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and Lenka Maletı́nská1*
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Obesity, diabetes, insulin resistance, sedentary lifestyle, and Western diet are the key
factors underlying non-alcoholic fatty liver disease (NAFLD), one of the most common liver
diseases in developed countries. In many cases, NAFLD further progresses to non-
alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and to hepatocellular carcinoma. The
hepatic lipotoxicity and non-liver factors, such as adipose tissue inflammation and
gastrointestinal imbalances were linked to evolution of NAFLD. Nowadays, the degree
of adipose tissue inflammation was shown to directly correlate with the severity of NAFLD.
Consumption of higher caloric intake is increasingly emerging as a fuel of metabolic
inflammation not only in obesity-related disorders but also NAFLD. However, multiple
causes of NAFLD are the reason why the mechanisms of NAFLD progression to NASH are
still not well understood. In this review, we explore the role of food intake regulating
peptides in NAFLD and NASHmouse models. Leptin, an anorexigenic peptide, is involved
in hepatic metabolism, and has an effect on NAFLD experimental models. Glucagon-like
peptide-1 (GLP-1), another anorexigenic peptide, and GLP-1 receptor agonists (GLP-1R),
represent potential therapeutic agents to prevent NAFLD progression to NASH. On the
other hand, the deletion of ghrelin, an orexigenic peptide, prevents age-associated
hepatic steatosis in mice. Because of the increasing incidence of NAFLD and NASH
worldwide, the selection of appropriate animal models is important to clarify aspects of
pathogenesis and progression in this field.
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INTRODUCTION

Chronic liver diseases represent a major global health problem
(1). In addition to genetic factors, various other stimuli, such as
diet, metabolic diseases, etc. can alter liver function, especially
the intracellular accumulation of lipids in hepatocytes. If these
stimuli act for a sufficient time period, steatosis can induce
inflammation resulting in non-alcoholic steatohepatitis
(NASH). NASH, an extremely advanced form of non-alcoholic
fatty liver disease (NAFLD), is defined as hepatic steatosis with
inflammation and hepatocyte injury. NASH can eventually lead
to advanced fibrosis, liver cirrhosis and liver failure (Figure 1).
Over the past 20 years, the incidence of NAFLD has more than
doubled, and it is now one of the most common liver diseases in
Western countries (1). In the United States (US), the rates of
prevalence of hepatic steatosis and NAFLD were estimated to
24.13%; however, it can vary by the ethnicity. It is reported that
the highest prevalence is in the Hispanic Americans, followed by
Americans of Europe descent and then African Americans (2).
Moreover, only 3-5% of biopsy-proven NASH in the US
population has been convincingly shown to progress to
cirrhosis, liver failure and hepatocellular carcinoma (3) and
NASH-associated cirrhosis is currently the third most frequent
Abbreviations: ACC, acetyl-CoA carboxylase; Alb-SREBP-1c, liver-specific over-
expression of human SREBP-1c; ALT, alanine aminotransferase; AMPK, 5’
adenosine monophosphate-activated protein kinase; AQPs, aquaglyceroporins;
ARC, nucleus arcuatus; AST, aspartate aminotransferase; Ay, yellow obese gene;
CC, chemokine; CCL, chemokine ligand-2; CCl4, carbon tetrachloride; CD11b,
cluster of differentiation 11B; CD14, cluster of differentiation 14; CD36, cluster of
differentiation 36; CD68, cluster of differentiation 68; CHOP, C/EBP homologous
protein; ChREBP, carbohydrate response element binding protein; Col1a1,
collagen type 1 a 1 chain; Col1a2, collagen type 1 a 2 chain; Col3a1, collagen
type 3 a 1 chain; CRP, C-reactive protein; DDC, 3,5-dietoxy-carbonyl-1,4-
dihydrocollidine; DIAR, ddY, Institute for Animal Reproduction; DIO, diet-
induced obesity; DPP4, dipeptidyl peptidase-4; Epac, exchange protein activated
by cAMP; ER, endoplasmatic reticulum; FA, fatty acid; FASN, fatty acid synthase;
FFA, free fatty acid; FFC, high fructose and cholesterol; GCKR, glucokinase
regulator; GH, growth hormone; GHSR, growth hormone secretagogue receptor;
GIP, glucose-dependent insulinotropic peptide; GLP-1, glucagon-like peptide 1;
GLP-1R, glucagon-like peptide 1 receptor; GLP-1R/GR, GLP-1R and glucagon
