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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a complex disease associated with premature
mortality. Its diagnosis is challenging, and the identification of biomarkers causally influenced by
NAFLD may be clinically useful. We aimed at identifying blood metabolites causally impacted by
NAFLD using two-sample Mendelian randomization (MR) with validation in a population-based
biobank. Our instrument for genetically predicted NAFLD included all independent genetic variants
from a recent genome-wide association study. The outcomes included 123 blood metabolites from
24,925 individuals. After correction for multiple testing, a positive effect of NAFLD on plasma
tyrosine levels but not on other metabolites was identified. This association was consistent across
MR methods and was robust to outliers and pleiotropy. In observational analyses performed in
the Estonian Biobank (10,809 individuals including 359 patients with NAFLD), after multivariable
adjustment, tyrosine levels were positively associated with the presence of NAFLD (odds ratio per
1 SD increment = 1.23 [95% confidence interval = 1.12–1.36], p = 2.19 × 10−5). In a small proof-
of-concept study on bariatric surgery patients, blood tyrosine levels were higher in patients with
NAFLD than without. This study revealed a potentially causal effect of NAFLD on blood tyrosine
levels, suggesting it may represent a new biomarker of NAFLD.

Keywords: non-alcoholic fatty liver disease; tyrosine; biomarker; metabolites; obesity; Mendelian
randomization

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with
an estimated prevalence of one in four adults in most Western countries [1]. NAFLD is a
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progressive disease initiated by the accumulation of lipid droplets within hepatocytes which
can lead to inflammation, cell death and to more advanced stages such as non-alcoholic
steatohepatitis (NASH) (with or without fibrosis), cirrhosis and liver cancer. Cardiovascular
diseases are the leading cause of death in patients with NAFLD [2]. This condition is also
associated with other comorbidities such as type 2 diabetes, chronic kidney disease and
gastrointestinal neoplasms [3–5]. There is currently no pharmacological treatment available
specifically for the treatment of NAFLD.

According to the National Institutes of Health U.S. National Library of Medicine, there
are currently more than 300 ongoing randomized clinical trials (RCTs) enrolling patients
with NAFLD. Such RCTs are challenging because NAFLD “diagnosis” often requires
invasive methods and/or imaging approaches, which are clinically burdensome and cost-
prohibitive, especially since NAFLD has reached epidemic proportions in developing
countries that may not have the clinical, financial, and infrastructural resources to identify
and adequately treat patients with NAFLD. For example, liver biopsy is not only invasive
and expensive but is also prone to sampling error [6]. Affordable and easily obtainable
tests are required to identify NAFLD patients who may benefit from therapies under
investigation. Blood biomarkers of NAFLD that are not modulated by secondary non-
causal pathways may be promising candidates for the identification of at-risk individuals
and for the development of tailored therapy for NAFLD.

Mendelian randomization (MR) is a modern epidemiology investigation technique
that is increasingly used to explore whether risk factors associated with disease traits reflect
true causal associations or not [7]. Akin to an RCT, MR takes advantage of the random
allocation of genetic variation at conception to explore whether human traits that are at
least in part under genetic control are associated with diseases. MR has also been used to
determine whether a genetic susceptibility to certain diseases influences other biological
traits such as the blood metabolome, thereby identifying early biomarkers of disease-related
traits [8,9].

High-quality MR studies rely on the availability of standardized effect sizes of the
major genetic variants associated with a trait of interest when that trait is used as an expo-
sure, and on the availability of genome-wide association study (GWAS) summary statistics
when that trait is used as an outcome. In a recent study [10], we performed a GWAS meta-
analysis of NAFLD in four cohorts totaling 8434 NAFLD cases and 770,180 controls. This
analysis identified genetic variants at or near the GCKR, LPL, TRIB1, FTO, MAU2/TM6SF2,
APOE and PNPLA3 as NAFLD-susceptibility loci. In this study, we used a combination of
observational and two-sample MR study designs to identify blood metabolites that may be
causally influenced by the presence of NAFLD.

