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Abstract: The entire mechanical properties of steel fiber-reinforced concrete (SFRC) are significantly
dependent on the fiber–matrix interactions. In the current study, a finite element (FE) model was
developed to simulate the pullout response of hooked-end SFRC employing cohesive–frictional inter-
actions. Plain stress elements were adapted in the model to exemplify the fiber process constituents,
taking into consideration the material nonlinearity of the hooked-end fiber. Additionally, a surface-to-
surface contact model was used to simulate the fiber’s behavior in the pullout mechanism. The model
was calibrated against experimental observations, and a modification factor model was proposed
to account for the 3D phenomenalistic behavior of the pullout behavior. Realistic predictions were
obtained by using this factor to predict the entire pullout-slip curves and independent results for the
peak pullout load. The numerical results indicated that the increased fiber diameter would alter the
mode of crack opening from fiber–matrix damage to that combined with matrix spalling, which can
neutralize the sensitivity of the entire pullout response of hooked-end steel fiber to embedment depth.
Additionally, the fiber–matrix bond was enhanced by increasing the fiber’s surface area, sensibly
leading to a higher pullout peak load and toughness. The developed FE model was also proficient in
predicting microstructural stress distribution and deformations during the crack opening of SFRC.
This model could be extended to fully model a loaded SFRC composite material by the inclusion of
various randomly oriented dosages of fibers in the concrete block.

Keywords: SFRC; finite element method (FEM); hooked-end fiber; micro-structure; fiber–matrix
interface; cracking

1. Introduction
1.1. Background

Steel fiber-reinforced concrete (SFRC) is a material created by incorporating arbitrarily
distributed discontinuous steel fiber into a concrete matrix. This composite material is
more ductile and has lower production cost (as it can be produced with less labor power)
than conventional reinforced concrete. The steel fibers favorably enhance the cracked
concrete response by controlling the crack propagation through the fiber’s toughening
actions [1–3]; however, under biaxial loading, this advantage of fiber crack bridging
unexpectedly vanishes [4]. Fiber toughness can be evaluated by using the pullout load
versus crack opening response. The SFRC behavior under tension relies on the properties
of the fiber (content, orientation, geometry, and material), cementitious matrix, and fiber–
matrix interface [5]. However, the latter phase is generally considered as the “soul” of the
SFRC, as it facilitates arresting the stressed crack tips (i.e., it is likely to alter the brittleness
to a ductile response) [6,7].

The use of deformed fibers in SRFC is quite common. These fibers display superior
ductility (throughout the pullout actions) compared to undeformed ones. Given the fiber’s
synthetic deformation and the matrix’s strength, the bond capacity and pullout toughness
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of the deformed fibers are 3–7 times higher than those for straight fibers [8]. Hooked-
end steel fibers are the most broadly recruited deformed fibers [9]. A hooked-end fiber
with 20 mm depth in the concrete showed a maximum pullout load of ~350% more than
the equivalent straight fiber [8]. Moreover, the hooked-end fiber’s energy dissipation
during its pullout is superior to the smooth/straight fibers’ due to the accompanying
plastic deformations [5]. It is worth noting that limited analytical models for predicting
the pullout response of deformed fibers are available in the literature (e.g., [8,9]), which
may be attributed to the extremely complex fiber–matrix interactions [7]. Moreover, the
improved deformability of the SFRC is classically measured by the adjustment of the
intrinsic strain-softening law of plain concrete [10]. A friction-based pulley simulation with
two inelastic hooks to model the pullout response of hooked-end fiber was proposed by
Alwan et al. [11]. Based on this simulation method, a model for the pullout behavior of
multiple-hooked-end fibers (4D and 5D) was developed [12].

1.2. Significance of the Study

As conceptually demonstrated in Figure 1, the fiber–matrix interactions govern the
entire performance of a SFRC structure at various scales [13–15]. A cracked fiber-reinforced
material can tolerate tensile stresses due to the bond of the fiber–matrix interface [16]. The
pullout mechanism of a fiber is associated with debonding or rupture failure modes [17].
The fracture of loaded fibers is detected if the shear strength of the matrix is more than
the tensile strength of the fiber. Inadequate material ductility was observed under the
fiber’s rupture failure mode conditions, which resulted in underemployment of the fiber
reinforcement capacity. In contrast, a composite material with super energy dissipation
capability is obtainable if the tensile strengths of the fiber and matrix are comparable [18].
The classical way to quantify the influence of the fiber’s inclusion in a cement-based mate-
rial is by acquiring the fiber’s bond-slip curve. This curve provides in-depth insight into
the fiber–matrix interactions, and therefore aids additional enhancement of the composite
material [19]. Research evidence has shown that the development a SFRC with super
strength and ductility characteristics could be possible on the condition that the tensile
strength of the fiber–matrix transition zone was comparable to that for matrix [20]. Ad-
ditionally, the fiber’s interfacial area and orientation with the applied tensile loading are
of great significance in the capacity of the fibers to control the cracking of the composite
material [21].
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The straightforward approach for designing an SFRC is through experimental investi-
gations; however, it is both cost-prohibitive and complicated. Therefore, the performance-
based optimization of the SFRC can be significantly aided by the use of numerical tech-
niques. The finite element method (FEM) is a weighted residual-based numerical technique
used to solve partial differential equations. This method is widely employed in engineering
fields, as its implementation does not need a deep understanding of mathematics [23,24].
Recently, FEMs have been successfully used to characterize the mechanical features of the
hooked-end SFRC [15,25]. Additionally, FEM has been used to model matrix fracture using
individual fibers’ pullout response by segmenting the entire body [26].

