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Beyond Infection:
Integrating Competence
into Reservoir Host
Prediction
Daniel J. Becker ,1,*
Stephanie N. Seifert ,2 and
Colin J. Carlson 3

Most efforts to predict novel reser-
voirs of zoonotic pathogens use in-
formation about host exposure and
infection rather than competence,
defined as the ability to transmit
pathogens. Better obtaining and
integrating competence data into
statistical models as covariates, as
the response variable, and through
postmodel validation should im-
prove predictive research.

Predicting Reservoir Hosts
Epidemics of zoonotic disease beget
questions about origins: from where did
a pathogen originate? Rapid research
during the coronavirus disease 2019
(COVID-19) pandemic has focused on
identifying likely reservoir hosts (see
Glossary) of severe acute respiratory syn-
drome coronavirus (SARS-CoV)-2. High
nucleotide identity between this virus and
related viruses found in horseshoe bats
(e.g., Rhinolophus affinis) implies a wildlife
origin, yet divergence of these viral line-
ages decades ago suggests hosts in-
volved in spillover remain unknown [1].
Searching for closely related pathogens

in wildlife is a labor-intensive process
made all the more difficult by the diversity
of possible hosts to sample. Given
such challenges, ecologists and data
scientists have developed statistical models
to predict likely reservoir hosts, which
can forecast sources of cross-species
transmission and prioritize surveillance
targets [2].

Predictive studies typically use parametric or
semiparametric models (e.g., generalized
linear or additive models) or machine learn-
ing algorithms (e.g., boosted regression
trees), where the predictor matrix (i.e., X)
includes life history, taxonomic, and geo-
graphic traits of hosts. In most cases, the
response (i.e., y) is pathogen positivity or
richness using data on the detection of
pathogen antigen or pathogen-specific anti-
body [3]. Given many logistical hurdles in
sampling wildlife, serology and PCR are
often the first data available for predictive
models. By indicating recent exposure,
serology in particular remains useful for
pathogens with short infectious periods
and high temporal variability in infection [4].
However, such data do not necessarily
reflect host competence, the ability to
transmit pathogens [5]. In turn, even the
best models using such data could gener-
ate spurious predictions. For example,
broad serological sampling of bats has led
to many bat–flavivirus associations in
model-ready datasets, despite evidence
that many bats are not competent reservoirs
[6].We here suggest that the use of serology
and PCR data must be considered as a
starting point for identifying likely reservoirs
and emphasize how host competence
data can be better integrated into all aspects
of predictive research, including as covari-
ates in the predictor matrix, as the response,
and through post-model validation (Figure
1).

Host Competence Data
Competence can be defined most strictly
as the host capacity to transmit pathogens
to new hosts or vectors [7]. This definition

domestication syndrome were real [16].
Although it is a long-standing hypothesis,
the domestication syndrome has not yet
been rigorously tested, as any scientific hy-
pothesis must be, and cannot be assumed
to be true.
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restricts competence to only those infec-
tion processes that occur within the host:
establishment of infection given exposure,
pathogen development (i.e., replication),
and pathogen survival until transmission.
The former process is equivalent to host
susceptibility, whereas the latter pro-
cesses are contained within suitability
and are mediated by resistance and toler-
ance mechanisms [5]. As competence en-
compasses several stepwise processes,
this trait is continuous [8]. For some
purposes, it may be approximated as
binary [9].

As a composite trait, competence is difficult
to determine in natural systems. Frequent
detection of pathogen-specific antibodies
or antigen alone cannot be interpreted as
competence, as such patterns can instead
reflect transmission from a true mainte-
nance host. In wild hosts, competence
can instead be inferred by detecting
shedding of live virus (Figure 1). For
vector-borne diseases, shedding may be
less informative for ability to transmit.
Instead, the susceptible state of vectors
prior to feeding can be assumed in some
systems, such that the infection status
of engorged vectors can inform host com-
petence. For example, as ticks are born
free of Borrelia burgdorferi (the cause
of Lyme borreliosis) and only become
infectious from feeding, pathogen presence
in engorged larvae implies competent hosts
[8,9]. Competence can also be inferred
by combining pathogen diagnostics of
hosts and fed vectors with blood meal
analyses [6].