2. Results
2.1. Mendelian Randomization Analysis on the Impact of Non-Alcoholic Fatty Liver Disease on the
Blood Metabolome

First, we explored the potentially causal effect of genetically predicted NAFLD on
blood metabolites, using genetic instruments in instrumentally variable analysis imple-
mented via two-sample MR. To perform two-sample MR, we used the summary statistics
of two GWAS: NAFLD (exposure) and 123 metabolites (outcome). Our genetic instrument
included lead variants at each of seven NAFLD-susceptibility loci (F-statistic = 61). Us-
ing inverse-variance weighted (IVW) MR, we found that genetically predicted NAFLD
was robustly associated with higher levels of tyrosine (p = 6.75 × 10−5) after correc-
tion for false-discovery rate with the Benjamini–Hochberg method (pFDR < 4.06 × 10−4

[0.05/123 metabolites]) (Figure 1). We also found an association between NAFLD and
the tyrosine precursor phenylalanine (p = 0.0035, Supplementary Table S2), although this
association did not pass the FDR-corrected statistical significance threshold. The associa-
tion between NAFLD and tyrosine levels was consistent across MR methods and robust
to outliers and pleiotropy (Table 1 and Figure 2). Because there was sample overlap
for 3287 individuals between the exposure (genetically predicted NAFLD) and outcomes
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(blood metabolites), with the Estonian Biobank contributing to both datasets, we performed
another NAFLD GWAS meta-analysis, which excluded the Estonian Biobank participants
(4119 NAFLD cases and 190,129 controls). Genetically predicted NAFLD was still asso-
ciated with tyrosine (beta [SE] = 0.085 [0.026], p = 9.37 × 10−4) using IVW-MR (data not
shown). One of the key assumptions of MR is that genetic variants used as a proxy of the
exposure influence the outcome via their effect on the exposure and not via other related
traits (horizontal pleiotropy) [7,11]. Our original NAFLD GWAS identified seven NAFLD-
susceptibility loci [10]. Some of these loci were identified after leveraging prior effect sizes
of NAFLD-related traits such as body mass index and triglycerides, which might increase
the chance of finding associations that may be influenced by NAFLD-related traits and not
by NAFLD per se. We therefore investigated the impact of genetically predicted NAFLD on
blood levels of tyrosine using independent NAFLD SNPs from our original GWAS. For that
purpose, we used 12 NAFLD-associated SNPs with p-value for association < 5 × 10−6 and
a r2 < 0.001. Multiple MR methods were used to investigate the association of genetically
predicted NAFLD using the 12-SNP instruments (F-statistic = 47) with tyrosine levels.
The independence of genetic instruments was ensured by obtaining the LD matrix using
the European 1000-genome LD reference panel (Supplementary Table S4). Leave-one-out
analysis confirmed that the results were robust to the presence of outliers (Supplementary
Table S3). Results presented in Table 1 suggest that genetically predicted NAFLD was
strongly associated with tyrosine levels using this other genetic instrument that might be
less susceptible to horizontal pleiotropy.
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Figure 1. Causal impact of genetically predicted non-alcoholic fatty liver disease (NAFLD) using
seven genome-wide significant SNPs on the blood metabolome. Volcano plot depicting the effect
of genetically predicted NAFLD on blood metabolites (n = 123) using inverse-variance weighted
Mendelian randomization. Each dot represents a different metabolite, and the green dot represents
the metabolite (here, tyrosine) significantly influenced by the presence of NAFLD following correction
for false-discovery rate (pFDR < 0.05/123 metabolites).
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Table 1. Association of genetically predicted non-alcoholic fatty liver disease with blood tyrosine
levels across multiple Mendelian randomization methods.

N SNPs
Inverse-Variance Weighted Simple Median Weighted Median MR-Egger MR PRESSO

Beta SE p-Value Beta SE p-Value Beta SE p-Value Intercept p-Value
Intercept

Outlier Test
p-Value

7 0.131 0.033 6.75 × 10−5 0.142 0.045 0.002 0.137 0.038 2.82 × 10−4 0.010 0.515 0.334
12 0.104 0.027 1.47 × 10−4 0.042 0.040 0.297 0.103 0.036 3.88 × 10−3 −0.002 0.759 0.293

The effect of genetically predicted non-alcoholic fatty liver disease on tyrosine levels using two genetic instruments
(one with seven genome-wide significant variants and one with the 12 independent NAFLD variants with p-value
for NAFLD associations < 5 × 10−6 are presented.
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Figure 2. A Mendelian randomization study of genetically predicted non-alcoholic fatty liver disease
and plasma levels of tyrosine. Scatter plot showing the estimated effect sizes of each of the seven
genetic loci associated with NAFLD on NAFLD and blood tyrosine levels and the regression slopes
of four MR methods (inverse-variance weighted, simple median, weighted median, and MR-Egger).

