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Behavioral stability partially depends on the variability of net outcomes by means of the
co-varied adjustment of individual elements such as multi-finger forces. The properties
of cyclic actions affect stability and variability of the performance as well as the activation
of the prefrontal cortex that is an origin of subcortical structure for the coordinative
actions. Little research has been done on the issue of the relationship between stability
and neuronal response. The purpose of the study was to investigate the changes in
the neural response, particularly at the prefrontal cortex, to the frequencies of isometric
cyclic finger force production. The main experimental task was to produce finger forces
while matching the produced force to sine-wave templates as accurately as possible.
Also, the hemodynamics responses of the prefrontal cortex, including oxy-hemoglobin
concentration (∆HbO) and the functional connectivity, were measured using functional
near-infrared spectroscopy. The frequency conditions comprised 0.1, 1, and 2 Hz. The
uncontrolled manifold (UCM) approach was applied to compute synergy indices in time-
series. The relative phase (RP), the coefficient of variation (CV) of the peak and trough
force values were computed as the indices of performance accuracy. The statistical
parametric mapping (SPM) was implemented to compare the synergy indices of three
frequency conditions in time-series. A less accurate performance in the high-frequency
condition was caused not by the RP, but mainly by the inconsistent peak force values
(CV; p < 0.01, η2

p = 0.90). The SPM analysis revealed that the synergy indices were
larger in the low-frequency than in high-frequency conditions. Further, the ∆HbO
remained unchanged under all frequency conditions, while the functional connectivity
decreased with an increase in the frequency of cyclic force production. The current
results suggested that the concurrent activation of the prefrontal region mainly depends
on the frequency of cyclic force production, which was associated with the strength of
stability indices and performance errors. The current study is the first work to uncover
the effect of frequency on the multi-finger synergies as to the hemodynamic response in
the prefrontal cortex, which possibly provides a clue of the neural mechanism of synergy
formation and its changes.

Keywords: multi-finger synergy, uncontrolled manifold hypothesis, prefrontal cortex, near-infrared spectroscopy,
functional connectivity, frequency of cyclic action
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INTRODUCTION

Exploring behavioral stability is a common performance goal of
many daily life activities such as holding and moving a glass of
water while preventing spilling over, as well as experimental tasks
performed in a laboratory. Notably, stable performance partially
refers to the reproducible mechanical outcomes of important
performance variables across multiple attempts (Newell and
Carlton, 1988; McIntyre et al., 1996; Hasan, 2005). In this sense,
lowering net outcome variability across repetitive attempts is a
prerequisite for achieving high performance stability (Scholz and
Kelso, 1989; Kipp and Palmieri-Smith, 2012; Rajachandrakumar
et al., 2018). As evidenced by a series of experiments based on
the principle of motor abundance (Jaric and Latash, 1999; Latash
et al., 2002a; Shim et al., 2003; Latash, 2012), low net outcome
variability could be the consequence of the combined effect of the
relatively high variability of individual elements. Specifically, this
variability comprises a host of solutions from an abundant set of
elements, where a significant fraction of variability (i.e., variance)
is channeled into the subspace corresponding to the required
mechanical actions (Reschechtko et al., 2014; Ambike et al.,
2016). The uncontrolled manifold (UCM) framework has been
widely used to quantify the stability indices of variousmechanical
outcomes, along with the trial-to-trial variability of the involved
elements (see reviews in Scholz and Schöner, 1999; Latash,
2008a). Stability in human behavior refers, in part, to the central
and peripheral ability to stabilize salient performance variables by
a proper organization of multiple elements involved in a specific
behavior, which is well in accordance with the classical definition
of stability (Taga, 1995; Patla, 2003). The computational process
of the UCM analysis includes the compartmentalization of two
lower-dimensional subspaces in the n-dimensional space of
elemental variables. The first subspace, so-called UCM space, is
concerned with the manifold, where changes in the elements’
actions have no net mechanical effect, and the second subspace
is the orthogonal (ORT) space to the UCM subspace, where
the elements’ actions have a net mechanical effect. Note that
the computation of variance within the two subspaces was
performed in linearized subspaces (i.e., a linear approximation,
Latash, 2008a). If most of the force variance of individual
effectors is confined within the UCM (i.e., VUCM) and if the
variance observed in the ORT space (i.e., VORT) is relatively
small, we may conclude that the net force is stabilized by
the co-varied adjustment of individual forces by the effectors.
This phenomenon was further confirmed by studies using
external perturbation (Scholz et al., 2007; Krishnan et al., 2011,
2012), where the understanding of experimental observation is
accompanied by the definition of stability in classical mechanics
(Taga, 1995; Hasan, 2005; Bruijn et al., 2013). Moreover, stable
performance, to some extent, is the basic premise of accurate and
precise performance; however, there are diverse approaches and
standards for the quantification of stability and accuracy (Hasan,
2005; Winter, 2009; Kim et al., 2018).

Recent studies on the coordination of multi-finger forces
showed that performance errors with respect to the constrained
target values and performance reproducibility were highly
correlated with the stability indices of the net outcome

variable by means of co-varied adjustment of an abundant
set of elements (Park et al., 2010, 2012a; Park and Xu, 2017;
Kim et al., 2018). Such co-varied organization of elemental
variables has been termed ‘‘synergy’’ (Latash, 2008a). Notably,
the co-variation patterns (i.e., across-trial variability) differ
depending on a particular task or associated constraints; thus,
synergy, as a stability measure, possibly represents the purposeful
or coordinated neural activities necessary for stabilizing the
constrained or hypothetical performance variables (Latash,
2008b, 2016; Bruton and O’Dwyer, 2018). One of the main
properties of a cyclic action is its frequency, which reflects the
rate of change in the outcome variables. The frequency of cyclic
actions has been claimed to affect both performance stability
and variability (Yoshinaga et al., 2000; Stegemoller et al., 2009;
Roemmich et al., 2012) as well as the changes in the neural
involvement, especially on the basal ganglia and cerebellum (Ivry
and Keele, 1989; Spencer et al., 2003).