In many cases, however, quantifying com-
petence in field systems remains challeng-
ing. For example, despite bats being
suggested reservoirs for Ebola virus and
African henipaviruses, live virus has yet to
be isolated despite frequent detection of
antigen and antibody. Data on within-host
components of competence, such as sus-
ceptibility and suitability (e.g., pathogen
replication), could provide mechanistic

Glossary
Competence: host ability to transmit pathogens to
new susceptible hosts or arthropod vectors.
Reservoir host: populations or species in which a
pathogen can be maintained and that serve as a
source of infection for the recipient host.
Serology: detection of pathogen-specific antibodies
in serum or plasma to infer exposure history.
Shedding: Release of pathogen in excreta
(e.g., saliva, feces, and urine) following successful
replication within the host.
Suitability: ability of a host to support pathogen
development (i.e., replication) and survival until
transmission.
Susceptibility: probability of an infection
establishing in the host given exposure to a pathogen.

covariates for predictive models using
serology and PCR data as the response
(Figure 1). As one example, species means
in immunological covariates, such as
leukocyte concentrations or ex vivo
responses to pathogen challenge [10],
could represent these within-host pro-
cesses better than many currently used
traits (e.g., body mass and fecundity).

Host genetic variation can also shape
susceptibility and suitability, especially for
factors that enable pathogen entry into
host cells and replication. For the former,
in silico methods can characterize recep-
tor binding. For example, by focusing on
angiotensin-converting enzyme (ACE)2,
the receptor involved in SARS-CoV-2
host cell entry, in silico studies predicted
various primate, rodent, and deer species
as susceptible to the virus [11]. Analogous
comparative data on receptor use for
other pathogens could provide invaluable
within-host covariates (Figure 1). However,
in vitro studies are necessary to functionally
validate in silico results and can further
characterize host factors required for
pathogen replication. As another example,
reverse genetic assays were recently
used to show functional compatibility of
the spike glycoprotein from various novel
SARS-like CoVs to enter cells with ACE2
from potential host species [12].

Lastly, in vivo pathogen challenge stud-
ies are the gold standard to determine
shedding (i.e., productive infection) and
onward transmission in a given host–
pathogen system (Figure 1). For example,
in the West Nile virus system, expo-
sure of 25 bird species to infectious
mosquitoes or virus challenge established
greater competence of songbirds and
shorebirds [13].

Integration into Predictive
Research
These competence data can be integrated
into different aspects of predictive re-
search (Figure 1). Field-based measures

of competence (i.e., detection of live
virus or pathogens in recently fed vectors)
can be prone to false negatives owing to
short or highly variable periods of active in-
fection or host seeking [4]. Longitudinal
sampling is important to capture host
shedding or transmission, yet such studies
are logistically difficult. One clear contribu-
tion of predictive modeling based on serol-
ogy and PCR is therefore to narrow the
scope of hosts to then sample longitudi-
nally for virus isolation and to understand
transmission dynamics [2,3]. Resulting
data on host competence could then
allow confirming or refuting model predic-
tions (Figure 1).

Similarly, within-host data can inform pa-
rameterizing (e.g., receptor use for suscep-
tibility covariates) and validating predictive
models. As in vivo pathogen challenge tri-
als are costly, labor intensive, and can be
limited to high-containment laboratories,
theymay bemost useful for robustly testing
model predictions (Figure 1). In one
example, experimentally infected Egyptian
fruit bats (Rousettus aegyptiacus) did not
support in vivo replication of Nipah virus
[14], despite prior serology-based predic-
tive models suggesting this species could
be a likely reservoir [3].

Iteratively integrating field studies, predictive
models, and experimental trials could build a
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Figure 1. Integrating Competence into Reservoir Host Predictive Models. We take a simplified
statistical model (in matrix notation, where β represents regression coefficients and ε represents errors) and
illustrate how data can be used as the response (arrows towards y), covariates (arrows towards X), and/or
validation (arrows from y). Presence of pathogen antibody or antigen is commonly used as the response but
conflates competence with exposure. Predictions from these models can be validated by field measures of
competence, such as isolating live virus or diagnostics of certain arthropod vectors, both of which can also be
more informative response variables. Both in silico and in vitro analyses can characterize receptor binding
(i.e., informing susceptibility) and reveal host factors required for viral replication, which can be used as covariates
or validation for models using PCR or serology responses. Lastly, in vivo experimental challenge studies can con-
firm pathogen replication and transmission to susceptible hosts or vectors, and results can serve as either the
response or model validation.

systematic dataset of host competence for
select pathogens, which would facilitate in-
cluding competence as the response
in statistical models (Figure 1). To date,
competence has been analyzed in several
comparative frameworks (e.g., how host
life history shapes the proportion of infected
larval ticks per species [8]). Such data
have generally yet to be included in larger
predictive models, although doing so may
generate more meaningful forecasts of
likely reservoirs. In one recent example,
the presence of infected larval ticks was
integrated into machine learning algorithms

to determine the taxonomic and life history
correlates of competence for Borrelia
burgdorferi across bird species, which
allowed predicting likely but unsampled
avian reservoirs [9]. A key research priority
moving forward will be to determine how
statistical models trained on serology,
PCR, and competence response variables
differ in performance and predictions.