2.2. Observational Analysis of the Impact of Non-Alcoholic Fatty Liver Disease on Blood Tyrosine
Levels in the Estonian Biobank

We next investigated whether the presence of NAFLD was associated with higher
plasma levels of tyrosine in the Estonian Biobank. Tyrosine levels were measured in
10,809 individuals including 359 patients with NAFLD (obtained from electronic health
records). Table 2 presents the association between tyrosine levels per one standard-
deviation increment and NAFLD before and after multivariable adjustment. After ad-
justing for age, sex, smoking, education, and BMI, tyrosine levels were positively associated
with the presence of NAFLD (odds ratio per 1 SD increment = 1.23 [95% confidence
interval = 1.12–1.36, p = 2.19 × 10−5]). Altogether, these results provide validation from an
observational study of the association of NAFLD with plasma tyrosine levels.
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Table 2. Association of plasma tyrosine levels (SD) with the presence of non-alcoholic fatty liver
disease in the Estonian Biobank.

Tyrosine Odds Ratio (95% CI) for NAFLD
Presence in the Estonian Biobank * p-Value

Model 1 1.29 (1.18–1.42) 2.09 × 10−8

Model 2 1.23 (1.12–1.36) 2.19 × 10−5

Model 1 is adjusted for age and sex. Model 2 is adjusted for age, sex, smoking, education and body-mass index.
* OR per 1 SD increase in tyrosine levels.

2.3. Impact of Non-Alcoholic Steatohepatitis on Tyrosine Levels in Patients Undergoing
Bariatric Surgery

Although elevated body weight is an important risk factor for NAFLD, the presence
and severity of NAFLD is very heterogeneous among patients with obesity. Whether
blood-based biomarkers of NAFLD such as tyrosine levels could help identify and stratify
patients with NAFLD/NASH is unknown. We therefore investigated in a small proof-of-
concept study whether tyrosine levels were associated with the presence of NAFLD with
or without histologically confirmed NASH among 138 participants of the IUCPQ Obesity
Biobank. Supplementary Table S6 presents the clinical information at the time of surgery
for patients of each group (healthy liver, NAFLD without or with NASH). Compared to
patients without NAFLD (n = 30), blood tyrosine levels were higher in those with NAFLD
(without NASH (n = 39) or with NASH (n = 69)). However, among patients with NAFLD,
tyrosine levels were comparable among patients with or without NASH (Figure 3). These
results suggest that plasma tyrosine levels could be useful to identify patients with NAFLD
among patients with obesity, but it may not identify patients with a more advanced stage
of NAFLD such as NASH.
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Figure 3. Observational analysis of the impact of NAFLD and NASH on tyrosine levels in the
IUCPQ Obesity Biobank. Box plot representing the dispersion and the median values of tyrosine
levels between the three groups (without NAFLD = 54.9 ± 10.7 nmol/mL; with NAFLD–without
NASH = 62.5 ± 10.9 nmol/mL; with NAFLD and NASH = 62.9 ± 11.0 nmol/mL). p-values are from
Tukey HSD test.
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3. Discussion

We established an MR framework aimed at identifying novel biomarkers of NAFLD.
Results of this analysis suggest that genetically predicted NAFLD may not be causally
linked with metabolites associated with triglyceride-rich lipoprotein metabolism, glucose-
insulin homeostasis, or branched-chain amino acid levels. However, this MR analysis
revealed an effect of NAFLD on blood tyrosine levels, which may represent a new clinical
biomarker of NAFLD. We also reported that patients with higher blood levels of tyrosine
had a higher prevalence of NAFLD in the Estonian Biobank, and that among patients with
obesity, blood tyrosine levels were higher in patients with NAFLD. Results from the two
observational studies with different clinical settings (i.e., a population-based biobank and a
bariatric surgery cohort), provide validation to our initial findings obtained with MR.

