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Abstract
COVID-19 (Coronavirus Disease 2019) is a highly contagious infection and associated with high mortality rates, primarily in
elderly; patients with heart failure; high blood pressure; diabetes mellitus; and those who are smokers. These conditions are
associated to increase in the level of the pulmonary epithelium expression of angiotensin-converting enzyme 2 (ACE-2), which is a
recognized receptor of the S protein of the causative agent SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2).
Severe cases are manifested by parenchymal lung involvement with a significant inflammatory response and the development of
microvascular thrombosis. Several factors have been involved in developing this prothrombotic state, including the inflammatory
reaction itself with the participation of proinflammatory cytokines, endothelial dysfunction/endotheliitis, the presence of anti-
phospholipid antibodies, and possibly the tissue factor (TF) overexpression. ARS-Cov-19 ACE-2 down-regulation has been
associated with an increase in angiotensin 2 (AT2). The action of proinflammatory cytokines, the increase in AT2 and the presence
of antiphospholipid antibodies are known factors for TF activation and overexpression. It is very likely that the overexpression of
TF in COVID-19 may be related to the pathogenesis of the disease, hence the importance of knowing the aspects related to this
protein and the therapeutic strategies that can be derived. Different therapeutic strategies are being built to curb the expression
of TF as a therapeutic target for various prothrombotic events; therefore, analyzing this treatment strategy for COVID-19-
associated coagulopathy is rational. Medications such as celecoxib, cyclosporine or colchicine can impact on COVID-19, in
addition to its anti-inflammatory effect, through inhibition of TF.
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Introduction

In December 2019, there was a new highly contagious infec-

tious disease outbreak in Wuhan, China. Some infected patients

developed severe acute respiratory syndrome (SARS) and a

systemic inflammatory response syndrome (SIRS) associated

with a high mortality rate. This disease then rapidly spread

throughout the world and a pandemic was declared in

March 2020.1 The causative agent of the novel disease known

as COVID-19 (Coronavirus Disease 2019) was isolated and

identified as a new coronavirus, known as SARS-CoV-2

(Severe Acute Respiratory Syndrome Coronavirus 2).2

Studies report that S protein from the virion surface binds to

the angiotensin-converting enzyme 2 (ACE-2) expressed in

respiratory epithelial cells, thus triggering mechanisms that

cause the virus enter the cell where it manages to generate its

replicants.3 At least 2 types of biological response have been

identified and are related to the pathogenesis of the disease: the

induction of an inflammatory response and the generation of a

procoagulant state.

The immune/inflammatory response can be mild and rapidly

self-limiting. Where the immune/inflammatory response is

mild and rapidly self-limiting, patients will present as
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Corresponding Author:

Carlos A. Cañas, Unit of Rheumatology, Fundación Valle del Lili, Cra.98 No.18-

49, Cali 760032, Colombia.

Email: carlos.canas@fvl.org.co

Clinical and Applied
Thrombosis/Hemostasis
Volume 27: 1-9
ª The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10760296211003983
journals.sagepub.com/home/cat

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons

Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use,

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access

pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-6879-3700
https://orcid.org/0000-0002-6879-3700
mailto:carlos.canas@fvl.org.co
https://sagepub.com/journals-permissions
https://doi.org/10.1177/10760296211003983
http://journals.sagepub.com/home/cat
https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage


asymptomatic or with only mild symptoms. Patients with less

severe disease symptoms achieve, as far as is known, both

cellular and humoral immunity for protection against future

virus exposures.4 This immune response may be poorly regu-

lated in other infected individuals, progressing to SARS and

SIRS, both of which are associated with high mortality rates.5

Moreover, many of these patients develop thrombotic coagulo-

pathy,6 which is clinically manifested as cerebrovascular

accidents,7 acroischemia,8 or pulmonary thromboembolism.9

The presence of thrombi in pulmonary microcirculation is the

most common result when performing an autopsy (27%).10

The most common abnormalities in hemostatic screening tests

are prolonged prothrombin times (PT) and partial thromboplas-

tin times (PTT), elevated D-dimer serum levels, and reduced

fibrinogen and platelet count levels.11 Thrombin, tissue plas-

minogen activator (tPA), tissue factor pathway inhibitor (TFPI)

