monoclonal Antibodies. J Virol 81:

12911–12917.

21. Smirnov YA, Lipatov AS, Gitelman AK, Okuno Y, Van BR, et al. (1999) An

epitope shared by the hemagglutinins of H1, H2, H5, and H6 subtypes of

influenza A virus. Acta Virol 43: 237–244.

22. Okuno Y, Isegawa Y, Sasao F, Ueda S (1993) A common neutralizing epitope

conserved between the hemagglutinins of influenza A virus H1 and H2 strains.

J Virol 67: 2552–2558.

23. Vareckova E, Cox N, Klimov A (2002) Evaluation of the subtype specificity of

monoclonal antibodies raised against H1 and H3 subtypes of human influenza A

virus hemagglutinins. J Clin Microbiol 40: 2220–2223.

24. Vareckova E, Mucha V, Kostolansky F, Gubareva LV, Klimov A (2007) HA2-

specific monoclonal antibodies as tools for differential recognition of influenza A

virus antigenic subtypes. Virus Res.

25. Zander H, Reineke U, Schneider-Mergener J, Skerra A (2007) Epitope mapping

of the neuronal growth inhibitor Nogo-A for the Nogo receptor and the cognate

monoclonal antibody IN-1 by means of the SPOT technique. J Mol Recognit

20: 185–196.

26. Subbarao K, Murphy BR, Fauci AS (2006) Development of effective vaccines

against pandemic influenza. Immunity 24: 5–9.

27. Rao SS, Styles D, Kong W, Andrews C, Gorres JP, et al. (2009) A gene-based

avian influenza vaccine in poultry. Poult Sci 88: 860–866.

28. Jarvis DL (2003) Developing baculovirus-insect cell expression systems for

humanized recombinant glycoprotein production. Virology 310: 1–7.

29. Batista FD, Harwood NE (2009) The who, how and where of antigen

presentation to B cells. Nat Rev Immunol 9: 15–27.

30. Hofmann MA, Renzullo S, Baumer A (2008) Phylogenetic characterization of

H5N1 highly pathogenic avian influenza viruses isolated in Switzerland in 2006.

Virus Genes 37: 407–413.

31. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer

set for the full-length amplification of all influenza A viruses. Arch Virol 146:

2275–2289.

32. Zou S (1997) A practical approach to genetic screening for influenza virus

variants. J Clin Microbiol 35: 2623–2627.

33. Tessier DC, Thomas DY, Khouri HE, Laliberte F, Vernet T (1991) Enhanced

secretion from insect cells of a foreign protein fused to the honeybee melittin

signal peptide. Gene 98: 177–183.

AIV Subtype Specific Epitopes

PLoS ONE | www.plosone.org 9 February 2010 | Volume 5 | Issue 2 | e9097