1.3. Research Gap and Objectives

Fiber–matrix connectivity has been effectively modeled by nonlinear springs, in
which the 2D simulations display improved modeling capabilities compared to the 3D
versions [27]. The complexity emerging in developing a 3D numerical model for deformed
fibers, and the relevant solution’s approximations notably curtail its precision for predicting
the pullout force-slip curve. In contrast, 2D simulations can result in superior modeling of
this curve, indicating the practicality of 2D modeling. Moreover, the analysis cost of 2D
simulations is notably less than those developed with 3D models [28]. The analysis period
of an individual hooked-end fiber pullout by a well-refined 3D-FE model using a standard
CPU must run for about 20 h [25].

The innovative use of the mixed-mode cohesive fiber–matrix interfacial surface model
has reliably been used to simulate the full behavior of inclined, undeformed fiber [20,21].
This model postulates that fiber–matrix interactions have three ingredients: interior physio-
chemical bonding, surface friction, and normal pressure. According to this surface-based
model, fiber bridging actions in a fiber-reinforced cementitious composite (FRCC) were
investigated using FEM [29]. In this model, the fiber–matrix interface was considered to
have inferior strength and stiffness. Moreover, the yield surface criterion and Coulomb
friction for debonding and the subsequent stage were employed. Additionally, fiber
crossing a crack of the matrix was simulated by high-order springs. Using surface-based
interaction modeling, the FE model can be controlled to embody the full pullout response
(i.e., adhesive bond, debonding, and frictional interactions) of the hooked-end fiber [1].

Even though many simulation schemes have been established, the existing research
has many expediencies, reliabilities, and uninterrupted simulation issues for the microstruc-
tural fracture mechanics of SFRC (i.e., single fiber pullout). Simulation disturbance is
commonly caused by numerical discrepancies and is associated with the nonlinearity of
the fiber–matrix bond [30]. Therefore, stable simulation of the single hooked-end fiber
pullout model is scarce. This dilemma is propagated further by the numerous influential
factors of the fiber–matrix fracture [2]. The FEM parameters (e.g., mesh sensitivity, element
type, and modeling of the interactions) increase the problem’s complexity. Despite decades
of research, this continues to be highly debated, with inconsistent conclusions among
researchers, and an insightful understanding of the biaxial stresses of SRFC has not yet
been fully established. Consequently, this investigation’s objective was to develop an
undisturbed, streamlined, and reliable FE model to simulate the fracture mechanism of the
hooked-end SFRC at the microscale level.

2. Pullout Response of Hooked-End Fibers

Figure 2 displays the characteristic pullout response of a hooked-end fiber in the
course of a concrete crack opening mechanism. This response can be broken into three
phases: pure elastic (complete bonded), debonded, and frictional slipping. Table 1 presents
an explanation of the stages of the pullout-slip curve of a hooked-end steel fiber.
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Figure 2. Pullout process for a hooked-end steel fiber [7,30].

Table 1. Phases of the pullout intrinsic response of a hooked-end fiber [7,30].

Phase Sub-Phase Range in Figure 2 Criterion Description

Pure elastic - 0–1 δ ≤ δ1

The hooked-end fiber acts as a straight
one (deformed elastically) in this fully

bonded phase, where the adhesive
fiber–matrix governs the system.

Debonding

Incomplete debonded 1–2 δ1 < δ ≤ δ2

Involves the fiber’s debonding process,
and due to its deformability, this stage

extended to (2), instead of (1′) in Figure 2,
where the fiber’s lower end approaches

the matrix’s first bend and plasticity
begins. At the end of this phase, two

inelastic hinges are formed (i.e., IH-1 and
IH-2 in Figure 2).

Disappearance of IH-2 2–3 δ2 < δ ≤ δ3

The second inelastic hinge (IH-2)
evanesces, as δ approaches δ3, which

notably reduces the pullout load (due to
the decrease in the mechanical and

frictional bonding).

Disappearance of IH-1 3–4 δ3 < δ ≤ δ4

In this sub-phase, the fiber’s first inelastic
hinge (IH-1) fades out. Debonding is

completed as δ = δ4. The slight load surge
in this sub-phase is because the fiber

travels through the second angle of the
fiber–matrix interface.

Frictional slipping - 4–5 δ > δ4

The fiber becomes deformed-straight
during this phase, where the Coulomb’s
kinetic friction governs the fiber–matrix

interactions. It is worth noting that a
deformed fiber’s frictional abrasion is
notably higher than that for a straight

fiber [31].
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3. Finite Element Modeling
3.1. Geometry and Bond-Slip Model

In the current study, a general-purpose FE program (ABAQUS®, Johnston, RI, USA)
was employed to handle the single fiber pullout problem. The bond-slip curve for various
configurations was established by a Newton-based solution of the nonlinear (due to the
considerable fiber’s slip effects) static equation of this problem. In this analysis, the steady-
state fiber–matrix relative slip was modeled by applying a constant displacement velocity to
the fiber’s upper tip. It is worth noting that a predefined traction–separation response could
be employed instead of the bond-slip curve as a modification of the Bruggeling et al. [32]
model for the pullout behavior of a steel bar.

