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Introduction: Pyroptosis was recently implicated in the initiation and progression of
tumors, including glioblastoma (GBM). This study aimed to explore the clinical significance
of pyroptosis-related lncRNAs (PRLs) in GBM.

Methods: Three independent cohorts were retrieved from the TCGA and CGGA databases.
The consensus clustering and weighted gene coexpression network analysis (WGCNA) were
applied to identify PRLs. The LASSO algorithm was employed to develop and validate a
pyroptosis-related lncRNA signature (PRLS) in three independent cohorts. The molecular
characteristics, clinical significances, tumor microenvironment, immune checkpoints profiles,
and benefits of chemotherapy and immunotherapy regarding to PRLS were also explored.

Results: In the WGCNA framework, a key module that highly correlated with pyroptosis
was extracted for identifying PRLs. Univariate Cox analysis further revealed the
associations between PRLs and overall survival. Based on the expression profiles of
PRLs, the PRLS was initially developed in TCGA cohort (n = 143) and then validated in two
CGGA cohorts (n = 374). Multivariate Cox analysis demonstrated that our PRLS model
was an independent risk factor. More importantly, this signature displayed a stable and
accurate performance in predicting prognosis at 1, 3, and 5 years, with all AUCs above 0.7.
The decision curve analysis also indicated that our signature had promising clinical
application. In addition, patients with high PRLS score suggested a more abundant
immune infiltration, higher expression of immune checkpoint genes, and better response
to immunotherapy but worse to chemotherapy.

Conclusion: A novel pyroptosis-related lncRNA signature with a robust performance was
constructed and validated in multiple cohorts. This signature provided new perspectives
for clinical management and precise treatments of GBM.
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INTRODUCTION

Glioblastoma (GBM) is the most commonly occurring type of glioma,
according to the 2016 World Health Organization (WHO)
classification, and is also the most lethal primary brain tumor
worldwide, which is closely related to significant morbidity and
mortality in adults, with a 5-year overall survival (OS) rate of 5%
(Roos et al., 2017; Wesseling and Capper, 2018; Oronsky et al., 2020;
Majc et al., 2021). Despite the application of the optimum therapeutic
options, including surgical resection, radiotherapy, chemotherapy as
well as tumor-treating field treatment (TTF), the OS remains poor
(Stupp et al., 2017;Delgado-Martin andMedina, 2020; Tan et al., 2020).

Pyroptosis, a novel fashion of programmed cell death, referred
to as cellular inflammatory necrosis (Kovacs and Miao, 2017), is
triggered by inflammasomes and mainly executed by the cleavage
of gasdermin proteins, such as gasdermin D (GSDMD) and
gasdermin E (GSDME), which can be cleaved by caspase-1
and caspase-3, respectively, to spark off pyroptosis (Shi et al.,
2015; Ding et al., 2016). Pyroptosis participates in the
development of multiple tumors, including glioma.
Upregulation of transcription factor p53 inhibits tumor growth
through prompting pyroptosis in non-small-cell lung cancer
(Zhang et al., 2019). Galangin can exert antitumor effects by
inducing apoptosis, pyroptosis, and protective autophagy in
GBM cells (Kong et al., 2019). Therefore, the impacts of
pyroptosis on glioma cannot be ignored.

Long noncoding RNAs (lncRNAs), a sort of noncoding RNA
longer than 200 nucleotides, are involved in a wide range of biological
processes, such as cell death, growth, differentiation,
posttranscriptional regulation, chromatin modification,
inflammatory pathology, epigenetic regulation, and subcellular
transport (Rynkeviciene et al., 2018). Recently, an increasing
number of studies have shown that lncRNAs play important roles
in the pyroptosis progress, by acting directly or indirectly on the
pyroptosis signaling, to exert effects on a variety of diseases, including
tumors (Xie et al., 2019; He et al., 2020; Wan et al., 2020; Xu et al.,
2020; Wang et al., 2021). However, the roles of pyroptosis-related
lncRNAs (PRLs) in GBM have never been reported.

In the present study, we identified and validated a novel
pyroptosis-related lncRNA signature (PRLS) in three independent
datasets. The molecular characteristics, clinical significances, tumor
microenvironment, immune checkpoints profiles, and benefits of
chemotherapy and immunotherapy regarding PRLS were also
explored. The PRLS demonstrated the outstanding performances
in prognosis prediction, and more importantly, PRLS also has
implications for the immunotherapy and chemotherapy of
different risk groups. In summary, we believe that the PRLS
contributes to furnishing extra evidence for risk stratification and
treatment guidance for GBM patients.