Several observational studies have suggested that liver fat accumulation or NAFLD
negatively impacts triglyceride-rich lipoprotein metabolism, glucose–insulin homeostasis
as well as branched-chain amino acid levels [12–16]. We investigated whether the presence
of NAFLD impacted lipoprotein levels and metabolites of these pathways to identify
early biomarkers of NAFLD using MR. This analysis did not find evidence of a causal
association of NAFLD with triglyceride-rich lipoprotein metabolism, which is expected
since some variants were associated with higher lipid levels while other variants were
associated with lower lipid levels. NAFLD was not however associated with glucose–
insulin homeostasis markers or branched-chain amino acids. We did however find a
significant impact of NAFLD on tyrosine and, to a lesser extent, its metabolic precursor
phenylalanine. Although the impact of NAFLD on tyrosine metabolism was reported
decades ago [17], our analysis adds to this body of evidence by suggesting that the impact
of NAFLD on tyrosine metabolism might be a direct consequence of NAFLD, and that this
association might not be driven by secondary causes of NAFLD.

Previous studies have investigated the link between excess adiposity and its metabolic
consequences, such as NAFLD and levels of amino acids such as tyrosine. A study by
Kimberley et al. provided evidence that tyrosine was positively related to waist circumfer-
ence (WC) and body mass index (BMI) in 997 participants of the Framingham cohort [18].
Another study performed in a cohort of 38 participants in an outpatient clinic (separated
into four groups: 10 patients with normal glucose tolerance and NAFLD, 10 patients with
T2D and NAFLD, eight patients with T2D and no liver disease and a group of 10 con-
trols) identified several non-branched-chain amino acids, including tyrosine, that may be
increased in patients with NAFLD without T2D [19]. In two other metabolomic studies,
Boulet et al. and Brennan et al. showed that tyrosine was positively related to many adipos-
ity indices including abdominal fat cell size and adipose tissue depots [20,21]. Boulet et al.
tested the association between levels of 138 metabolites detectable in plasma and adiposity
measurements in 59 healthy women. Concentrations of tyrosine were positively associated
with visceral adipose tissue area and subcutaneous adipose tissue area and were signifi-
cantly associated with the mean adipocyte diameter in both fat compartments. In a study
of 103 middle-aged patients with abdominal obesity, Brennan et al. reported significant
associations between tyrosine levels and abdominal adipose tissue and between visceral
adipose tissue accumulation and phenylalanine, the precursor of tyrosine. Whether these
associations could be explained by the fact that NAFLD causes elevations in tyrosine levels,
which in turn influence the fate of adipocytes, needs to be further explored. Furthermore,
these studies suggest a disruption of the hepatic amino acid metabolism in the setting of
NAFLD, but the mechanisms underlying the relationship between amino acids’ imbalances
is poorly understood. Winther-Sørensen et al. recently reported that individuals with
hepatic steatosis had impaired clearance of amino acids [22]. However, tyrosine was not
considered in this investigation. In another study, individuals with NAFLD were also
characterized by higher gene expression of metabolic enzymes that may influence amino
acid release into circulation [23].

Our study has limitations. For instance, although we used the largest NAFLD dataset
available to date and have excluded secondary causes of NAFLD whenever possible, an
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electronic health records-based diagnosis of complex diseases such as NAFLD might be
prone to misclassification of cases and controls. The prevalence of NAFLD was also not
available in some of the cohorts used to document the impact of NAFLD on the blood
metabolome (24,925 individuals from 10 European cohorts). MR yields precise causal
estimates under three core assumptions. The values of the F-statistic indicated sufficient
strength for the seven SNPs instruments (F-statistic = 61) and for the 12 SNPs instruments
(F-statistic = 47). The exchangeability assumption, knowns as the second assumption,
states that the instruments should have no impact on confounders (i.e., exert no horizontal
pleiotropic effect). Our results are likely robust to the presence of pleiotropy, since robust
MR analyses returned consistent causal estimates. Additionally, different techniques were
used for the quantification of tyrosine levels, but this does not affect the interpretation of the
results. Results from the IUCPQ Obesity Biobank also need to be interpreted with caution
given the small sample size. Residual confounding cannot be excluded since participants
were not carefully matched, and a selection bias might stem from the fact that the study
sample was not randomly selected. The complex biology of NAFLD makes it difficult to
understand the underlying molecular biology or exact pathways involved, and this can
introduce bias in interpretation of the results. Studies documenting the impact of NAFLD
resolution on tyrosine levels could also consolidate the causal effect of NAFLD on the
blood metabolome.

In conclusion, our study identified a blood metabolite, the amino acid tyrosine, that
may be causally influenced by the presence of NAFLD. These findings shed light on the
metabolic consequences of NAFLD but also identify a potential early biomarker of NAFLD
that could be used to identify patients who may benefit from therapies targeting NAFLD
and/or for risk stratification in this population. Additional studies will be required to
determine whether our findings could be helpful to optimizing NAFLD risk prediction as
well as patient recruitment for trials aiming at preventing and/or treating NAFLD.