As shown in Figure 3, the fiber pullout process modeling involves the simulation
of the following parts/interactions: the concrete matrix, the fiber, and the fiber–matrix
interface. The fiber–matrix interactions are comparable to those for a steel bar embedded
in concrete [1]. Several systems for simulating the bond-slip of steel rebar in concrete have
been suggested in the literature [30,31,33]. Here, the surface-to-surface contact model [34]
was used to simulate the fiber–matrix bond-slip response, which requires selecting the
master and slave surfaces. This standard contact simulation was chosen, as it is capable
of modeling all of the bond-slip interfacial mechanisms of the fiber pullout (i.e., adhesive
bonding, debonding, and friction). The use of the “adhesive-friction-slip” model (i.e.,
surface-based adhesive response) offers a smart technique for simulating the cohesive
interactions of insignificantly tiny interface widths. In the current investigation, it is worth
noting that the fiber edges were selected as the master surface due to their high rigidity
compared to the interfacial surface (Figure 3). In the current investigation, six FE models
(Figure 4) were developed with two different fibers (i.e., S- and M-fiber, Table 2).
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Table 2. The reference points of the hooked-end steel fibers.

Point 1 2 3 4 5 6
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S-fiber

x 1.473 2.098 2.098 0.625 0 1.473

y 0 0 2.721 4.194 3.752 2.279

M-fiber

x 1.768 2.518 2.518 0.750 0 1.768

y 0 0 3.265 5.033 4.503 2.735

The radii of the fillets for the S- and M-fibers were 0.42 and 0.50 mm, respectively. All dimensions are in mm.

3.2. Fiber–Matrix Interactions
3.2.1. Traction–Separation Response

In the current investigation, the linear biaxial uncoupled elastic traction–separation
interaction (cohesive surface interactions) was assumed to model the fiber–matrix adhesive
bond. This elastic response is expressed in Equation (1) as a linear constitutive formula
relating the traction stress tensor (t) and corresponding slip displacements (δ) by the elastic
stiffness matrix (K). This elastic model was defined for the two effective directions (n is the
normal and s is shear axes).

t =
{

tn
ts

}
=

[
knn 0
0 kss

]{
δn
δs

}
= Kδ (1)

Like the tn- δn relationship (Equation (1)), the traction–separation rule can be used
to model the fiber’s debonding process [35]. This rule (Figure 5) correlates the interfacial
stress (traction) and corresponding split-up relative displacement (slip) of two surfaces. It
is worth noting that the area below the traction-slip lines constitutes the energy dissipated
in the material for complete failure (i.e., fracture energy). Generally, two failure modes
(i.e., opening and sliding; Figure 6) govern the traction–separation rule. These modes (I
and II) define the failure mechanism in the perpendicular and the two shearing directions,
respectively. A combined fracture mode (Figure 6) likely ensues throughout the simulation
process; however, the two fracture patterns could be autonomously defined [36–38].

Materials 2021, 14, x FOR PEER REVIEW 7 of 21 
 

 

stress (traction) and corresponding split-up relative displacement (slip) of two surfaces. It 
is worth noting that the area below the traction-slip lines constitutes the energy dissipated 
in the material for complete failure (i.e., fracture energy). Generally, two failure modes 
(i.e., opening and sliding; Figure 6) govern the traction–separation rule. These modes (I 
and II) define the failure mechanism in the perpendicular and the two shearing directions, 
respectively. A combined fracture mode (Figure 6) likely ensues throughout the simula-
tion process; however, the two fracture patterns could be autonomously defined [36–38].  

  
(a) (b) 

Figure 5. The traction–separation rule: (a) normal direction and (b) tangential direction [36]. 

 
Figure 6. Mixed failure modes of the traction–separation rule [34]. 

3.2.2. Damage Initiation and Evolution 
On the one hand, the definition of the commencement of the fiber’s deprivation of 

the cohesive behavior at the maximum stressed contacted node is known as the “damage 
initiation” criterion. This condition is considered to exist when its value is equal or more 
than unity. In this investigation, the quadratic separation criterion [Equation (2)] was em-
ployed to model the damage initiation. In this formula, 𝛿  and 𝛿  denote the highest 
contact relative displacement, once it is along the normal or shear planes, respectively. In 
Equation (2), it is worth noting that Macaulay brackets (i.e., 〈 〉) are used to indicate that 
the compressive interaction does not involve damage initiation. 〈𝛿 〉𝛿 + 𝛿𝛿 = 1 (2)

On the other hand, the damage evolution criterion expresses the rate of degradation 
of the cohesive stiffness after initiation. The damage evolution in this study was postu-
lated to be based on the controlling displacement. Moreover, the exponential softening 

𝛿
𝑘

𝑡𝑡

𝛿 𝛿

Loading
Unloading

𝑘 −𝛿 𝑘
𝑡𝑡

𝛿𝛿
𝑘
𝛿
−𝑡

Loading
Unloading

Figure 5. The traction–separation rule: (a) normal direction and (b) tangential direction [36].