METHODS AND MATERIALS

Patient data collection and acquisition of
long noncoding RNAs
The RNA-sequencing (RNA-seq) data with relevant clinical
information of GBM patients were downloaded using UCSC

Xena from the Cancer Genome Atlas (TCGA, https://portal.
gdc.cancer.gov/). Two validation datasets were obtained from
the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.
cn) database also including both the transcriptome data and the
clinical characteristics. The clinical baseline data are summarized
in the Supplementary Material: Supplementary Table S1.

A total of 51 pyroptosis-related genes (PRGs) were acquired
from the REACTOME_PYROPTOSIS gene set in the Molecular
Signatures Database (MSigDB) and prior published papers (Man
and Kanneganti, 2015; Wang and Yin, 2017; Karki and
Kanneganti, 2019; Xia et al., 2019), which are presented in
Supplementary Table S2. Based on the annotation of the
Genome Reference Consortium Human Build 38 (GRCh38),
we extracted the expression matrix of 15,229 lncRNAs in the
TCGA dataset (named TCGA) and 4,311 and 4,356 lncRNAs in
the two CGGA datasets (named c325, c693), respectively.

Consensus clustering
Based on the expression profiles of the 51 PRGs, the consensus
clustering was performed to decipher heterogeneous subtypes in
the TCGA dataset. This process was implemented via the
“ConsensusClusterPlus” R package with the parameters of 500
iterations, resample rate of 0.8. The clustering heatmaps,
empirical cumulative distribution function (CDF), and
proportion of ambiguous clustering (PAC) analysis were
illustrated based on k-value (2–9). We further performed the
principal component analysis (PCA) to compare the differences
between different groups based on the clustering results.

Construction of weighted gene coexpression networks and
identification of pyroptosis-related long noncoding RNAs in
glioblastoma

Gene coexpression network analysis was specifically
performed on tumor tissues using the “WGCNA” R package.
First, we selected the top 5,000 genes with median absolute
deviation (MAD), and the samples with outlier were removed
using the hclust algorithm. The minimum number of module
genes was set at 30. The cutreeDynamic function was employed
for tree pruning of the gene hierarchical clustering dendrograms
generating coexpression modules and correlated modules (r
>0.75) were merged. The disparity of the module Eigengenes
(ME) was calculated using the module Eigengenes function.
Correlation between Eigengenes values with the pyroptosis-
related subtypes was evaluated by Pearson’s correlation
coefficient. The module with the highest correlation coefficient
was extracted for further investigation.

Development and validation of
pyroptosis-related long noncoding RNAs
For the genes in the identified module, univariate Cox regression
was performed to determine the associations between genes and
OS in the TCGA cohort. Then the LASSO Cox regression
algorithm was applied to identify the key lncRNAs and
construct a prediction model. The lncRNAs with nonzero
coefficients were defined as the key lncRNAs. Based on these
key lncRNAs, the prognostic risk score was calculated for each
patient predicated upon the formula shown below:
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Risk score � ∑
n

i�1
Coefi × Expri

whereCoefiwas defined as the coefficient of lncRNAs 1) and Expri
represented the expression level. Patients were classified into
high- and low-risk groups according to the median value. The
Kaplan–Meier (KM) survival analysis and log-rank test were
conducted to estimate survival difference between two groups
using the “survminer” R packages. Time-dependent receiver
operating characteristic (ROC) curves were profiled to
examine the predictive accuracy of this model using the
“survivalROC” R package, and the area under the curve
(AUC) values demonstrated distinction. The decision curve
analysis (DCA) was performed to evaluate the intended
clinical effectiveness of this model. Subsequently, this PRLS
model was further validated in two CGGA cohorts (c325 and
c693).

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was conducted to reveal the
significantly enriched biological processes and potential
molecular mechanisms regarding PRLS using the hallmark
gene sets (h.all.v7.4. symbols). Hallmark summarizes and
represents specific well-defined biological states or processes
and demonstrates coherent expression (Liberzon et al., 2015).
These gene sets were extensively utilized in cancer-related studies
(Liu et al., 2021e; Liu et al., 2021f). The gene terms with |
normalized enrichment score (NES)| >1 and false discovery
rate (FDR) <0.01 were considered to be statistically significant.