4. Materials and Methods
4.1. Mendelian Randomization Analyses on the Impact of NAFLD on the Blood Metabolome

To perform the MR analysis, we combined information of two publicly available
GWAS summary statistics in a two-sample MR setting. Genetic association estimates for
NAFLD (exposure) were obtained from our recently published GWAS [10] (8434 cases
and 770,180 controls) of European ancestry from four cohorts. Briefly, we performed a
fixed-effect GWAS meta-analysis of the Estonian Biobank, the UK Biobank, The Electronic
Medical Records and Genomics (eMERGE) [24] network, and FinnGen with the METAL
package [25]. NAFLD cases were obtained by electronic health record codes or hospital
records. For the logistic regression analysis, we performed an adjustment for age, sex,
genotyping site and the first three ancestries based on the principal components. For MR
analysis, we selected the seven lead SNPs, associated with NAFLD through risk-factor-
informed GWAS, for each risk locus (at or near the GCKR, LPL, TRIB1, FTO, MAU2/TM6SF2,
APOE and PNPLA3 loci) (Supplementary Table S1). Additional information about the se-
lected variants from the GWAS for NAFLD and how they were assigned to genes are
available in the original article [10]. For the selection of the 12 SNPs instrument of geneti-
cally predicted NAFLD (Results), SNPs with a p ≤ 5 × 10−6 were kept. We ensured the
independence of genetic instruments by clumping all neighbouring SNPs into a 10 Mb
window with a linkage disequilibrium r2 < 0.001 using the European 1000-genome LD
reference panel (Supplementary Table S4). The strength of the instruments for NAFLD
was evaluated with the Cragg–Donald F-statistic [26] for an effective sample size of 16,685
participants [27]. We used GWAS summary statistics from the study of Kettunen et al. [28]
to define our study outcomes. In this study, 123 blood lipids and metabolites were mea-
sured in 24,925 individuals from 10 European cohorts using high-throughput nuclear
magnetic resonance spectroscopy. Metabolites measured using this platform represent a
broad molecular signature of systemic metabolism and include metabolites from multiple
metabolic pathways (mostly lipoprotein lipids and subclasses, fatty acids and amino acids,
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glycolysis precursors). The estimates of the metabolites were normalized and reported
on a standard deviation scale. The association between genetically determined NAFLD
(first with seven SNPs and then with 12 SNPs) and the blood metabolome was assessed
using the IVW-MR with the mr function from the TwoSampleMR package in R [7]. The
IVW-MR is comparable to performing a meta-analysis of each Wald ratio (the effect of
the genetic instrument on the outcome divided by its effect on the exposure). Additional
MR analysis were performed to evaluate horizontal pleiotropy (intercept p-value from
MR Egger [29]) and the presence of outliers. We used MR-PRESSO [30], an outlier-robust
method, to detect the presence of outliers (variants potentially causing pleiotropy and
influencing causal estimates) and causal estimates were obtained before and after excluding
outliers. We also used, as sensitivity analyses, the simple median and weighted median
consensus methods, which give unbiased causal inference if most genetic instruments are
valid. Altogether, consistent results across different robust MR methods and significant
p-values after correction for multiple testing give support to the robustness and provide
further confirmation of the nature of the causal finding.

4.2. Impact of NAFLD on Tyrosine Levels in the Estonian Biobank

Blood plasma levels of tyrosine were measured using nuclear magnetic resonance
spectroscopy on 10,809 participants of the Estonian Biobank. The Estionan Biobank is a
population-based biobank that is longitudinal with periodic updates from the e-Health
databases (EMR), including ICD-10 codes, from National Health Insurance Fund, pre-
scription data, laboratory data, infraction registry, cancer registry data, causes of death
registry, regional hospital databases, research projects, national registries and databases
for enrichment of phenotype data in the Estonian Biobank. All participants provided
written informed consent. Metabolomic nuclear magnetic resonance (NMR) is available
for 120 molecules, including tyrosine, and was measured among 11,000 individuals. These
participants were also included in the GWAS meta-analysis of NAFLD that was used to gen-
erate the study exposure in the MR analysis. Two groups were formed, participants without
NAFLD (n = 10,450) and for those with NAFLD (n = 359), based on their electronic health
records. Clinical characteristics of participants are presented in Supplementary Table S5.
Odds ratios and corresponding p-values were estimated using a logistic regression model
implemented in R version 4.0.4 [31]. Metabolite values were scaled and centered prior to
analysis. Two models were run: a raw model with adjustment for age and sex, and an
adjusted model, which was additionally adjusted for smoking status, education level and
body-mass index.