Materials 2021, 14, 669 7 of 21

Materials 2021, 14, x FOR PEER REVIEW 7 of 21 
 

 

stress (traction) and corresponding split-up relative displacement (slip) of two surfaces. It 
is worth noting that the area below the traction-slip lines constitutes the energy dissipated 
in the material for complete failure (i.e., fracture energy). Generally, two failure modes 
(i.e., opening and sliding; Figure 6) govern the traction–separation rule. These modes (I 
and II) define the failure mechanism in the perpendicular and the two shearing directions, 
respectively. A combined fracture mode (Figure 6) likely ensues throughout the simula-
tion process; however, the two fracture patterns could be autonomously defined [36–38].  

  
(a) (b) 

Figure 5. The traction–separation rule: (a) normal direction and (b) tangential direction [36]. 

 
Figure 6. Mixed failure modes of the traction–separation rule [34]. 

3.2.2. Damage Initiation and Evolution 
On the one hand, the definition of the commencement of the fiber’s deprivation of 

the cohesive behavior at the maximum stressed contacted node is known as the “damage 
initiation” criterion. This condition is considered to exist when its value is equal or more 
than unity. In this investigation, the quadratic separation criterion [Equation (2)] was em-
ployed to model the damage initiation. In this formula, 𝛿  and 𝛿  denote the highest 
contact relative displacement, once it is along the normal or shear planes, respectively. In 
Equation (2), it is worth noting that Macaulay brackets (i.e., 〈 〉) are used to indicate that 
the compressive interaction does not involve damage initiation. 〈𝛿 〉𝛿 + 𝛿𝛿 = 1 (2)

On the other hand, the damage evolution criterion expresses the rate of degradation 
of the cohesive stiffness after initiation. The damage evolution in this study was postu-
lated to be based on the controlling displacement. Moreover, the exponential softening 

𝛿
𝑘

𝑡𝑡

𝛿 𝛿

Loading
Unloading

𝑘 −𝛿 𝑘
𝑡𝑡

𝛿𝛿
𝑘
𝛿
−𝑡

Loading
Unloading

Figure 6. Mixed failure modes of the traction–separation rule [34].

3.2.2. Damage Initiation and Evolution

On the one hand, the definition of the commencement of the fiber’s deprivation of
the cohesive behavior at the maximum stressed contacted node is known as the “damage
initiation” criterion. This condition is considered to exist when its value is equal or more
than unity. In this investigation, the quadratic separation criterion [Equation (2)] was
employed to model the damage initiation. In this formula, δo

n and δo
s denote the highest

contact relative displacement, once it is along the normal or shear planes, respectively. In
Equation (2), it is worth noting that Macaulay bracket (i.e., 〈 〉) is used to indicate that the
compressive interaction does not involve damage initiation.{

〈δn〉
δo

n

}2
+

{
δs

δo
s

}2
= 1 (2)

On the other hand, the damage evolution criterion expresses the rate of degradation
of the cohesive stiffness after initiation. The damage evolution in this study was postulated
to be based on the controlling displacement. Moreover, the exponential softening rule of
the damage [Equation (3)], which describes the initiation to complete failure evolution, was
employed in terms of the damage parameter, D, which varies between 0 (no failure) and 1
(complete failure). In this rule, δo

m, δ
f
m, and δmax

m stand for the slip at the damage initiation,
complete failure, and maximum displacement obtained throughout the pullout process,
respectively. Additionally, the parameter α is a scalar quantity expressing the material’s
speed of damage evolution.

Once D had been calculated, the resultant biaxial stresses were evaluated using
Equation (4), in which t stands for the pre-fracture (elastic) stress. Additionally, Equation (5)
was employed to calculate the resultant slip (δm) corresponding to damage evolution
with a combination of failure modes. Moreover, the degree of mode combinations (∅ in
Equation (6)) was measured by the comparative magnitudes of normal and shear stresses.
It is worth noting that ∅ ranges between 0 (pure tensile damage) and 1 (pure shear damage).
Additionally, the “node-to-surface” connections with finite sliding were employed to model
the fiber-to-matrix interactions. This discretization method was associated with the “slave”
to “master” penetration issue, which was controlled by applying an initial node-to-node
mesh for the two attached elements, appropriate element type, and mesh refinement for
the interfacial zone.

D = 1−
{

δo
m

δmax
m

}1−
1− exp

(
−α

(
δmax

m −δo
m

δ
f
m−δo

m

))
1− exp(−α)

 (3)
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{
tn
ts

}
= (1− D)

{
tn
ts

}
(4)

δm =

√
〈δn〉2 + δ2

s (5)

∅ =
2
π

tan−1
(

ts

tn

)
(6)