Cell infiltration
Five algorithms, including ESTIMATE, CIBERSORT, xCell,
ssGSEA, and MCPcounter, were applied to evaluate the
immune infiltration patterns based on the transcriptome
expression in the TCGA dataset. Correlations between the
PRLS and the immune cell infiltration were further explored.

Evaluation of immune checkpoint profiles
The relationship of a total of 27 immune checkpoints with PRLS,
including B7-CD28 family (PD-1, PD-L1, PD-L2, CTLA4,
CD276, HHLA2, ICOS, ICOSLG, TMIGD2, and VTCN1), the
TNF superfamily (BTLA, CD27, CD40, CD40LG, CD70,
TNFRSF18, TNFRSF4, TNFRSF9, and TNFSF14), and several
other molecules (ENTPD1, FGL1, HAVCR2, IDO1, LAG3,
NCR3, NT5E, and SIGLEC15) (Liu et al., 2021c) were
furthered explored.

Immunotherapy assessment
The Tumor Immune Dysfunction and Exclusion (TIDE) and
T-cell inflammatory signature (TIS) methods were applied to
predict the immunotherapeutic response to immune checkpoint
blockade (ICB) for each patient. The TIDE algorithm is a kind of
computational approach, with modules of two individual
mechanisms of tumor immune evasion, including T-cell
dysfunction and T-cell exclusion in tumors (Jiang et al., 2018).
The TIS, proposed by Ayers et al. could predict the putative

efficacy of PD-1 inhibitors (Ayers et al., 2017). We then carried
out the Subclass Mapping (SubMap) method, which employs the
GSEA algorithm to evaluate the similarity of expression profiles
between risk groups and patients with different responses to
immunotherapy.

Estimation of the sensitivity of
chemotherapeutic agents
We further applied the “pRRophetic” R package to estimate the
chemotherapeutic response by predicting the half-maximal
inhibitory concentration (IC50) of 138 agents between two
groups (Liu et al., 2021b; Liu et al., 2021d). The “pRRophetic”
R package utilized a ridge regression model to use expression data
as predictors and output as drug sensitivity values (of the drug of
interest) (Geeleher et al., 2014). Higher IC50 indicated higher
drug sensitivity.

Statistics
All data processing, statistical analysis, and plotting were
conducted in the R 4.0.5 software. Fisher’s exact test or
Pearson’s Chi-squared test was applied to compare categorical
variables. The Wilcoxon rank-sum test or t-test was utilized in
continuous variables between the two groups. All p-values were
two-sided, with p-value <0.05 deemed as statistically significant.