and vascular endothelial growth factor (VEGF) significantly

more increased in the critical versus noncritical patients.12

COVID-19 severity has been associated with advanced age

and comorbidities such as chronic obstructive pulmonary dis-

ease (COPD), heart failure, hypertension (HTN), diabetes mel-

litus, and smoking.13 These comorbidities have been associated

with pulmonary ACE-2 overexpression; moreover, this group

of viruses causes ACE-2 down-regulation, resulting in

increased angiotensin 2 (AT2).14 This acute increase in levels

of AT2 may have direct implications for the immune, vascular

endothelial and coagulation responses.15,16

Accumulation of AT-II secondary to ACE2 downregulation

may promote clot formation via interactions with endothelial

cells and platelets17; TF may be involved in this process.18

These findings may also be associated with additional pro-

thrombotic events that have been identified in patients diag-

nosed with COVID-19, including increases in serum IL-6

which has characterized activities with respect to coagulation

factors,19 and platelets.20 IL-6 can activate directly TF.21

T lymphocytes as well as the cytokines IL-6, and TNF-a may

have direct roles in promoting microvascular damage associ-

ated with AT-II.22-24

Neutrophil extracellular traps (NETs) are extracellular webs

of chromatin, microbicidal proteins, and oxidant enzymes that

are released by neutrophils to contain infections, and have

potential to propagate inflammation and microvascular throm-

bosis. Sera from individuals with COVID-19 triggered NET

release from control neutrophils in vitro.25 Interestingly IL-1b
mediates arterial thrombus formation via NET-associated TF.26

It’s important to put attention on generation of proinflam-

matory cytokines and vascular inflammation are mediated

through a number of pattern recognition receptors, known as

toll-like receptors (TLRs) and nod-like receptors (NLRs).27

Activation of TLRs through oxidized phospholipids or dam-

age associated molecular pattern (DAMP) can activate the pro-

duction of TNFa, IL6, and other cytokines that are responsible

for cytokine storm in COVID-19.28 Interestingly, one in silico

interaction study hypothesized that TLR4 may be involved in

recognizing molecular pattern from spike protein of coronavirus.

Further studies will be required to understand the roles of

TLRs in COVID-19.29

Both an acute inflammatory response30 and increased AT231

are known causes for TF overexpression and the activation of

the blood clotting cascade, an event that has been associated

with COVID-19 pathogenesis. TF upregulation may possibly

participate in the pathogenesis of the disease32-34 as part of a

chain of events where endothelial dysfunction/endotheliitis are

involved,35 Willebrand factor and soluble thrombomodulin

overexpression36 and ADAMTS13 deficiency (a disintegrin

and metalloproteinase with a thrombospondin type 1 motif,

member 13).37,38 Unmasking these pathways in COVID-19

would have a key role in designing therapeutic strategies. On

the other hand, the increase in AT2 can cause vasoconstriction

with increased blood pressure, which can lead to hemorrhagic

stroke.39 In some patients with COVID-19, significant deposits

of terminal complement components C5b-9 (membrane attack

complex), C4d, and mannose binding lectin (MBL)-associated

serine protease 2 (MASP-2) have been found in the microvas-

culature of different organs.40

This accumulated observation of the activation of the com-

plement system in COVID-19, it is quite likely to contribute in

developing thrombotic processes,41-43 as previously assessed

from the physiological interplay of complement and blood

clotting cascades.44 The role of TF activation induced by acti-

vated complement factors such as C5a through the effect of

protein disulfide isomerase (PDI)45 should be examined in

COVID-19, which could be the basis for developing therapeu-

tic proposals.

Protein C, a natural anti-coagulant is reduced in patient with

COVID-19.46 Activated protein C is a prominent anti-

coagulant, anti-inflammatory molecule that regulate endothe-

lial dysfunction and TF expression in monocyte could be useful

therapeutically.47

Figure 1 summary as immunological dysfunction, ACE2

downregulation, and AT2 and TF upregulation would be

involved in the thrombosis pathogenesis in COVID-19.