Improving Reservoir Host
Prediction
Efforts to predict reservoirs of zoonotic
pathogens are expected to increase

dramatically following the emergence
of SARS-CoV-2 and the COVID-19
pandemic. On their own, traditional
modeling approaches using data on
antigen detection and seropositivity
will likely provide limited insights into
the underlying competence of pro-
posed reservoir hosts. Being agnostic
to host susceptibility and suitability,
such models could fail to identify true
reservoirs and lead to unnecessary re-
sponses (e.g., culling). Here, we have
outlined how competence data could
be better integrated into predictive re-
search, through an iterative combina-
tion of testing model predictions,
including within-host data as covari-
ates, and eventually modeling compe-
tence itself as the response (Figure 1).
Such work could produce more rele-
vant forecasts of reservoirs, identify
host traits with causative physiological
links to infection, and enhance our un-
derstanding of how different wildlife
species contribute to pathogen trans-
mission in host communities. To ac-
complish such aims, we emphasize a
broader need for close collaboration
between ecologists, data scientists,
microbiologists, and immunologists to
ensure that data and methods are
used and interpreted accurately and to
foster better dialogue between predic-
tion and validation.
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Forum

The Silver Lining of
Extreme Events
M.A. Coleman1,2,3,*,@ and
T. Wernberg3,@

Extreme climatic events cause
devastating impacts to species
and ecosystems, precipitating sig-
nificant mortality. However, emerg-
ing empirical evidence is revealing
that such mortality can drive direc-
tional selection and result in in-
creased tolerance. We discuss the
novel opportunities for promoting
climate resilience presented by
this ‘silver lining’ of extreme events.

The Destructive Nature of Extreme
Events
Extreme climatic events such as floods,
cyclones, heatwaves, and cold spells
have precipitated significant impacts to
species and ecosystems over evolutionary
and contemporary time scales [1] and are
predicted to increase in intensity and fre-
quency under climate change [2]. By defini-
tion, extreme events exceed the norms of
environmental conditions and therefore
drive significant mortality, resulting in
range shifts, local extinctions, and transi-
tions to novel ecosystem states [3]. This
causes significant loss of economic, social,
and ecological values derived from natural
systems. Consequently, extreme events are
overwhelmingly perceived as negative and
receive significant scientific, societal, finan-
cial, and media attention. However, emerg-
ing empirical research is demonstrating that
mortality induced by extreme events is
often not random but can drive directional
selection and rapid adaptation to climate
stressors [1,4–7]. Acknowledging this
positive ‘silver lining’ of extreme events
presents unique opportunities to boost
resilience of natural populations under fu-
ture climates.

Extreme Events Promote Selection
and Increased Resilience
Theory predicts that extreme events
cause selection against weak phenotypes
and, where species maximum thresholds
are approached, but not exceeded, pro-
mote the persistence of stress tolerant

phenotypes (Figure 1). When this has a
heritable basis, rapid adaptation to the pre-
vailing stressor can occur. As such, selec-
tion driven by extreme events may be one
of the few natural mechanisms through
which species and populations can in-
crease their resilience to the
rapid advance of climate change. However,
despite a strong theoretical basis for ex-
treme events driving selection, studies
have empirically demonstrated this process
only recently. For example, comparisons
of genomic and physiological data before
and after a severe cold snap demonstrated
increased cold tolerance in green anole liz-
ards (Anolis carolinensis) [4]. Similarly, cy-
clones induced widespread selection
favouring heritable traits in group-living spi-
ders that enhanced competitive resource
acquisition, reproduction, and survival
(Anelosimus studiosus) [6]. In the marine
environment, an extreme marine heatwave
caused significant loss of genetic diversity
and signatures of directional selection to-
wards increased thermal tolerance in
kelp forests (Scytothalia dorycarpa, Sar-
gassum fallax, and Ecklonia radiata)
[5,7]. In all cases, these extreme events pre-
cipitated significant, but nonrandom mortal-
ity, favouring certain traits or genotypes that
confer greater fitness to the climate stressors
(e.g., cold, heat) underpinning the extreme
events. With extreme events predicted to in-
crease in the future [2], selection may confer
increased resilience and accelerated adap-
tation under climate change by increasing
the frequency of strong, climate-proof ge-
notypes. This ‘silver lining’ of the otherwise
destructive impacts of extreme events is
only just being realised, but provides novel
opportunities for managing future resilience
of species and ecosystems under climate
change (Figure 1).

Harnessing the ‘Silver Lining’ of
Extreme Events
There is increasing support for conservation,
restoration, and management of natural
ecosystems to proactively anticipate future
climatic conditions. This involves strategies
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