RESULTS

Identification of prognostic
pyroptosis-related lncRNAs in glioblastoma
patients
The workflow of our study is shown in Supplementary Figure S1.
The GSEA was performed on 51 PRGs to assess whether
pyroptosis was significantly associated with GBM in our study.
The results demonstrated that the pyroptosis pathway of GBM is
dysregulated compared with normal samples (Figure 1A).
Subsequently, the clustering analysis classified the patients into
different clusters, based on the expression levels of the PRGs.
Eventually, k = 2 was determined as the optimal clustering
number according to the clustering heatmaps, PAC analysis,
and CDF curves (Figures 1C–E). GBM patients in TCGA
cohort were clustered into two clusters. The PCA results
demonstrated the spatial distribution of gene profiles, and the
two clusters were distributed into distinct directions indicating
that pyroptosis genes can distinguish GBM patients (Figure 1B).
The heatmap demonstrated higher expression levels of PRGs in
cluster 1 versus cluster 2 (Figure 1F). As expected, most of the
PRGs were overexpressed in cluster 1 (Supplementary Figure
S2). In recognizing the lncRNAs associated with pyroptosis
cluster, the “WGCNA” R package was employed to construct
the weighted coexpression network. The soft power of β = 3
(scale-free R2 = 0.95) was chosen for the soft thresholding to
acquire coexpressed gene modules (Figure 2A). Ultimately, we
obtained a total of 15 modules for subsequent analysis, the
heatmap graph of topological overlap matrix (TOM), and the
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FIGURE 1 | The gene set enrichment analysis (GSEA) and consensus clustering of pyroptosis-related gene set. (A) Gene set enrichment analysis showed
pyroptosis-related signatures significantly enriched in glioblastoma (GBM) patients. (B) Two-dimensional principle component plot by gene profile of 51 pyroptosis-
related genes (PRGs). Each point represents a single sample, with different colors indicating the different clusters. (C) The clustering heatmap of GBM samples when
k = 2. (D) The proportion of ambiguous clustering (PAC) score; a low value of PAC implies a flat middle segment, allowing conjecture of the optimal k (k = 2) by the
lowest PAC. (E) The cumulative distribution functions of clustering heatmaps for each k (indicated by colors). (F) The pyroptosis cluster of GBM patients in The Cancer
Genome Atlas (TCGA) cohort.
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FIGURE 2 |Weighted gene coexpression network analysis. (A) Analysis of network topology for various soft-thresholding powers. The left panel shows the scale-
free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right panel displays the mean connectivity (degree, y-axis) as a function of the soft-
thresholding power (x-axis). (B) Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with assigned module colors. (C) Visualizing
the gene network using a heatmap plot. The heatmap depicts the Topological Overlap Matrix (TOM) among all genes in the analysis. Light color represents low
overlap and the progressively darker red color represents a higher overlap. Blocks of darker colors along the diagonal are the modules. (D) Visualization of the eigengene
network representing the relationships among the modules and the clinical trait weight. (E)Module-trait associations: Each row corresponds to a module eigengene and
the column to the pyroptosis cluster. Each cell contains the corresponding correlation and p-value.
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relationships among the modules are illustrated in Figure 2. The
yellow module composed of 616 lncRNAs showed the highest
gene significance with pyroptosis cluster and, hence, was selected
for further analysis (Figure 2E and Supplementary Figure S3).
Based on the selected module genes, we obtained 19 prognostic
PRLs shared by three datasets. KM analysis was exploited to
investigate the relationship between the expression levels of these

19 PRLs and OS. Consistent with the results of univariate Cox
regression, 11 of the PRLs (LINC00152, RP11-274H2.5, RP11-
20I20.4, AC145676.2, HOTAIRM1, CTB-51J22.1, AC093673.5,
FAM225B, C1RL-AS1, RP5-1021I20.2, and CRNDE) were risky
factors, while the remaining 8 were protective factors, including
AC093802.1, CTB-1I21.1, CYP17A1-AS1, RP11-179A16.1, FRY-
AS1, RP11-47I22.1, RP11-543C4.1, and WI2-85898F10.1

FIGURE 3 | Identification and of prognostic pyroptosis-related long noncoding RNAs (lncRNAs) and further Kaplan–Meier (KM) analysis. (A) Univariate Cox
regression was utilized to identify 19 prognostic pyroptosis-related lncRNAs, and the corresponding p-values and hazard ratio values were also exhibited. (B–T) KM
curves were illustrated to exhibit the relationship between overall survival (OS) and the expression levels of these 19 pyroptosis-related lncRNAs (PRLs) based on the
optimal cutoff points.
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FIGURE 4 | Construction of the pyroptosis-related lncRNA signature (PRLS). (A) LASSO coefficient profiles of the candidate PRLs for PRLS construction. (B) Ten-
time cross-validations to tune the parameter selection in the LASSOmodel. The two dotted vertical lines are drawn at the optimal values by minimum criteria (left) and 1-
SE criteria (right). (C) LASSO coefficient profiles of the candidate genes for RAIS construction. (D–F) The scattergrams of the risk score (up) and survival status (down) of
each patient in the TCGA, c325, c693 cohorts, respectively. In the upper parts of the scattergrams, the red and green dots represent high-risk (“H”) and low-risk
groups (“L”), respectively, and in the lower part of the scattergrams, death and survival, respectively. (G–I) Kaplan–Meier overall survival (OS) analysis of the high-risk and
low-risk groups based on the PRLS and median risk scores in the TCGA, c325, c693 cohorts, respectively. (J) Kaplan–Meier curve of disease-specific survival (DSS) in
the TCGA cohort. (K) Kaplan–Meier curve of progression free survival (PFS) in the TCGA cohort.
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(Figure 3). Furthermore, the coexpression relationships between
the 51 PRGs and the 19 lncRNAs were investigated
(Supplementary Figure S4).