A significant number of previous studies have addressed
the relationship between the frequency of human actions and
stability, either across repetitive trials or over time-series (Danion
et al., 2003; Zhang et al., 2007; Friedman et al., 2009; Bailey et al.,
2018; Floría et al., 2019). The results commonly indicate that
relatively high-frequency actions induce large variability, mainly
associated with performance errors during repetitive assembly
tasks (Bosch et al., 2011). Furthermore, a mathematical model
verified that movement frequency played a crucial role in the
coordination among finger actions and the overall performance
stability (Friedman et al., 2009). The generation of voluntary
actions is assumed to be completed by a hierarchical control
scheme (Schöner et al., 1995), and the frequency component
is considered to be associated with a high-level control. Thus,
it is highly probable that changes in the frequency of cyclic
actions require the appropriate adjustment of neuronal activity
that causes voluntary actions. However, the neural origin
of the aforementioned observations regarding the frequency-
dependent features of motor outcomes remains unknown.

Studies on the effect of the frequency of various motor
behaviors on movement-related cortical activation have mainly
focused on motor tasks including two limbs, two fingers, or two
joint actions (Kuboyama et al., 2005; Wang et al., 2007, 2017)
and walking with the help of various brain imaging techniques
(Harada et al., 2009; Kim et al., 2016, 2017; Nordin et al.,
2019). Notably, the responses of neural structures within the
corticobasal-thalamo-cortical circuit are commonly increased
with an increase in the movement frequency (Jenkins et al.,
1997; Turner et al., 1998; Toma et al., 2002; Agnew et al.,
2004; Suzuki et al., 2004); however, the oscillatory cortical
responses are desynchronized during relatively fast movement
(Bulea et al., 2015). The corticobasal-thalamo-cortical circuit,
which originates from the prefrontal cortex and the primary
motor cortex, is one of the main contributors to the coordination
of voluntary movement. In other words, the prefrontal region
is anatomically defined to have reciprocal connections with a
wide spectrum of brain structures, including the basal ganglia,
premotor cortex, and supplementary motor area (Fuster, 2015;
Miller and Cummings, 2017). The essential functions of the
prefrontal region include the coordinated execution of new forms
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of organized goal-directed action (Killcross and Coutureau,
2003; Hasselmo, 2005; Hart et al., 2018). Recently, functional
near-infrared spectroscopy (fNIRS) has been used to quantify
brain activity associated with hemodynamic responses (Bunce
et al., 2006; Ferrari and Quaresima, 2012; Scholkmann et al.,
2014; Yeung and Chan, 2021). This implies that neuronal
activity is associated with localized cerebral blood flow, which
has been termed neurovascular coupling (Chiarelli et al.,
2017; Kaplan et al., 2020). In particular, fNIRS quantifies
the oxygen-saturated hemoglobin (i.e., oxy-hemoglobin, O2Hb)
and deoxygenated hemoglobin (i.e., deoxyhemoglobin, HHb)
in the blood circulating to the prefrontal region. In addition,
the observation of concurrent activations of different locations
within the prefrontal region, the so-called functional connectivity
(Murrough et al., 2016; Yu et al., 2020), may provide information
about the interconnected neural activation for voluntary
movement in the prefrontal region and its changes with the
frequency changes of cyclic actions. Therefore, it is possible that
the prefrontal circuitry is modulated by the frequency of cyclic
actions. However, little is known about the relationship between
the prefrontal response and the organization of multi-element
actions in humans such as the patterns of co-variation among
a set of elements. The role of the prefrontal structure and its
changes during voluntary actions is rarely investigated; thus, the
measure of the prefrontal area may provide a meaningful clue
about the neural origin of the synergy formation and its effect on
the frequency of cyclic actions in humans.

The current study attempts to examine the effect of cyclic
action frequency on the synergy of multi-finger actions and
the hemodynamic responses in the prefrontal region during
accurate cyclic-force-production tasks in an isometric condition
(i.e., static condition). On the basis of prior knowledge and
experimental outcomes, we hypothesized that: (1) performance
accuracy decreases with an increase in frequency (i.e., less
accurate); (2) the synergy indices show frequency dependence,
wherein a larger error variance occurs under higher frequencies;
and (3) the indices of prefrontal hemodynamics, including the
changes in oxy-hemoglobin (O2Hb) concentration, ∆HbO, and
functional connectivity, increase with the frequency of cyclic
finger forces.

MATERIALS AND METHODS

Participants
The advertisement of the study participants was posted on a
web-board of Seoul National University. The inclusion criteria
comprised no medical history of neurological disorders, injuries
of upper extremities, and vision. In particular, the experimental
tasks required the proper acquisition of visual information on
the computer screen, all volunteers who passed the Freiburg
Visual Acuity and Contrast Test (FrACT; Bach, 1996) were
selected for participants (i.e., above 1.0 decimal scale as the
normal condition of vision by 20/20 visual acuity scale). A power
analysis using G*Power (Faul et al., 2007) was performed to
estimate a prior sample size, which suggested recruiting at least
nine participants in order to reach an effect size (d) greater

than 0.7 with at least 80% power and α = 0.05 as type-I error
rate to detect significant differences between the conditions.
Twelve volunteers were recruited, and three of them did not
satisfy the inclusion criteria. Thus, nine right-hand dominant
young males (age, 30.3 ± 2.7 years; height, 167.49 ± 6.53 cm;
weight, 69.39 ± 15.73 kg) participated in the experiment. The
Seoul National University Institutional Review Board (IRB)
approved the use of customized experimental protocols and
compatible devices related to the current behavioral tasks
(e.g., force transducers and fNIRS devices). After providing
information about the study, we requested all the participants
to sign a consent form approved by the IRB at Seoul
National University (IRB No. 2007/002-028). The original
signed consent form was retained in the experimental records,
and a copy of the signed consent form was provided to
the participants.