In this investigation, the fiber-to-matrix’s tangential frictional response was modeled
using Amontons’ third law of friction. Given that law, the maximum frictional resistance
force [Equation (7)] exerted during the fiber pullout process in the fiber–matrix interface
was evaluated in terms of normal bonding load (Nb) and the associated coefficient of dry
friction (µ). It is worth noting that the intact edges of the fiber-to-matrix interface were those
having a tangential force less than F̂. Additionally, ABAQUS’s penalty-based approach was
adapted to model the fiber–matrix tangential behavior, as it allows the relative slippage of
the two attached surfaces with a low computational cost. Moreover, the “hard” contact
pressure-overclosure (also penalty-based) formula was employed to simulate the fiber–
matrix interface interactions in the perpendicular direction. This formula enabled the
evaluation of Nb based on the condition of intact edges. The numerical model employed
coupled debonding and friction with exponential softening over the fiber–matrix interface.
Initially, the friction response was regarded as not engaged, whereas the debonding was
entirely governing (i.e., elastic response controlled by the adhesive fiber–matrix bonding).
The frictional interactions were added to the normal ones as the damage initiation criterion
had been fulfilled, whereas frictional contact entirely ruled the pullout loading if full
debonding ensued. The employed parameters for the fiber–matrix interactions are given
in Table 3.

F̂ = µNb (7)

Table 3. Parameters of the cohesive properties of the fiber–matrix interface.

knn kss tn ts δn δs α µ

(N/mm3) (MPa) (mm)

11 0.7 0.5 6 0.05

3.3. Material Models

In the current FE model, the steel and concrete materials were created using the
property module and assigned to their sections in ABAQUS®. The primary material
properties used in the development of the FE model will be presented in Section 4.1.

The steel was modeled using the “elastic” and the “classical metal plasticity” model,
which employs the von Mises yield criterion available in the mechanical materials library.
This material model enabled perfect plasticity with isotropic hardening (i.e., yield and
plastic flows), which is suitable for monotonic excitations with no creep significance [34].
The plastic behavior of steel was established by the evaluation of true stress ( ftrue), and the
corresponding inelastic strains (εinel

true) using Equations (8) and (9), respectively.

ftrue = fobs(1 + εobs) (8)

εinel
true = ln(1 + εobs)− ftrue/Es (9)

where fobs and εobs are the observed stress–strain curves of steel under monotonic and
quasi-static tensile loading, and Es is the modulus of elasticity for the steel.

The concrete material was assumed as a perfectly elastic material. This simplified
material model was proposed, as it had been concluded by previous investigators [1,8] that
modeling the concrete in the 2D model with the damage plasticity model had resulted in
unrealistic matrix element removal.
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3.4. Mesh Sensitivity and Properties

Mesh optimization is a necessary step that balances the precision and the cost of the
analysis. In Figure 7, three (i.e., coarse, medium, and fines) discretization systems were
made for the fiber–matrix zone (highlighted in Figure 7a) of the M-30 model (with 2757:
5914 and 11,234 elements, respectively). Figure 8 presents the pullout load versus slip
displacements for these discretization systems. This curve was fairly identical for the three
mesh refinements at the elastic and incomplete debonded stages (Figure 9 and Table 1),
with insignificant differences in the peak pullout load. Additionally, the coarse mesh
showed an unsteady post-peak load response (which could be attributed to the unstable
crack growth at this mesh size) that was markedly incompatible with the characteristic
pullout response of a hooked-end fiber (Figure 2). As the medium mesh yielded a load-slip
behavior comparable to that of the fine mesh and less simulation time, it was selected for
the analysis of all developed models.
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Using a medium-size mesh, Table 4 and Figure 9 show the mesh systems of the fiber–
matrix zone (highlighted in Figure 7a) for the developed FE models, where a gradient
mesh system was adapted to enhance the simulation performance. The element’s sizes
were 1000, 200, and 50 µm at the model’s border, and the straight and curved parts of the
fiber, respectively. As described in Section 3.2.2, a node-to-node connection was initially
made for the fiber and the matrix to facilitate the definition of the relevant mixed-mode
interfacial transition zone. Additionally, the CPS8R (eight-node reduced integration plane
stress element) element type was assigned to the fiber and concrete parts. To facilitate
the reproduction of these models, the associated flow chart and the keywords for “M-10”
model are presented in Appendices A and B, respectively.

Table 4. Mesh systems for the various fiber–matrix zones for the developed models.

Model
Number of Nodes Number of Elements

Fiber Matrix Total Fiber Matrix Total

S-10 1936 11,009 12,945 585 3560 4145
S-20 1971 16,525 8496 572 5360 5932
S-30 2620 22,388 25,008 755 7275 8030
M-10 1414 10,418 11,832 419 3365 3784
M-20 2208 16,262 18,470 647 5271 5918
M-30 3190 22,220 25,410 941 7215 8156

4. Calibration of the FE Model

In this study, a fiber pullout test was experimentally performed on various concrete
specimen configurations to investigate the validity of the established FE model. The results
of these experiments were employed for comparison purposes with their comparable
numerical ones. Accordingly, 18 typical concrete samples were tested under uniaxial fiber
pullout and standard curing conditions (three replicated specimens for S-/M-10, S-/M-20,
and S-/M-30) at the age of 90 days.