Construction and verification of the
pyroptosis-related long noncoding RNAs
The LASSO Cox analysis was performed to generate a pyroptosis-
related lncRNA signature of 15 PRLs (Figures 4A, B), including
FAM225B, HOTAIRM1, RP11-274H2.5, RP11-20I20.4, CTB-
51J22.1, C1RL-AS1, WI2-85898F10.1, CYP17A1-AS1,
AC093673.5, RP11-179A16.1, RP11-47I22.1, AC093802.1,
FRY-AS1, LINC00152, and CTB-1I21.1, of which regression
coefficients are exhibited in Figure 4C. A risk score for each
patient was calculated based on the expression and coefficients of
PRLs, then the GBM patients were divided into two subgroups
(low- and high-risk groups) using the median value in TCGA

cohort. The KM survival curves show that GBM patients in the
high-risk group had significantly shorter OS compared with the
low-risk group (Figure 4G). The scattergrams of the risk score
and survival status revealed shorter OS time and more dismal
events with increasing risk score (Figure 4D). The promising
prediction ability of PRLS was corroborated by the ROC curves
for 1-, 3-, and 5-year OS rates (AUC = 0.704, 0.886, and 0.818,
respectively; Figures 5A, D). Decision curves showed the highest
net benefit for the PRLS (“Model”) compared with default
strategies (“All” and “None”) and clinical traits with
prognostic significance (“Radiation” represented radiotherapy).
Multivariate Cox regression analysis demonstrated that the PRLS
was an independent prognostic factor even including available
clinical variables (Figure 5G). Additionally, the disease-specific
survival (DSS) and progression-free survival (PFS) regarding
PRLS were further scrutinized. Patients in the high-risk group
showed longer DSS as well as PFS (Figures 4J, K).

FIGURE 5 | Prediction performance and independence of the PRLS. (A–C) Time-dependent receiver operating characteristic curve (ROC) analysis for predicting
overall survival (OS) at 1-, 3-, and 5-years (D–F) Decision curve analysis (DCA) curves to evaluate the clinical utility of different decision strategies, and the red line
represented the PRLS. (G–H) Multivariate Cox regression analysis of the risk score in three cohorts.
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Assessment of the prognostic pyroptosis
signature in external test cohorts
In two CGGA cohorts, c325 and c693, as we did in the TCGA
database, the GBM patients were classified into high- and low-risk
groups based on cutoff values of median risk scores as well (Figures
4H, I). The signature in both validation datasets showed favorable
predictive performances for OS rates of 1-, 3-, and 5-years
(AUC = 0.701, 0.718, and 0.859 in c325 and AUC = 0.705, 0.740,

and 0.745 in c693, respectively Figures 5B, C). The DCA also
revealed the highest predictive value of clinical prognosis for the
PRLS (“Model”) compared with the default strategies (“All” and
“None”) and clinical variables with prognostic significance (“PRS”
represented primary/secondary status; “Chemo” represented
chemotherapy) (Figures 5E, F). In line with the TCGA training
cohort, our PRLS model could independently predict the prognosis
of GBM patients in two external test cohorts (Figures 5H, I).

FIGURE 6 | Biological functions and immune landscape regarding PRLS. (A) The enriched gene sets in HALLMARK collection by the high-risk groups. Each line
representing one particular gene set with unique color, and upregulated genes located in the left approaching the origin of the coordinates; by contrast the
downregulated lay on the right of x-axis. Only gene sets with normalized enrichment score |NES| >2 and false discovery rate (FDR) <0.01 were considered significant.
Only several leading gene sets were displayed in the plot. (B) The distribution difference of ESTIMATE, immune, stromal, and tumor purity enrichment score
between the high-risk and low-risk groups. nsp > 0.05, *p < 0.05. (C–F) Heatmaps of immune cells infiltration in the high-risk and low-risk groups based on ssGSEA,
xCell, MCPcounter, and CIBERSORT algorithms, respectively.
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FIGURE 7 | Evaluation of immune checkpoint profiles, immunotherapy, and chemotherapy between risk groups. (A–C) Three heatmaps of 27 immune checkpoints
profiles in high-risk and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. (D) Submap analysis of the TCGA cohort and 47 previous melanoma patients with detailed
immunotherapeutic information. (E) The distribution difference of T-cell inflammatory signature (TIS) score between the high- and low-risk groups. *p < 0.05. (F)
Distribution of the immunotherapy response results predicted by the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm among the high- and low-risk
groups in the TCGA cohort. (G–I)Distribution of the estimated half-maximal inhibitory concentration (IC50) of bleomycin (G), docetaxel (H), and paclitaxel (I) between the
high- and low-risk groups in TCGA cohort.
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Immune landscape of pyroptosis-related
long noncoding RNAs
TheGSEAwas carried out to explore the potential biological processes
and mechanisms connected with different risk groups of GBM. The
results manifested that the high-risk group enriched multiple
immune-related hallmarks, including IL2_STAT5 signaling
(NES = 2.24, FDR< 0.01), IL6_JAK_STAT3 signaling (NES = 2.46,
FDR < 0.01), inflammatory response (NES = 2.66, FDR < 0.01),
interferon_gamma response (NES = 2.31, FDR < 0.01), and
complement (NES = 2.07, FDR < 0.01) (Figure 6A). Pathways
closely related to the low-risk group showed limited significance
with immunity, such as spermatogenesis (NES = −1.89,
FDR < 0.01), pancreas_beta_cells (NES = −1.80, FDR < 0.01),
KRAS_signaling (NES = −1.76, FDR < 0.01), E2F_targets
(NES = −1.64, FDR < 0.01), and oxidative_phosphorylation
(NES = −1.59, FDR < 0.01) (Supplementary Figure S5A).