Apparatus
Four force transducers (Nano-17, ATI Industrial Automation,
Garner, NC) were attached to a customized experimental
frame (140 × 90 × 5 mm3) to independently measure the
pressing forces (i.e., z-axis forces) produced by each of four
fingers (Figure 1B). The transducers’ surfaces were covered
with sandpaper to provide sufficient friction to the fingertips.
There were four slots in an anterior-posterior direction on
the panel to adjust the transducer position to the hand
and finger size of individual participants. The mediolateral
distance between slots was fixed at 3.0 cm (Figure 1B).
The 3.0 cm value was a typical distance reported in the
previous hand/finger pressing experiments, which possibly
ensured a comfortable hand posture during pressing with
fingers (Park and Xu, 2017; Kim et al., 2018; Kong et al.,
2019). The experimental frame attached to the transducers was
mechanically fixed on an immovable table. Four analog signals
from the transducers were digitized with 16-bit analog-digital
converter (USB-6225, National Instrument, Austin, TX, USA)
via a customized LabVIEW program (LabVIEW 8.0, National
Instrument, Austin, TX, USA). The sampling rate of force signals
was set to 200 Hz.

Depth-dependent hemodynamic responses in the prefrontal
cortex were recorded using a wearable fNIRS device (NIRSIT,
OBELAB, Seoul, Korea) at a sampling rate of 8.138Hz. The fNIRS
probes were in contact with the forehead (Figure 1C). The effect
of ambient light was minimized, as confirmed by monitoring the
channel quality (refer to the data processing section for more
details) throughout the experiment. The length of the source-
detector (SD) was 30 mm as in previous reports (Scholkmann
et al., 2014), and a total of 48-channel signals covering the
majority of the prefrontal cortex were measured.

Experimental Procedure
All experimental procedures were performed in accordance with
the relevant guidelines and regulations of the IRB. Participants
sat in a height-adjustable chair with a computer screen placed
at eye level. The right upper arm was positioned in the wrist-
forearm brace and strapped with Velcro to prevent excessive
forearm and wrist movement during the production of pressing
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FIGURE 1 | Illustration of the experimental setup. Participants wore a wearable fNIRS device, and the computer screen visualized the real-time force and the force
template. The participant’s wrist was held stationary with Velcro straps while a wooden cylinder supported the palm (A). Four force transducers were attached to a
frame (B). A wearable fNIRS device located just above the nasion (Fpz), and the probes (small dots) were firmly contacted on the prefrontal region (C).

finger forces. A wooden piece was placed underneath the
participant’s palm to ensure a fixed finger configuration during
the experiment (Figure 1A). Before each trial, the subjects were
asked to put their fingertips on the center of the corresponding
transducers. Prior to each trial, all transducer signals were set
to zero at a relaxed moment; thus, the gravitational effect was
excluded, resulting in only active pressing finger forces being
measured during data acquisition.

The experiment consisted of auxiliary finger force production
tasks as well as the main task as a cyclic–force-production
task in an isometric condition. The auxiliary tasks included
maximal voluntary contraction (MVC) tasks, which involved
single-finger pressing tasks and a multi-finger pressing task, and
single-finger ramp-force-production tasks for individual fingers.
The MVC pressing forces of the individual fingers or all four

fingers (MVCIMRL) were measured for each participant, and
these values were further used to normalize the individualized
target force values for the main task. The ramp-force-production
tasks were designed to configure an interdependency matrix
(i.e., enslaving matrix, E) by measuring unintentional force
production by non-task fingers, according to the nearly linear
relationship between changes in individual finger force and the
total force (Latash et al., 2002a). In the ramp-force-production
task, participants were asked to produce a force ramp pattern
via one finger force from 5% to 25% of the finger’s MVC for
6 s after maintaining 5% of that MVC for 2 s. Participants were
instructed to focus on the force produced by the task finger and
on the template displayed on the computer screen and to ignore
the force produced by non-task fingers while keeping all non-task
fingers on the corresponding sensors.
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The main task of the current study was cyclic-force-
production using all four fingers. Participants were asked to
produce a smooth sine-wave total finger force (FTOT) while
wearing the fNIRS device (Figure 1A). Note that the inherent
time delay of the hemodynamics response was about 10 s (Fazli
et al., 2012), the data acquisition of the fNIRS measure for each
trial lasted until 10 s after the force measurement ended. The
participants were asked to follow the real-time FTOT on the
template displayed on the computer screen while minimizing
any unnecessary behaviors such as head motion and speaking
that possibly affected the fNIRS measure. The fraction of the
time window display on the screen was 10 s, from −5 s to +
5 s with respect to 0 s, that represented the real-time moment
of actual force production. The force templates consisted of a
10 s steady force line with a 15% MVCIMRL value, followed by an
80 s sinusoidal force template with three frequency conditions,
including 0.1 Hz, 1 Hz, and 2 Hz and the same amplitude
(i.e., from 10% to 20% of the MVCIMRL value). The 10 s steady-
state phase was designed to elicit a stable baseline hemodynamic
state before cyclic force production (Bajaj et al., 2014). Each
participant was allowed to practice for about 30 min, which
possibly minimized the learning effect during the experiment.
After the orientation session and sufficient rest, each participant
performed three trials; they were allowed to rest for 5 min after
the completion of a single trial. The three frequency conditions
were block-randomized across all the participants.