4.1. Materials

In this experimental program, two types of hooked-end fibers were used (S and M,
Table 2), and embedded in concrete at 10-, 20-, and 30-mm depths. The properties of the
recruited hooked-end steel fibers are presented in Table 5. Additionally, type I Portland
cement (satisfying the ASTM C150 specifications) was employed to develop the concrete
mixture. The quantities of constituent materials of concrete mixtures are given in Table 6.
The maximum aggregate size of these mixtures was 10 mm. It should be mentioned that
a polycarboxylate-based superplasticizer (with a dosage of 1.1 L/m3) was incorporated
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in the mixtures to control the workability (with a slump in the range of 60–80 mm). The
28-day tensile and compressive strengths of the concrete (according to ASTM C496 and
ASTM C39) were 2.6 MPa and 42.6 MPa, respectively. The elasticity modulus and Poisson’s
ratio (as per ASTM C469) for the concrete were 30.5 GPa and 0.19, respectively.

Table 5. Physicomechanical characteristics of the steel fibers.

Type Diameter
(mm)

Camber
Length (mm)

Hook Length
(mm) Aspect Ratio Hook’s Angle Poisson’s

Ratio
Elasticity

Modulus (GPa)
Tensile Strength

(MPa)

S-fiber 0.625 2.0 2.5
80 45◦ 0.3 210 1250

M-fiber 0.750 2.5 3.0

Table 6. Constituent materials of the concrete (kg/m3).

Water Cement
Aggregate

Coarse Fine

157.5 350 1040 700

4.2. Method of Specimen Preparation and Testing

In the current investigation, cylindrical [50 mm (dia.) × 100 mm (ht.)] concrete
specimens were used to perform the fiber pullout test (Figure 10). The concrete samples
were released from the molds after casting for one day and reserved in a standard curing
water tank until the age of testing (90 days). A universal testing machine (with 30 kN
loading capacity) was used to conduct the fiber pullout test. This test setup involved
gripping the steel bar of the concrete specimen in the machine’s fixed clutch and holding
the steel fiber in the moving one (Figure 10). The loading of the fiber pullout test was
performed under displacement-controlled conditions at a rate of 1.5 mm/min. It is worth
noting that the toughness associated with fiber pullout was assessed by calculating the
area under the pullout load-slip curve in the range of 0–4 mm slip displacements. It should
be noted that the detailed information on the experimental methods is available in [39].
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Figure 10. Fiber pullout test specimen and setup (all dimensions are in mm).

5. Results and Discussion
5.1. Load-Slip Curves

Figure 11 shows the pullout load-slip curves produced by the FE models. As expected,
the pullout ultimate load and toughness of the M-fibers were generally higher than those
of the S-fibers, which could be attributed to the increased fiber–matrix bond resulting
from the increased fibrous surface area. Additionally, Figure 11 shows a sensible result
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concerning the increased pullout maximum pullout load and toughness, with increased
fiber depth for the 0.625 mm diameter fiber. However, a similar observation was not
obtained for the M-fiber series (Figure 11b). In other words, no significant variations in the
pullout load-slip response were observed for varying fiber depths. This pullout behavior
could be attributed to the combined fiber–matrix failure and concrete spalling for fibers
with shorter embedment depth and higher diameter. This result is in agreement with that
reported by Deng et al. [22] for the pullout response of a hooked-end steel fiber embedded
in hybrid FRCC.
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Figure 11. FE model results for the pullout load-slip responses: (a) S-fiber and (b) M-fiber.

The comparison between the FE model results and the mean of the observed experi-
mental results is given in Figure 12. This figure depicts that both findings exhibited similar
behavior; however, significant variations in magnitude existed. A notable overestimation
of the FE model could be attributed to the fiber’s intrinsic 3D actual pullout actions, which
are difficult to predict using 2D simulations. Overall, these findings are consistent with
those reported by Van der Aa [1], Needleman [35], and Breitenbücher et al. [25].

Table 7 shows the maximum pullout load (P′), slip (δ′) at P′ and pullout toughness (T′)
obtained by FE and physical modeling. In Table 7, the ratios of the observed to FE model
for P′, δ′, and T′ results (i.e., αP, αδ, and αE) are also given. The values of αδ suggested
that the FE model provided good predictions for δ′ with 1.17 and 0.15 values for the mean
and standard deviation of αδ, respectively. This finding suggested that no modifications
were needed to adjust the slip-displacement results of the FE models. Moreover, Table 7
indicates that the ratios of αP and αE were linearly correlated (Figure 13a). For this reason,
and to facilitate comparisons with previously reported results, the αP was considered as
the modification factor for the FE model results.
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Figure 12. Model versus experimental load-slip curve results. (a) S-10, (b) S-20, (c) S-30, (d) M-10, (e) M-20, and (f) M-30.

Table 7. FE and physical modeling of the fiber pullout parameters.