Tissue Factor (TF)

TF was discovered in 1904 as a protein that converted pro-

thrombin to thrombin at the plasma level.48 Being a transmem-

brane protein with a high affinity for Factor VII and Factor

VIIa, it is known as thromboplastin, coagulation factor III or

CD 142; moreover, it acts as an initiator of the blood clotting

cascade by activating Factors IX49 and X.50 It first appeared in

animals 450 million years ago in the evolutionary path of

agnate fish.51 The gene is found on chromosome 1 and has

6 exons.52

It occurs dimerically, with 2 extracellular domains belong-

ing to the immunoglobulin superfamily, the intracellular part is

bound to intracellular Jak-STAT signaling structures, being

classified within the group of type II cytokine receptors.53,54

It emits intracellular responses that lead to compartment-

specific changes in calcium,55 with biological cell migration
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and proliferation effects,56 as well as angiogenic effects at

embryonic stages.57

TF contains an allosteric disulfide bond that stabilizes the

carboxyl-terminal domain involved in ligand interactions with

coagulation factors VIIa and X. PDI is involved in modifying

allosteric disulfide by reduction to achieve the activation

thereof (change from an encrypted to a decrypted conformation

of TF).58,59

TF is mainly expressed in endothelial cells,60 platelets,61 poly-

morphonuclear cells,62 T lymphocytes,63 and fibroblasts.64 It is

located mainly in lipid rafts65 and closely linked tob1 integrins.66

The main physiologic trigger for TF activation (transition

from an inactive encrypted to a decrypted conformation) is

tissue injury that results in hemostasis. This activation primar-

ily occurs in the endothelium, platelets, and perivascular

cells.67 Under pathological conditions, it is released into the

blood as vesicles or microparticles. The release of microparti-

cles has been observed in conditions where there are thrombo-

tic events, from fractured atheromatous plaque (at the level of

Foam cells), monocytes in septic states, or neoplastic cells.68-70

Different TF gene agonists in endothelial cells have been

studied, including tumor necrosis factor alpha (TNFa),71 inter-

leukin-1b (IL-1b),72 CD40 L,73 vascular endothelial growth

factor (VEGF),74 serotonin,75 histamine,76 and C-reactive

protein.77 Stimulated P-selectin increases monocyte TF expres-

sion.78 The induction of intracellular signaling is essential in

the TF activation process.79-81

Anti-cardiolipin antibodies and anti-b2-glycoprotein

1 increase TF expression in monocytes in antiphospholipid

syndrome.82,83 Vitamin D can modulate TF expression in these

patients.84

TF Expression Regulation

The TF activation process is regulated at both transcriptional

and post-transcriptional levels.85 The positions of various

membrane phospholipids that generate different polarities,86

the PDI effect on disulfide bonds,87 and the TFPI (tissue factor

pathway inhibitor) effect of the inhibitory protein88 are all

involved. Hemostasis requires a balance between TF and TFPI.

These pathways converge at a common point in the comple-

ment system. When activated, factors such as C5a can activate

the TF by modifying its sulfhydryl radicals via PDI

mediation.89

Anti-inflammatory cytokines such as IL-4, IL-10 and

IL-13,90-93 as well as prostaglandin (PG) E1 and PGI2, can

suppress TF in monocytes and macrophages.94

TF in Viral Infections

The coagulation system can be activated via TF during viral

infections such as the Herpes simplex virus,95 the human

immunodeficiency virus (HIV),96 the Coxsackievirus B3,97

dengue,98 or Ebola.99 This response most likely evolved as a

host defense system to prevent the virus from spreading.

However, acute viremia can lead to a type of consumptive

coagulopathy, thus contributing to multiorgan failure and

death.100 The activation of toll-like receptor 3 (TLR3) in the

presence of double-stranded RNA viruses can induce TF

expression in cultured endothelial cells and activate the coagu-

lation system in mice.101 Note that the inhibition of the factor

VIIa-tissue factor complex reduced cytokine storm and mortal-

ity in a Rhesus macaque model of Ebola hemorrhagic fever.102

TF in COVID-19

Three recent reviews speculate that induction of TF expression

may play a role in COVID-19-related thrombosis.32-34

The correlation between TF expression and the severity of

COVID-19 has been studied both its expression in mono-

cytes103 and in extracellular vesicles.104 Platelets from severe

COVID-19 patients were able to induce TF expression ex vivo

in monocytes from healthy volunteers.105 TF can increase its

expression during hypoxia and generate a thrombotic tendency;

phenomenon that is mediated through extracellular RNA

activated Toll-like receptor 3-activated protein 1 signaling.106

It is too early to conclude at which point in the cascade of

biological events triggered in COVID-19 this TF overexpres-

sion is found; later studies will surely clarify it for us.