Data Processing
Finger Force Data Analysis
Customized analysis codes (MATLAB, MathWorks, Natick, MA,
USA) were written for the finger force data analyses during both
the auxiliary and main tasks. Prior to the variable computation,
individual finger force data were low-pass filtered using a
4th-order Butterworth filter with a 10 Hz cut-off (Park and Xu,
2017). The force data collected during the main task, that is,
the cyclic force production task, were divided into half-cycles of
force increase (FUP) and force decrease (FDW; Park et al., 2012b).
The initiation and termination of the FUP and FDW phases were
identified as the time when the absolute value of the rate of force
change (|dF/dt|) dropped<5% of the peak value of |dF/dt| before
and after the time of the peak value of |dF/dt|. Furthermore,
the peak and trough values of the FTOT were detected for each
cycle. For both FUP and FDW data, the following two criteria were
used to identify the erroneous cycles, which were excluded from
further analysis: (1) the difference in force magnitude between
the produced positive (peak) and negative peak (trough) values
of FTOT to the prescribed values of the force template >±5%,
and (2) the deviation of cycle duration of the produced force
profile from the template >15%. The accepted force data for a
single cycle were resampled to 100 data points for both FUP and
FDW phases using cubic spline interpolation. As with the indices
of performance accuracy, first, the coefficients of variation
(CVs) of the peak (CVpeak) and trough (CVtrough) values with
respect to the prescribed peak or trough values provided by the
cyclic force template across the accepted cycles were computed.
Thus, the CVs (i.e., standard deviation/arithmetic mean) could
be positive or negative depending on the relative values of

the actual forces to the prescribed force. Second, the relative
phases (RPs) for each FUP and FDW phase were estimated as
the index of phase synchronization between the time-series of
the total force (FTOT) and the prescribed template force. The
instantaneous phases of these two signals were calculated using
the Hilbert transform (Pikovsky and Rosenblum, 2003). Briefly,
the RP is the measure of phase synchronization between two
signals (Rybski et al., 2003); therefore, the RP values ranged
from 0◦ (i.e., in-phase synchronization) to 180◦ (i.e., anti-phase
synchronization). Absolute RP values were used because the
focus of the RP computation, in this study, was not time lead-lag
relations. In addition, the RP values were averaged across samples
during the FDW and FUP phases, respectively, for each subject and
frequency condition.

The UCM approach was used to compute an index of
multi-finger force-stabilizing synergy (Scholz and Schöner, 1999;
Latash et al., 2001; Park et al., 2012a). Sets of time-aligned force
data for each subject and condition, which are assumed to be
hypothetical commands to fingers for force production, were
converted to the mode vector (m). Briefly, a mode vector reflects
the intended finger involvement of all four fingers by commands,
and computed by multiplying two matrices, the inverse of the
enslaving matrix (E) and the individual finger force vector
(Equation 1). The interdependency matrix was computed from
the single-finger ramp-force-production task for each individual
finger (see Park and Xu, 2017 for more computational details).

m = [E]−1F; F =
[
fI , fM , fR, fL

]T (1)

The UCM represents the combinations of individual finger
forces that do not alter FTOT, whose directions can be computed
by taking the null space of the Jacobian matrix, J (i.e., an
orthogonal set of eigenvectors, ei). For each of the 100 samples
within one cycle, the individual mean-free finger forces over
those cycles were projected onto these directions (UCM space),
summed, and normalized by the 15% MVCIMRL value and the
number of degrees of freedom (DOF) to estimate the amount of
variance per DOF in the UCM space (Equation 2):

VUCM (t) =

∑Ncycles
j = 1

∣∣∣∑n − p
i = 1 (ei ·m (t)) · ei

∣∣∣2
(n− p)Ncycles · 0.15 ·MVCIMRL

(2)

where n = 4 is the number of DOFs of individual finger
forces, and p = 1 is the number of DOFs of the performance
variable (FTOT). Analogously, the amount of variance per DOF
orthogonal to the UCM (ORT space) was estimated (Equation
3):

VORT (t) =

∑Ncycles
j = 1 |m (t)−

∑n − p
i = 1 (ei ·m (t)) ei|2

pNcycles · 0.15 ·MVCIMRL
(3)

Then, the time-series of synergy index, ∆V(t), were calculated as
the difference between VUCM and VORT normalized by the total
variance for each of the 100 samples as follows (Equation 4):

1V (t) =
VUCM (t)− VORT (t)

(VUCM × 3+ VORT × 1) /4
(4)
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FIGURE 2 | Illustration of functional connectivity analysis. A correlation matrix was calculated for each participant composed of Pearson’s correlation coefficients
between each two channel pairs. For comparison within participants, the statistical significances of correlation for all pairs were computed based on a one-sample
t-test followed by the log-transformation using Fisher’s z-transformation. By averaging the correlation matrices of all participants, the functional connectivity between
two channels was identified as the high correlation coefficient (r ≥ 0.7) and the statistical significance (p ≤ 0.05).

fNIRS Data Analysis
The raw fNIRS data, namely, the optical intensity (I), were
filtered using discrete cosine transformation with a frequency
ranging from 0.01 Hz to 0.5 Hz to eliminate instrumental and
surrounding noises (Scholkmann et al., 2014; Shin et al., 2017).
Prior to the variable computation, the signals from 48 channel
qualities were estimated by computing the coefficient of variation
(CV) of the optical intensity (CVI). Any channel that showed
either high CVI (i.e., CVI > 40) or low optical intensity (I < 10)
was rejected from further processing (Shin et al., 2017). ∆HbO
was calculated using the modified Beer-Lambert law (Delpy
et al., 1988). The averaged ∆HbO (1HbO), which represents
the changes in oxy-hemoglobin, O2Hb, concentration in each
channel, was calculated by averaging ∆HbO signals across
samples (i.e., duration by sampling frequency) in the selected
phase for condition and participant, separately. Pearson’s
correlation coefficients (r) between the i-th and j-th channels
of ∆HbO signals were calculated using Equation 5 and then
averaged across the three trials:

r = ρ
(
1HbOi,1HbOj

)
=

∑n
f = 1

(
1HbOi,f −1HbOi

) (
1HbOj,f −1HbOj

)
√∑n

f = 1

(
1HbOi,f −1HbOi

)2√∑n
f = 1

(
1HbOj,f −1HbOj

)2
(5)

where ρ(·) denotes the Pearson’s correlation coefficient, ∆HBOi
and 1HbOi represent the ∆HbO signal at the i-th channel and
the averaged ∆HbO of the corresponding channel, respectively.
The total number of channels was 48; thus, the number of
channels was 1,128 (i.e., combinations of 48 channels and

a set of ∆HbOi and ∆HbOj). The average magnitude of
r(r) in each pair of channels was computed by separately
averaging across participants for each frequency condition. The
statistical significances of r(p) for all pairs were computed using
one-sample t-test followed by log-transformation using Fisher’s
z-transformation.