Model
Max Load (P

′
)-N Slip (δ

′
) at P

′
(mm) Toughness, T

′
(×10−3 J)

FE (P
′
FE) Test (P

′
T) αP=P

′
T/P

′
FE

FE
(δ
′
FE)

Test (δ
′
T) αδ=δ

′
T/δ

′
FE FE (T

′
FE) Test (T

′
T) αE=T

′
T/T

′
FE

S-10 427.91 200.46 0.47 0.50 0.56 1.12 1062.94 547.08 0.51
S-20 432.47 197.14 0.46 0.51 0.64 1.26 1101.13 533.71 0.48
S-30 442.42 244.72 0.55 0.52 0.73 1.41 1149.70 714.27 0.62
M-10 495.53 197.16 0.40 0.60 0.70 1.18 1257.20 616.95 0.49
M-20 496.50 295.44 0.60 0.69 0.74 1.07 1223.43 833.34 0.68
M-30 489.58 287.15 0.59 0.65 0.65 1.00 1275.90 913.73 0.72

Average 464.07 237.01 0.51 0.58 0.67 1.17 1178.38 693.18 0.58
Std. 1 33.07 45.83 0.08 0.08 0.07 0.15 87.03 155.77 0.10
Min 427.91 197.14 0.40 0.50 0.56 1.00 1062.94 533.71 0.48
Max 496.50 295.44 0.60 0.69 0.74 1.41 1275.90 913.73 0.72

Range 68.58 98.31 0.20 0.18 0.17 0.41 212.96 380.02 0.23
1 Std. = Standard deviation.
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Figure 13. (a) Relationship between αE and αP; (b) predicted vs. observed αP.

A nonlinear regression model for the modification factor (αP) is presented in Equation (10).
This regression equation can be used to adjust the pullout load data of the FE model. In the de-
velopment of this equation, the fiber’s diameter (d) and embedment length (Le) were employed
as predictors. Equivalent data from the literature (Table 8) are included in the establishment of
the prediction model of αP, to make the modification factor applicable to various hooked-end
fibers embedded in normal concrete. The initial assessment of the correlations between the αP
and d yielded a polynomial trend, whereas the αP and Le relationship exhibited exponential
tendencies. It is worth noting that the parameters of the αP prediction Equation (i.e., A, B, and
C) in Equation (10) were evaluated by the Gauss–Newton (with a tolerance of 1× 10−5) and
least-squares iterative procedures.

αP = Ad−B[exp(CLe)] (10)

where A = 0.438, B = 0.25, and C = 4.996× 10−3.

Table 8. Observed versus predicted modification factor, αP.

d (mm) Le (mm) Observed αP (αPO) Predicted αP (αPP) αPO/αPP Std. (αPP, αPO)

Author

0.625 10 0.468 0.427 1.105 0.035
0.625 20 0.456 0.488 1.194 0.063
0.625 30 0.553 0.557 1.034 0.013
0.750 10 0.398 0.460 1.243 0.068
0.750 20 0.595 0.525 0.874 0.053
0.750 30 0.587 0.600 0.932 0.028

[1] 0.900 30 0.360 0.457 1.450 0.115
[25] 0.750 20 0.820 0.820 0.634 0.212

- - - Average 1.058 0.073

Table 8 shows that the average and standard deviation of the predicted to observed
αP were 1.058 and 0.073, respectively. This finding establishes that the model of αP [Equa-
tion (10)] produced realistic predictions. The data of the observed–predicted modification
factor are also plotted in Figure 13b. This figure displays the satisfactory prediction per-
formance of Equation (10) for the FE model modification factor of the data of the current
investigation, with an error band of about ±15%. However, a broader inaccuracy band
(±35%) was observed for the independent data, which could be attributed to the variance
in the physical and numerical modeling between these investigations and the current one.
Therefore, the pullout load-slip modification factor proposed herein was limited to the
reported testing conditions. The previously evaluated modification factor (Table 7) was em-
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ployed to correct the pullout data of the un-modified FE model results (Figures 11 and 12).
The modified pullout curves are presented in Figure 14. This figure shows that the modi-
fied FE model results reasonably predicted the thorough pullout response of the different
hooked-end fiber features. This post-modification processing involved the multiplication
of the pullout load data (Figures 11 and 12) of the FE model by αP (Table 7).
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Figure 14. The modified model versus the experimental load-slip curve results. (a) S-10, (b) S-20, (c) S-30, (d) M-10, (e) M-20,
and (f) M-30.

5.2. Fracture Pattern

The von Mises stress distribution at different phases of the S20-fiber pullout process
and the deformed fibers after the pullout test are presented in Figure 15. The simulated
fiber-stress responses revealed that the fibers’ curved segments were ultimately the stressed
regions during the fiber pullout. It is worth noting that Inglis and Kok [40] obtained similar
results. Figure 15 also demonstrates that the stresses on these hooks decreased as the pullout
progressed (i.e., stress relief occurred due to their plastic deformations). By comparing
the shape of the fiber after the test (Figure 15d) and FE simulations (Figure 15a–c), it could
be concluded that the developed FE model in the current study was also proficient in
capturing the fiber and matrix deformations during the crack growth of SFRC.
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Figure 15. Stress contours during S20-fiber pullout. (a) δ = 1.634 mm, (b) δ = 3.244 mm, (c) δ = 5.076 mm, (d) fibers after
the pullout test.