Subsequently, we further investigated the immune landscape of
PRLS. The ESTIMATE software was employed to deduce the
proportion of stromal and immune fractions. The high-risk
group showed the superior overall, stromal, and immune scores
and lower tumor purity than the low-risk group in the TCGAdataset
(Figure 6B). We then performed CIBERSORT, xCell, ssGSEA, and
MCPcounter methods to further evaluate the proportion of immune
cells. Overall, the infiltration of immune cells was more abundant in
the high-risk group, and indicated more active immune status and
immune response compared with the low-risk group (Figures
6C–F). The correlations between the PRLS and the immune cell
infiltrations were further examined, some of which showed a higher
level of immune infiltration in the high-risk group compared with
the low-risk group, mainly comprising the T-cell family, such as
central memory CD4 T cell, effector memory CD8 T cell, gamma
delta T cell, type 1 T-helper cell, gamma delta T cell, natural killer
T cell, neutrophil, CD56dim natural killer cell, plasmacytoid
dendritic cell, etc. (Supplementary Figures S5B, C).

Evaluation of the immune checkpoint
profiles and the efficacy of immunotherapy
The connections between immune checkpoints and the PRLS in
three cohorts are presented in Figures 7A–C. Overall, most of
them were significantly upregulated in the high-risk group, and it
was noteworthy that CD276 and TMIGD2 showed this trend in
all three cohorts, which suggested being potential therapeutic
targets. The TIDE web tool and the TIS algorithm were applied to
infer the responses to ICB. The results demonstrated that patients
in the high-risk group showed more responders and higher TIS
score, which indicated that they were more inclined to derive
considerable clinical benefit from ICB treatment. The SubMap
algorithm was performed to explore the response to
immunotherapy based on 47 previous melanoma patients with
immunotherapeutic information; as expected, the high-risk
group showed better immunotherapy sensitivity (Figures 7D–F).

Other chemotherapeutic agents
Furthermore, we utilized the pRRophetic algorithm to predict the
sensitivity to 138 drugs in the high- and low-risk groups. The results

revealed 70 drugs with a significant variation of treatment sensitivity
between the high- and low-risk groups (Supplementary Figure S6).
Most of the discrepant drugs displayed enhanced responses in the
low-risk group, and themajority of which were gene-targeting drugs,
such as BMS-536924, an orally available GF-1R/IR inhibitor in
glioma, which inhibits viability and migration of glioma cells and
suppresses glioma tumor growth (Zhou, 2015). There were also
some chemotherapy drugs. Bleomycin, a water-soluble glycopeptide
antibiotic, induces single- and double-strandedDNA breaks and can
be enhanced by photochemical internalization (PCI) in glioma cells
(Mathews et al., 2012) and showed higher sensitivity in the low-risk
group as well. For two other chemotherapy drugs, docetaxel and
paclitaxel, the differences of treatment between the two groups were
in keeping with bleomycin (Figures 7G–I). These results provided
new perspectives for adjuvant treatments in GBM.