One-sample t-test was performed to check the consistency
of intra-channel correlations for all participants. The number of
significant functional connections (FCN) was quantified based
exclusively on the following criteria (Yu et al., 2020): (1) statistical
significance at p ≤ 0.05 with the Bonferroni p-value correction
method; and (2) high correlation coefficient, r ≥ 0.7 (Figure 2).
In addition, the FCN between channels located in the intra- and
inter-hemispheres were counted separately.

Statistics
A standard description of parametric statistics was used, and
the data presented as means and standard errors. A parametric
repeated-measures analysis of variance (ANOVA) with between-
subject factors of frequency (three levels: 0.1, 1, and 2 Hz) and
phase (two levels: FDW and FUP) was performed on the RP,
(CVpeak and CVtrough), averaged ∆HbO at each of 48 channels,
and FCN (Hypotheses 1 and 3). All factors were selected for the
particular statistical tests. Mauchly’s sphericity test was used to
confirm or reject the assumptions of sphericity. Greenhouse-
Geisser corrections were used when the sphericity assumption
was rejected. The statistical power for all comparisons from the
pool of nine participants was computed, and in all cases, the
power was >0.7. For the pair-wise comparison, the changes in
the magnitude of the estimated variables were presented using
post calculation of the effect size (partial eta-squared, η2p) and the
lower and upper 95% confidence intervals (CIs). In addition, the
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normality of the measured data was assessed by the coefficients
of curvature (skewness) and elongation (kurtosis) upon the
statistical significance. The level of significance for all statistical
tests was set at p< 0.05.

To test the influence of frequency on the time-series variables
from the UCM computation, including VUCM(t), VORT(t), and
∆V(t), one-dimensional statistical parametric maps (SPM) with
repeated-measured ANOVAs (SPM{F}, Pataky et al., 2016) were
performed for the FUP and FDW phases separately (hypothesis
2). SPM analyses were conducted using open-source software1

(Pataky, 2012). A critical threshold for the SPM analyses was
computed based on the random field theory (Worsley et al.,
2004), which was set at α = 0.05.When the SPM curve crossed the
critical threshold, the difference was deemed to be a significant
effect of frequency at particular time points of the curves.
In case of significant effects of frequency, follow-up SPM{t}
paired t-tests were performed. In particular, linear regression
models were applied to each sample of the normalized data set
(i.e., 100 samples) to generate the SPM{F} curve across three
frequency conditions and the SPM{t} curve for the pairs of two
frequency conditions.

RESULTS

Accuracy of Cyclic Force Production
The group means and standard deviations of the RP determined
using the pooled data over FUP and FDW phases were
2.68◦ ± 0.10◦, 2.91◦ ± 0.16◦, and 3.16◦ ± 0.20◦ under the
conditions of 0.1 Hz, 1 Hz, and 2 Hz, respectively. These results
imply that the two sets of cyclic force data were close to in-phase
synchronization for all three conditions. Two-way repeated-
measured ANOVAs performed with the factors of frequency
(three levels: 0.1, 1, and 2 Hz) and phase (two levels: FDW and
FUP) showed no significant main effects and factor interaction
effects on the RP. The average CV values across subjects were
negative for all three frequency conditions, representing force
undershoots in most cases. In particular, the amount of force
undershoots increased with frequency, especially for the CVpeak.
These observations were supported by the Bayesian one-way
repeated-measures ANOVAs, separately on CVpeak and CVtrough,
with frequency as a factor, which confirmed a significant effect of
this factor on CVpeak (F(1,8) = 27.19, p < 0.01, η2p = 0.90), but
not on CVtrough. Post hoc pairwise comparison further confirmed
that the average CVpeak was −0.17 at 0.1 Hz [CI: (−0.23 −0.10),
p < 0.05], > −0.42 at 1 Hz [CI: (−0.56 −0.29), p < 0.05],
and −0.58 at 2 Hz [CI: (−0.73 −0.43), p < 0.05]. Lastly, the
coefficients of skewness and kurtosis were −0.79 and 1.14,
respectively.

Multi-finger Coordination Indices
The average time profiles of ∆V with standard deviations across
subjects for the FUP and FDW phases are presented in Figure 3.
For both FUP and FDW phases, a U-shape profile of∆Vs over time
was observed under the 1 Hz and 2 Hz conditions, while ∆V was
consistently higher under the 0.1 Hz condition than under the

1www.spm1d.org

other two conditions (Figure 3A). SPM analysis with repeated-
measures ANOVA performed separately on the FUP and FDW
phases showed significant effects of frequency on ∆V over the
entire time period (Figure 3B). In particular, the significant effect
of frequency was prominent in the middle of the time period
for both the FUP and FDW phases. Post hoc pairwise SPM t-
tests confirmed ∆V at 0.1 Hz was greater than that at 1 Hz
and 2 Hz for both FUP and FDW conditions, especially when
SPM{F}crossed the critical value (Figure 3C).