6. Conclusions and Prospective Research

In the current study, an FE model was used to simulate the pullout response of hooked-
end SFRC employing cohesive–frictional mixed-mode interactions. Plain stress elements
were adapted to model the constituents of the fiber’s pullout process, considering the
material nonlinearity of the hooked-end fiber. Additionally, a surface-to-surface mixed-
mode (i.e., cohesive-friction with various failure types) contact model was chosen to
simulate the fiber’s complete response during the pullout process (including the nonlinear
geometry interactions). The model was calibrated against experimental observations,
and the modification factor model was proposed to account for the 3D phenomenalistic
behavior simulated by 2D numerical modeling. This modification factor is likely limited to
the numerical and physical modeling conditions of this study. Reasonable predictions were
obtained by employing this factor to generate the entire pullout-slip curves of previous
results, including the ultimate pullout load. Based on the numerical and experimental
investigations conducted in this study, the following conclusions have been drawn:
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• The FE models’ results confirmed that the increased area of the fiber’s surface was
able to enhance the fiber–matrix bond, resulting in higher pullout ultimate load and
toughness.

• Increasing the fiber’s diameter could alter the mechanism of crack opening from loss
of the fiber–matrix bond to that combined with matrix spalling. The latter mode of
failure can neutralize the sensitivity of the complete pullout response of hooked-end
steel fiber to embedment depth.

• Plane stress elements could model the entire behavioral constituents of a hooked-end
steel fiber’s pullout response from the concrete matrix. However, the simplification of
the spatial stress-dependence during the fiber’s pullout by plane one is likely to result
in pullout load overestimation.

• The benefits of 2D modeling of the fiber’s pullout were discussed using the pullout
load scaling-down modification factor able to be predicted given the fiber’s size and
depth into the matrix.

• In the present study, the developed FE model was also capable of capturing the
stress distribution and deformations during the crack opening of a SFRC; therefore, it
provided confirmatory coincidence.

The scope of the present investigation may be expanded in the future to include the
following studies.

• Understanding the influence of concrete plasticity, shrinkage, and creep on deformed
fibers’ pullout behavior.

• Insights into the effect of the matrix’s performance class (normal, high, and ultrahigh)
on the fibers’ pullout behavior should be addressed. Moreover, deformed fibers’ pull-
out behavior under various confinement pressure and boundary conditions applied
on the concrete surface has rarely been reported.

• A much broader understanding of the numerical solution scheme (i.e., implicit or
explicit) on the FE model results’ stability and accuracy remains an open question.

• Simulation of the complete behavior of SFRC material under various loading con-
ditions. This type of modeling could be performed by combining the influence of
cracking and pullout of fibers. To approach this goal, a user subroutine needs to be
written in ABAQUS® for the inclusion of various randomly oriented dosages of fibers
in the concrete block.
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Materials 2021, 14, 669 19 of 21

*Surface, type=ELEMENT, name=Matrix-L
** Section: Matrix
*Solid Section, elset=_PickedSet5, material=Concrete
*End Part
*Part, name=SF
*Element, type=CPS8R
*Surface, type=ELEMENT, name=SF_R
*Surface, type=ELEMENT, name=SF_L
** Section: Steel
*Solid Section, elset=_PickedSet6, material=Steel
*End Part
*Assembly, name=Assembly
*Instance, name=SF-1, part=SF
*End Instance
*Instance, name=Matrix-1-1, part=Matrix-1
*End Instance
*Nset, nset=RP
*Surface, type=ELEMENT, name=_PickedSurf20, internal
** Constraint: Constraint-2
*Coupling, constraint name=Constraint-2, ref node=_PickedSet21, surface=_Picked
Surf20
*Kinematic
*End Assembly
** MATERIALS
*Material, name=Concrete
*Elastic, 33000., 0.2
*Material, name=Steel
*Elastic, 210000., 0.3
*Plastic
1000., 0.
1061., 0.02
1096., 0.05
1136., 0.1
1166., 0.15
1192., 0.2
1214., 0.25
1235., 0.3
1254., 0.35
1271., 0.4
1288., 0.45
1303., 0.5
** INTERACTION PROPERTIES
*Surface Interaction, name=Cohesive
*Friction, elastic slip=0.01 0.05,
*Cohesive Behavior, 11.,11.,11.
*Damage Initiation, criterion=MAXS, 0.7, 0.7, 0.7
*Damage Evolution, type=DISPLACEMENT, softening=EXPONENTIAL, mixed mode
behavior=TABULAR, mode mix ratio=TRACTION, 0.5,6.,0.,0., 0.5,6.,1.,0.
*Damage Stabilization 0.
** BOUNDARY CONDITIONS
* Name: BC-1 Type: Displacement/Rotation
*Boundary
_PickedSet23, 1, 1
_PickedSet23, 2, 2
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_PickedSet23, 6, 6
** INTERACTIONS
** Interaction: LL
*Contact Pair, interaction=Cohesive
SF-1.SF_L, Matrix-1-1.Matrix-L
** Interaction: RR
*Contact Pair, interaction=Cohesive
SF-1.SF_R, Matrix-1-1.Matrix-R
** STEP: Step-1
*Step, name=Step-1, nlgeom=YES, extrapolation=PARABOLIC, inc=1000000
*Static
0.0001, 1., 1e-30, 0.01
** BOUNDARY CONDITIONS**
** Name: BC-2 Type: Displacement/Rotation
*Boundary
RP, 2, 2, 4.
** OUTPUT REQUESTS
*Restart, write, frequency=0
** FIELD OUTPUT: F-Output-1
*Output, field, variable=PRESELECT
** HISTORY OUTPUT: H-Output-1
*Output, history
*Node Output, nset=RP
RF2, U2
*End Step
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