DISCUSSION

A total of 517 GBM patients from TCGA and CGGA datasets were
involved in our study to probe into the prognostic significance of
pyroptosis-related lncRNAs. Nineteen PRLs were recognized to have
prognostic value in all three public databases (TCGA, c325, and
c693), and 15 of them were included to construct a PRLS for
predicting the OS of GBM patients by using LASSO Cox
analysis. Based on the median risk score as the cutoff value,
GBM patients were divided into the high- and low-risk
subgroups, and the former had worse clinical outcomes. ROC
curves and DCA demonstrated good predictive power of our
model. Multivariate Cox regression analysis showed that PRLS
was an independent risk factor for OS. Furthermore, we utilized
several current acknowledged algorithms to reveal the immune
characteristics between subgroups. In general, the high-risk group
showed higher immune infiltration fraction and activity. The
immunotherapy and chemotherapy responses were further
explored regarding the PRLS. Patients in the high-risk group
showed higher sensitivity to immunotherapy but less to
chemotherapy. Overall, the PRLS we developed showed excellent
performance in assessing the immune landscape and the prognosis
prediction and treatment of GBM patients; thus, the specific
application in clinical practice in the future is worth expecting.

Pyroptosis is a hotspot that has been increasingly studied in
recent years, and many research have demonstrated that it is
involved in the body’s inflammatory responses and closely related
to the growth, development, and metastasis of various tumors (Xia
et al., 2019; Fang et al., 2020; Ruan et al., 2020), but how it performs
in an lncRNA-dependent manner during glioma progression
remains unclear. Pyroptosis regulated a variety of biological
processes in tumors mediated by lncRNAs. Downregulation of
lncRNA-XIST suppressed the progression of non-small cell lung
cancer (NSCLC) by triggering pyroptosis cell death mediated by
miR-335/SOD2/ROS signal pathway (Liu et al., 2019). LncRNA
ADAMTS9-AS2 activated pyroptosis cell death mediated by NLRP3
through sponging miR-223-3p to increase the sensitivity of cisplatin
in gastric cancer (GC) to inhibit tumor development (Ren et al.,
2020). Furthermore, lncRNA RP1-85F18.6 retrained the pyroptosis
in colorectal cancer (CRC) by regulating the expression of ΔNp63
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and promoted the proliferation and invasion of tumor cells. Having
listed all the above, we believe that more attention should be paid to
the roles of lncRNAs in the process of pyroptosis to determine
potential prognostic markers and therapeutic targets of cancers.

We constructed a 15-PRL signature contributing to providing a
novel tool of prognosis prediction, and some of them appeared in
previous studies. FAM225B was found upregulated in recurrent
GBMs (rGBMs), which was associated with the poor prognosis of
rGBM patients (Li et al., 2020). High expression of HOTAIRM1
increased the evasion and migration of GBM cells (Xie et al., 2020).
LINC00152 showed upregulated level in the mesenchymal subtype
and isocitrate dehydrogenase1 wild type, and the expression of
LINC00152 was increased with glioma grade (Wang et al., 2018).
These genes mentioned above, which resulted in adverse outcomes
with increased expression levels, also proved to be risk factors in the
PRLS model. FRY-AS1 was demonstrated as a protective factor
according to the research of Niu et al. (2020), which was consistent
with the results of our study as well. Otherwise, some of the genes
included in the PRLS have not been elucidated in glioma but in other
tumors. A high expression level of C1RL-AS1 was shown to be
associated with dismal prognosis of GC; similar results were
presented in our study of GBM (Liu R. et al., 2021). There are
also several genes that have never been reported in any tumor, which
have significant prognostic value in our study, thus, needing further
research.

Based on the PRLS, we aimed to interrogate and compare the
characteristic differences in the immunemicroenvironment between
tumor subgroups. GSEA demonstrated that the high-risk group is
enriched in IL2-STAT5 signaling, IL6-JAK-STAT3 signaling,
inflammatory response, interferon-gamma response, and
complement in hallmark analysis, which suggested improved
immunocompetence. The CIBERSORT, ssGSEA, xCell, and
MCPcounter algorithms were applied to explore the immune cell
infiltration in two groups, and some of themwere found increased in
the high-risk group, such as central memory CD4 T cell, central
memory CD8 T cell, natural killer T cell, neutrophil, and so on.
Moreover, we also detected enhanced levels of immune check points
in the high-risk group. Tumor immune microenvironment, mostly
consisting of stromal immune cells, plays vital roles in the
proliferation, migration, and invasion of tumors and may be a
crucial determinant of response to immune checkpoint blockade
therapy (Mohme et al., 2020; Liu R. et al., 2021; Zhang et al., 2021).
Unsurprisingly, the high-risk group showed higher sensitivity to
immunotherapy, which indicated our model points out new
directions and shows optimistic clinical application prospects in
distinguishing patients suitable for immunotherapy.