Normalized time functions (i.e., 100-time points) of the two
variance components, VUCM(t) and VORT(t), were computed.
The time profiles between the two variances were different,
such that VUCM(t) and VORT(t) were related to the magnitude
of the total force (|FTOT|) and the absolute value of the force
derivative (|dFTOT/dt|, i.e., inverted U-shape), respectively. To
facilitate comparisons between the three frequency conditions,
the condition with a larger frequency showed higher VORT values
for both FUP and FDW phases (Figure 5A). However, little
difference in VUCM magnitude was observed between frequency
conditions (Figure 4A).

The SPM analysis with repeated-measures ANOVA showed
significant effects of frequency on both VUCM (Figures 4B,C) and
VORT (Figures 5B,C), with a stronger effect on the latter than on
the former. In particular, a strong effect of frequency on VORT
was observed in the middle portion of the period for both FUP
and FDW phases, where the peak values of the force derivative
(dF/dt) were observed (Figure 5B). For the SPM{F} for VUCM,
a relatively strong frequency effect was observed when the force
magnitude was small, such as in the latter portion of the FDW and
the early portion of the FUP phases. Post hoc pairwise SPM t-tests
confirmed that VORT trend for both FUP and FDW conditions was
as follows: 0.1 Hz> 1 Hz 2 Hz (Figure 5C).

Oxygenation Indices
There were no significant effects on frequency and phase on
∆HbO for all 48 channels; on average, ∆HbO was around 0.3
µM (Figure 6A). Higher ∆HbO values were observed in the left
hemisphere than in the right hemisphere, and the middle portion
of the left hemisphere showed stronger ∆HbO for all three
frequency conditions (Figure 6B). In addition, the FCN under
each frequency condition was determined by one-sample t-tests
with the criteria of p≤ 0.05 and r≥ 0.7. Note that a prior analysis
showed no significant difference between FCN for FUP and FDW
phases; thus, the data presented in Figure 7 and Table 1 were
quantified using pooled data across FUP and FDW phases for each
frequency condition. The number of significant pairs (i.e., FCN)
decreased with an increase in frequency (128, 50, and 61 under
the 0.1 Hz, 1 Hz, and 2 Hz conditions, respectively; Table 1).
Similarly, both intra- and inter-hemispheric FCN decreased with
increasing frequency, where the intra-hemisphere FCN was larger
than the inter-hemisphere FCN (Table 1).

DISCUSSION

In this study, we investigated the frequency-dependent changes
in the synergistic actions of four fingers and a set of indices
for prefrontal cortex oxygenation during isometric cyclic-force-
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FIGURE 3 | The sample data of total force (black solid line) and the time profiles of averaged ∆Vs across participants for three frequency conditions are presented
with standard deviations shades during the FDW (left panel) and FUP (right panel) phases. Red solid-, blue dashed-single dotted-, and green dashed lines present ∆V
time-profiles for 0.1, 1, and 2 Hz, respectively. The horizontal dotted line in red color indicates a critical value of z-transformed ∆V (i.e., per-dimensional VUCM equals
VORT), which determines the existence of the synergy (A). Statistical parametric mapping SPM{F} trajectories on ∆Vs (black solid line) with repeated measures
analysis of variance (ANOVA) are presented for the FDW (left panel) and FUP (right panel) phases. The horizontal dotted line in red color indicates the threshold of
critical random field theory at α = 0.05 (B). Post hoc pairwise t-tests (SPM{t}) on ∆Vs are presented. The horizontal dotted lines in red color indicate the threshold of
critical random field theory at p < 0.05 (C).
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FIGURE 4 | The sample data of total force (black solid line) and the time profiles of the mean values of normalized VUCM across participants for three frequency
conditions are presented with standard deviations shades during the FDW (left panel) and FUP (right panel) phases such that red solid-, blue dashed-, and green
dashed-lines present ∆V time-profiles for 0.1, 1, and 2 Hz, respectively (A). SPM{F} trajectories on VUCM (black solid line) with repeated measures ANOVA are
presented for the FDW (left panel) and FUP (right panel) phases. The horizontal dotted line in red color indicates the threshold of critical random field theory at α = 0.05
(B). Post hoc pairwise t-tests (SPM{t}) on VUCM are presented. The horizontal dotted lines in red color indicate the threshold of critical random field theory at p < 0.05
(C).

Frontiers in Human Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 721679

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Xu et al. Frequency-Dependency of Synergies and Hemodynamics

FIGURE 5 | The sample data of total force (black solid line) and the time profiles of the mean values of normalized VORT across participants for three frequency
conditions are presented with standard deviations shades during the FDW (left panel) and FUP (right panel) phases such that red solid-, blue dashed-, and green
dashed-lines present ∆V time-profiles for 0.1, 1, and 2 Hz, respectively (A). SPM{F} trajectories on VORT (black solid line) with repeated measures ANOVA are
presented for the FDW (left panel) and FUP (right panel) phases. The horizontal dotted line in red color indicates the threshold of critical random field theory at α = 0.05
(B). Post hoc pairwise t-tests (SPM{t}) on VORT are presented. The horizontal dotted lines in red color indicate the threshold of critical random field theory at p < 0.05
(C).
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FIGURE 6 | The concentration changes in oxy-hemoglobin (∆HbO). The time profiles of ∆HbO of all 48 channels are presented in 0.1 Hz (left panel), 1 Hz (middle
panel), and 2 Hz (right panel). The data are from a representative participant (A). Average ∆HbOs across time samples and participants for 48 channels were
presented. The top panels show the average ∆HbO for 0.1 Hz, the middle panels for 1 Hz, and the bottom panels for 2 Hz condition. The color bar encodes the
strength of ∆HbO, and the bar length corresponds to the ∆HbO values between 0 µM and 0.8 µM (B).

production tasks. Both expected and unexpected outcomes were
also observed. First, the accuracy of the performance decreased
with an increase in the frequency (hypothesis 1). In particular,
a less accurate performance in the high-frequency condition
was not a consequence of the change in the relative phase, but

it was mainly caused by larger deviations of peak or trough
forces across cycles. Second, the synergy indices for the total
force stabilization were larger in the low-frequency condition
(0.1 Hz) than in the other two higher frequency conditions,
which was dominantly affected by the increased VORT in the
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FIGURE 7 | The results of functional connectivity (FCN). The significant functional connectivity (FCN) between two channel pairs is shown by red lines. The small
blue circles indicate the locations of fNIRS channels. The top panel shows the significant functional connectivity in the intra-hemisphere for 0.1 Hz (left panel) (A),
1 Hz (middle panel) (B), and 2 Hz (right panel) (C) conditions. The bottom panel indicates the significant functional connectivity in the inter-hemisphere for 0.1 Hz (left
panel) (D), 1 Hz (middle panel) (E), and 2 Hz (right panel) (F) conditions.