4.3. Impact of NAFLD and NASH on Tyrosine Levels in Québec Bariatric Surgery Cohort

In a proof-of-concept study, plasma tyrosine levels were measured in sample of
138 participants from the IUCPQ Obesity Biobank according to institutionally approved
management modalities. The IUCPQ Obesity Biobank includes liver biopsies of patients
who have undergone a bariatric surgery at the Institut universitaire de cardiologie et de
pneumologie de Québec and who agreed to contribute to the biobank. All participants
provided written, informed consent. Histological lesions from liver biopsy were graded
and staged using the criteria of Brunt [32], by pathologists who were blinded to the study
objectives. Since few patients from this biobank have no liver steatosis, we identified
patients without liver steatosis (n = 30) and patients with various severities of NAFLD
that have similar characteristics regarding age, sex, ethnicity, BMI, etc., and based on the
following three categories: (1) absence of hepatic steatosis (n = 30), (2) hepatic steatosis
without NASH (n = 39) and (3) hepatic steatosis with NASH (n = 69). Supplementary
Table S6 presents the clinical characteristics at the time of surgery (sex, age, anthropometry,
medication use, and glycaemic, lipoprotein and liver enzyme profiles) for patients of each
group (without NAFLD, NAFLD without NASH and NAFLD with NASH). Plasma levels
of tyrosine were quantified using a Water Acquity UPLC system coupled to a Synapt G2-Si
mass spectrometer (Waters, Milford, MA, USA) in tandem mode (LC-MS/MS) using the
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EZ:faast amino acid sample testing kit (Phenomenex, 2003, Torrance, CA, USA). With this
kit, plasma samples are mixed with an internal standard solution and amino acids are
extract by a solid-phase support. Once extracted, amino acids are derivatized to increase
their stability during analysis and purified by a two-phase liquid–liquid extraction. The
samples were analyzed with an HPLC column, method gradient, and multiple monitoring
(MRM), which were provided by the kit. For the last step of the quantification, sample-to-
internal-standard ratios and a five-point calibration curve ranging from 20 nmol/mL to 200
nmol/mL were used. An analysis of variance (ANOVA) followed by Tukey HSD test were
performed to compare mean tyrosine levels between the three groups.

4.4. URLs

• GWAS summary statistics for NAFLD (study accession: GCST90091033) are available at:
https://www.ebi.ac.uk/gwas/studies/GCST90091033 (accessed on 30 August 2021).

• GWAS summary statistics for the 123 metabolites are available on MR-Base GWAS
Catalog (GWAS id: “met-c-838” to “met-c-960”): https://gwas.mrcieu.ac.uk/datasets/
?gwas_id__icontains=met-c (accessed on 30 August 2021). Additional information
about the metabolites can be accessed in the article from Kettunen et al., 2016 (Sup-
plementary Table S4): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814583/
(accessed on 30 August 2021).

• The TwoSampleMR package is available at: https://github.com/MRCIEU/TwoSampleMR
(accessed on 30 August 2021).

• The MendelianRandomization package is available at: https://github.com/cran/
MendelianRandomization (accessed on 30 August 2021).

• The data.table package is available at https://github.com/Rdatatable/data.table
(accessed on 30 August 2021).

• The tidyverse package collection is available at: https://github.com/tidyverse/
tidyverse (accessed on 30 August 2021).

• The LDlinkR package is available at: https://github.com/CBIIT/LDlinkR (accessed
on 30 August 2021).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050440/s1, Table S1: Instruments for genetic-predicted
NAFLD (7 and 12 SNPs); Table S2: Association of non-alcoholic fatty liver (predicted by a genetic
instrument that includes all independent SNP associated with NAFLD at the p < 5 × 10−8 threshold)
with blood metabolites across IVW Mendelian randomization method; Table S3: Leave-one-out MR
analysis results; Table S4: LD matrix for the 7 variants of NAFLD; Table S5: Clinical characteristics of
participants of the Estonian Biobank cohort; Table S6: Clinical characteristics of participants of the
IUCPQ Obesity Biobank cohort.
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