TF-Specific Inhibitors

There are vast therapeutic strategies focused on reducing the

blockade of TF expression in prothrombotic conditions and it is

the subject of various studies.107

Figure 1. Summary of the possible mechanisms associated with
thrombosis in COVID-19 where immunological dysfunction,
angiotensin-converting enzyme 2 (ACE2) downregulation, and angio-
tensin 2 (AT2) and tissue factor (TF) upregulation would be involved.
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There are 5 types of TF-specific inhibitors that are currently

being examined to be medically administered as antithrombotic

agents: monoclonal antibodies against TF,108 recombinant

TFPI, Ixolaris (protein identified in the tick saliva with

2 Kunitz-like domains),109,110 molecules that interfere with the

TF binding site with factor VIIa111 and anticoagulant nematode

protein C2.112

Other Medications That Can Modulate TF
Expression

Various drugs for regular use in different fields of medicine

have been studied for their potential inhibitory role in TF

expression. Published studies have been of a different nature,

including in vitro, in vivo, and ex vivo studies, and usually

report the intracellular mechanisms of action involved. Some

of the drugs studied are angiotensin-converting enzyme

1 (ACE-1) inhibitors,113 antioxidants,114 clopidogrel,115 salicy-

lates (acetylsalicylic acid, ibuprofen, indomethacin),116 spe-

cific COX-2-specific inhibitors (celecoxib),71 cyclosporine

A,117 hydroxyurea,118 vitamin D,119 pentoxifylline,120 and

Omega-3.121 Interestingly, glucocorticoids such as dexametha-

sone increase TF induction in LPS-stimulated monocytes have

little effect on endothelial cells.122

Another source of TF activation inhibition may be through

the suppression of the complement pathway, as could eculizu-

mab, a C5-specific inhibitor, on which studies for COVID-19

are even being conducted.123 Other drugs such as various fla-

vonoids 19,124 bacitracin125 or selenium,126 by means of inhi-

bition of protein disulfide isomerase, are other potential

possibilities.

TF Inhibition in COVID-19

As previously commented, it is too early to know the true role

of the over-expression of TF in COVID-19; likewise, the pos-

sible therapies derived from these findings are just beginning to

be formulated. Inhibition of TF could be a therapeutic strategy

in patients with COVID-19 who are initiating thrombotic coa-

gulopathy, whose criteria would be of a clinical nature associ-

ated with an increase in D-dimer. ACE-I drugs due to their

mechanism of action have been the object of study during the

pandemic; although it was initially thought that they could be

beneficial,127 it has been shown that they do not intervene with

the course of the disease, suggesting users of these medications

should not discontinue or change their treatment.128 Antithrom-

botic therapy in COVID-19 is based in low molecular weight

heparins and aspirin; intermediate-dose anticoagulation and

aspirin were each associated with a lower cumulative incidence

of in-hospital death.129 The impact of salicylate therapies on

overexpressed TF in patients with COVID-19 remains to be

demonstrated. Celecoxib, is a candidate for treatment of

COVID-19, taking into account its effect as an anti-

inflammatory medication130; it would also be necessary to

study the effect as an inhibitor of TF. Cyclosporine A might

be a candidate in severe COVID-19 to prevent the cytokine

storm (or hyperinflammation) and inactivate viral replication

(117) disregarding its potential role in inhibiting TF and pos-

sible antiviral effect.131 Pentoxifylline has also been proposed

for the treatment of COVID-19 as a drug with antiviral, anti-

inflammatory and bronchodilatory effects.132 Colchicine

recently associated with impact of on mortality in patients with

COVID-19133,134; In addition to its anti-inflammatory effect, it

may also exhibit an inhibition of TF135,136 and has a possible

antiviral effect.137

Vitamin D deficiency has been associated with risk for the

development of COVID-19 and its deficiency must be

corrected138; its effect on immune dynamics is postulated,139

however its effect as a TF inhibitor has yet to be demonstrated.

Recent reviews speculate on the usefulness of antioxi-

dants140,141 and selenium.126

Conclusion

The coagulopathy associated with COVID-19 appears to be

multifactorial, involving inflammatory processes; endothelial

and platelet dysfunction; the presence of antiphospholipid anti-

bodies; and, because of the increase in AT2 in response to

ACE-2 down-regulation, quite possibly TF overexpression.

Different therapeutic targets have been derived from TF

expression inhibition, which should be targeted by possible

therapeutic candidates for the coagulopathy associated with

COVID-19.
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Cañas et al 9



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