TABLE 1 | The number of significant functional connectivity (FCN).

Frequency condition 0.1 Hz 1 Hz 2 Hz

Intra-hemisphere Left 42 19 24
Right 33 8 11

Inter-hemisphere 53 23 26
Total 128 50 61

higher frequency conditions (hypothesis 2). Contrary to our
expectation, the concentration of O2Hb remained unchanged
under all frequency conditions, while the functional connectivity
decreased with an increase in the frequency of cyclic force
production, which partially supported hypothesis 3.

Frequency-Dependency of Stability in
Cyclic Force Production
The main premise behind the concept of synergy is a crucial
feature of all intentional movements performed by redundant
systems that possibly represent the system stability (Latash,
2008a). Specifically, stable performance is coined to address
the flexible patterns while compensating for errors among
a redundant or, to be specific, abundant set of elements
considering the mechanics of a particular task, whereby the
solution family is organized in such a way that the actions of
elements are varied to maintain the performance variables in
an unchanged (or stabilized) state (Reschechtko et al., 2014;
Ambike et al., 2016). One of the straightforward motivations
of the current study is the curiosity as to whether the strategy
and consequences of the organization of the solution family
(i.e., combinations of four finger forces) change with different
frequencies during cyclic force production. The current results

of the inconsistent peak or trough force production (i.e., higher
CV) were accompanied by a small synergy index at relatively
high-frequency conditions, which is in line with the previous
findings of the frequency dependence of various motor behaviors
from the perspective of variability in muscle activation (Lewis
et al., 2001; Huang et al., 2021), sensory information processing
(Almeida et al., 2002), etc.

From a computational point of view, the synergy index refers
to the relative magnitudes of VUCM and VORT with respect to the
total variance (VTOT). In other words, less flexible combinations
of elements (VUCM) could be associated with a larger synergy
index if the error variance (VORT) is significantly small. The
current results showed that a strong statistical effect of frequency
conditions was mainly observed in VORT, while the statistical
effect on VUCM was relatively weak, resulting in small synergy
indices under high-frequency conditions. These results reflect
the fact that the elements (i.e., force modes, m) had a dominant
positive covariance at higher frequencies. The dominant positive
co-variation between elements possibly causes inconsistent peak
and trough force values, whereby performance errors increase
accordingly. On the contrary, a strong negative co-variation
between elements would serve as an error compensation strategy
as to the total force stabilization, which was dominantly shown
under the small frequency condition (0.1 Hz; Tseng et al.,
2006).

However, we hesitate to strongly claim that the low values
of synergy indices under high-frequency conditions represent
weakened force stabilization. In Figure 5A, it was clearly
observed that the time patterns of the orthogonal complement
of variance (VORT) fit well with the rate of force changes (dF/dt,
not shown in Figure), and this phenomenon is well described
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by the mathematical model, that is, the linear model proposed
by Gutman (Gutman and Hagander, 1985; Latash et al., 2002b)
and other experimental outcomes reported previously (Friedman
et al., 2009). Because the direction of force changes results
only from the combinations of elements within the subspace
of the orthogonal complement to the null space (i.e., UCM
space), the variance within the orthogonal subspace strongly
depends on the scaling of the rate of force change. Thus, it
is plausible that the increment of frequency naturally requires
changes in the VORT, which results in less accurate (or more
variable) force values at the peak and trough of the force
profile. Contrary to our expectations, the results of the RP
were close to the in-phase synchronization under all frequency
conditions, which suggests that the phase difference between
the produced and constrained force values was not the primary
source of error variance. Of course, a less performance accuracy
in the high-frequency condition is also caused by the inertial
or biomechanical factors such as the bandwidth of muscle
activation (Van Boxtel et al., 1998), electromechanical delay
(Cavanagh and Komi, 1979), etc. In particular, the consideration
of the inertial properties of body segments would be critical
to avoid spurious interpretation of behavioral changes with
frequency in dynamics. However, the relative contributions of
the central and peripheral components to the performance
accuracy remain unknown, even with the current results; thus,
future research will have to ascertain the relationship between the
inertial/biomechanical properties of the human body and neural
response with various movement frequencies. Nevertheless, we
have to find an alternative approach to answer the following
question: What are the neural activities that cause changes in
synergy indices for multi-finger force production with different
frequencies of cyclic force production?