To further explore the underlying role of our model in clinical
decision making, we extensively interrogated the sensitivity of
various drugs, with emphasis on gene-targeted drugs and
potential chemotherapeutic drugs regarding PRLS. BMS-
536924, a GF-1R/IR inhibitor that suppresses the growth of
glioma, showed better responses in the low-risk group.
Similarly, several kinds of chemotherapy drugs like bleomycin,
docetaxel, and paclitaxel also showed a better propensity for
benefit in the low-risk group. This may provide more
opportunities for patients to receive effective treatment early
and curb tumor progression to prolong survival.

The present study has some limitations as well. First, the
clinical information of public datasets was very insufficient;
hence, the potential connections between risk groups and
important clinical characteristics may be disregarded. Second,
our work focused on all types of glioblastomas without taking
molecular subtypes, spatial heterogeneity, and so forth, into
account. Notably, patients with IDH mutation exhibited better
outcome compared with patients with IDH wild type (Molinaro
et al., 2020). More detailed comparisons of diverse subtypes of
GBM demand substantial clinical and sequencing data to secure
progressive results. Third, several genes we submitted have not
been particularly studied yet, thus, corroborative experiments
deserve future research. Last, machine learning algorithms were
implemented to explore the efficiency of different groups to
immunotherapy and chemotherapy; nevertheless, further
clinical validation is needed.

In summary, we developed and verified a novel pyroptosis-
related lncRNA signature with remarkable ability and stability for
survival prediction in GBM. Patients in the high PRLS group
displayed enhanced immune activity and better efficacy of
immunotherapy, while those in the low PRLS group tended to
benefit more from chemotherapy. These results amplified the
perception of PRLs in GBM and facilitated precise treatment and
clinical management.
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GLOSSARY

AUC area under the curve

CDF cumulative distribution function

CGGA Chinese Glioma Genome Atlas

CRC colorectal cancer

DCA decision curve analysis

FDR false discovery rate

GBM glioblastoma

GC gastric cancer

GRCh38 Genome Reference Consortium Human Build 38

GSDMD gasdermin D

GSDME gasdermin E

GSEA Gene set enrichment analysis

IC50 half-maximal inhibitory concentration

ICB immune checkpoint blockade

KM Kaplan–Meier

lncRNA Long non-coding RNA

MAD median absolute deviation

ME module Eigengene

MSigDB Molecular Signatures Database

NES normalized enrichment score

NSCLC non-small cell lung cancer

OS overall survival

PAC proportion of ambiguous clustering

PCA principal component analysis

PCI photochemical internalization

PRG pyroptosis-related genes

PRL pyroptosis-related lncRNA

PRLS pyroptosis-related lncRNA signature

rGBM recurrent GBM

RNA-seq RNA-sequencing

ROC curve receiver operating characteristic curve

SubMap Subclass Mapping

TCGA the Cancer Genome Atlas

TIDE Tumor Immune Dysfunction and Exclusion

TIS T-cell inflammatory signature

TOM topological overlap matrix

WGCNA gene co-expression network analysis

WHO World Health Organization

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 80529115

Xing et al. A Novel Pyroptosis-Related lncRNA Signature

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Clinical Significance and Immune Landscape of a Pyroptosis-Derived LncRNA Signature for Glioblastoma
	Introduction
	Methods and materials
	Patient data collection and acquisition of long noncoding RNAs
	Consensus clustering
	Development and validation of pyroptosis-related long noncoding RNAs
	Gene set enrichment analysis
	Cell infiltration
	Evaluation of immune checkpoint profiles
	Immunotherapy assessment
	Estimation of the sensitivity of chemotherapeutic agents
	Statistics

	Results
	Identification of prognostic pyroptosis-related lncRNAs in glioblastoma patients
	Construction and verification of the pyroptosis-related long noncoding RNAs
	Assessment of the prognostic pyroptosis signature in external test cohorts
	Immune landscape of pyroptosis-related long noncoding RNAs
	Evaluation of the immune checkpoint profiles and the efficacy of immunotherapy
	Other chemotherapeutic agents

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References
	Glossary