Frequency-Dependency of Prefrontal
Oxygenation and Its Relationship With
Synergy
In the current study, we measured the hemodynamic responses
in the prefrontal cortex while acquiring individual finger forces
during cyclic force production. We quantified two indices
of prefrontal hemodynamics, including ∆HbO and functional
connectivity. Note that ∆HbO is indicative of the amount of
localized oxygen consumption, and the functional connectivity
represents significant connections (i.e., concurrent changes in
oxygen consumption) between anatomically separated brain
regions within the prefrontal structure. The current results
showed non-parallel changes in the indices with the frequencies
of cyclic force production, that is, O2Hb concentration remained
unchanged, whereas the functional connectivity (i.e., the
number of significant connections) decreased with frequency. In
particular, it might seem counterintuitive that the ∆HbO was
not frequency-dependent, and these results are in stark contrast
to previous findings regarding the frequency-dependency of
cortical activations (i.e., the higher the frequency, the larger
the cortical activation; Jenkins et al., 1997; Turner et al.,
1998; Lutz et al., 2004), which presumably increased the
oxygen concentration (Scholkmann et al., 2014). Oxygen is

definitely a source of energy or cost for brain activities
(McKenna et al., 2012). This difference between the results
of the current and previous studies may have been caused
by dissimilar experimental tasks and the focused region
within the brain. Nevertheless, the unchanged index of oxygen
consumption, particularly in the prefrontal cortex, is unlikely
the ‘‘cost’’ for the current experimental tasks. On the contrary,
concurrent prefrontal activation seems to be the frequency-
dependent index for the current motor tasks, consistent
with previous findings (Cordes et al., 2001; Salvador et al.,
2008).

The current motor tasks required the subjects to use visual
feedback. In other words, the values of cyclic force trajectories
were prescribed through the template on the screen, and the
subjects were asked to produce a total finger force such that
the produced force with a cursor on the screen chased a
prescribed target trajectory. For the low-frequency condition
(e.g., 0.1 Hz condition), the subjects had enough time to
utilize the feedback of visual or proprioceptive information,
whereby it is possible that feedback-based force production is
a critical factor in achieving a better performance accuracy
under low-frequency than under high-frequency condition. The
feedback-based error compensation strategy between finger
forces may be less (or not) used during high-frequency
conditions because of the limited time to use and process
sensory feedback signals, which may result in a relatively large
deviation and variance (i.e., error variance, VORT). Further, this
speculation is supported by the dominant positive co-variation
of finger forces (Goodman et al., 2005) under high-frequency
conditions. By combining the results of hemodynamic responses
and patterns of finger force co-variation, the error variance
in a particular task could be linked to the functional
connectivity of the prefrontal cortex, and not the magnitude
of oxygen saturation. Indeed, it has been reported that the
metabolism of brain activation with other brain imaging
techniques (e.g., positron emission tomography, magnetic
resonance imaging, etc.) showed a non-linear relationship
with the degree of connectivity (Neubauer and Fink, 2009;
Tomasi et al., 2014; Tomasi and Volkow, 2019) and that
concurrent brain activation is caused by a combined effect of
anatomical connectivity and synaptic efficiency (Buckner, 2010).
Furthermore, unchanged oxygen saturation in the prefrontal
cortex was observed during continuous movements with
different properties (Jenkins et al., 1997; Kim et al., 2005), which
is in line with the current results. However, the methodologies
for the acquisition of brain activities in the current and
previous studies are different, and functional connectivity is
assumed to be an indirect quantification of brain activation. A
possible interpretation, however, of the increase in functional
connectivity, combined with unchanged oxygen consumption
and small error variance for the stabilization of total finger forces
in the low-frequency condition, is that the behavioral stability
could be associated with the efficient organization of prefrontal
activation.

This interpretation is in line with theories and computational
models used for controlling a multi-element system. The
computational model proposed by Todorov and Jordan
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(2002) (i.e., stochastic optimal control model) claims that
the controller’s effort is not dedicated to the deviation of
elements that do not interfere with critical mechanics but is
more concerned with error correction than with the required
mechanics. In other words, the energy/cost function may be
associated with minimizing performance error rather than
organizing variable combinations of solutions. This idea is
conceptually similar to the UCM hypothesis based on the
principle of motor abundance, which describes a crucial feature
of the co-variation patterns between elements (Todorov and
Jordan, 2003; Martin et al., 2009). In turn, the experimental
outcomes based on the UCM hypothesis and optimal control
model provide evidence supporting the current claim, both
of which consistently suggest the minimization of a fraction
of error variance as the controller’s strategies to govern the
multi-element system. In this regard, the current findings show
that the changes in the concurrent prefrontal cortex activation
(i.e., functional connectivity) are affected by the frequency
of cyclic actions, which is associated with the modulation of
error variance (VORT), but not with the variance corresponding
to the required mechanics (VUCM), that is, the total finger
forces.

To the best of our knowledge, the current study is the
first work to uncover the effect of frequency on the multi-
finger synergies in relation to the hemodynamic response in the
prefrontal cortex, which is interconnected with diverse brain
areas, including the cortical, subcortical, and brainstem regions
(Miller and Cummings, 2017). In particular, the experimental
findings in this study would contribute to the current knowledge
on the neural origin of finger-force combinations for the
stabilization of salient performance variables. However, this
study has several limitations. First, the measurement of
hemodynamics using fNIRS yields is more beneficial in terms
of portability, cost-efficiency, and absence of hazardous effects
of radiation. On the other hand, quantifying hemodynamic
indices through fNIRS provides an indirect measurement of
neuronal activity. Second, fNIRS may not be suitable for
the direct monitoring of subcortical activity, even though the
motor cortico-basal ganglia circuit originates from the prefrontal
cortex (Fuster, 2015). As the formation of synergy for stable
performance is assumed to be a function of subcortical structures
(i.e., trans-thalamic loop; Rispal-Padel et al., 1981; Park et al.,
2012b; Latash and Huang, 2015), future studies will have to
ascertain the validity of fNIRS measures by comparing them
with those of other brain imaging data during behavioral tasks.
Also, the apparent drawback of the participant recruitment
was that the gender of all participants was male with a small

sample size. Although the results of previous studies claimed that
the stability indices are not a gender-dependent (i.e., strength-
dependent) quantity if the participants have no medical history
of the peripheral and neurological disorder (Zhang et al., 2007;
Friedman et al., 2009), the extremely swayed recruitment as to the
gender may cause uncertainty and hamper the interpretation and
generalization of the current messages. Lastly, given the diverse
factors related to the coordinative action in humans, future
studies will have to investigate whether the current message
would be valid with age-related changes, gender, and other
biological indices.
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