receptor dual agonists; HF/HFr, high-fat high-fructose; HFD, high-fat diet; HFr,
high-fructose; HOMA-IR, homeostasis model assessment for insulin resistance;
HSCs, hematopoetic stem cells; IL, interleukin; IRS2, insulin receptor substrate 2;
JAK2, Janus kinase 2; JVS, juvenile visceral steatosis; K18, keratin 18; K8, keratin 8;
MBOAT7, membrane bound O-acyltransferase domain-containing 7; MCD,
methionine- and choline-deficient; MDBs, Mallory-Denk bodies; MSG,
monosodium glutamate; mTOR, mammalian target of rapamycin; NAFLD,
non-alcoholic fatty liver disease; NAS, NAFLD activity score; NASH, non-
alcoholic steatohepatitis; NEFA, non-esterified fatty acid; NFkB, nuclear factor
NF-kappa-B; p53, tumor protein; PI3K, phosphatidylinositol 3-kinase; PKA,
protein kinase A; PNPLA3, patatin-like phospholipase domain-containing
protein 3; PPARs, peroxisome proliferator-activated receptors; PTEN,
phosphatase and tensin homolog; PTEN-HEP-KO, hepatocyte-specific null
mutation of PTEN in mice; SCD-1, stearoyl-CoA desaturase-1; SHP2, Src
homology region 2 (SH2)-containing protein tyrosine phosphatase 2; Smad,
TGF-b superfamily member; SREBP-1c, sterol regulatory element binding
protein 1c; STAT, signal transducer and activation of transcription; STZ,
streptozotocin; T2DM, type 2 diabetes mellitus; TG, triglyceride; TGF-b,
transforming growth factor b; TM6SF2, transmembrane 6 superfamily member
2; TNFa, tumor necrosis factor a; US, United States; VLDL, very low-density
lipoprotein; a-SMA, alpha-smooth muscle actin.
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reason for liver transplantation. The epidemiological data from
individual states of Europe suggested that approximately one-
quarter of the European population is affected by NAFLD (2). As
expected, the prevalence of NAFLD is substantially increased
with type 2 diabetes mellitus (T2DM) and with increased body
mass index, as demonstrated across Europe (2).

The pathogenesis of NAFLD and NASH appears to be
multifactorial and many mechanisms have been proposed as
possible causes of fatty liver infiltration (4). The association of
steatosis with a number of different clinical conditions has been
suggested. Common metabolic diseases such as central obesity,
T2DM and hyperlipidemia are well-established risk factors and
have been associated with both benign liver steatosis and
progressive NASH (Figure 1). Moreover, it has recently been
proposed that metabolic syndrome may play a causal role in the
pathogenesis of NASH. Management of both NAFLD and NASH
has recently become a major challenge to healthcare systems, and
many different interventions have been proposed (5). In this case,
one may speculate that the treatment of obesity might reduce or
stop the development of NASH. The treatment of obesity is
mainly related to weight reduction and improvement of eating
habits. All patients with NAFLD, whether obese or normal weight,
should be informed that a healthy diet has many benefits in
addition to weight reduction. They should reduce the added sugar
to a minimum and also minimize unhealthy fast eating and,
conversely, increase fiber intake. An increase in physical activity
should also be recommended. It is likely that there will not be only
one right approach for all patients with NAFLD, it will be
necessary to adapt the diet individually, including the inclusion
of n-3 fatty acids, foods with higher monounsaturated fatty acids,
fruits, vegetables and reducing the intake of saturated fats or
simple carbohydrates (6, 7). Recently, it was proposed that food
intake regulating peptides play a significant role in obesity
regulation and may have the potential to be a drug for obesity
treatment (8–11). Nevertheless, to elucidate the detailed
pathophysiological mechanisms of NAFLD and NASH,
appropriate experimental models need to be used. Because there
are many causes of human steatohepatitis pathology, it is difficult
to establish a universal experimental model. Thus, several genetic,
nutritional (diet-induced) and other mouse, rat, and rabbit
models have been established (12–15). Models based on
overnutrition with adipose tissue enlargement and resulting
metabolic complications, particularly insulin resistance, may be
most useful to investigate critical etiopathogenic factors. Not only
environmental factors, but also genetics play a role in the
development and progression of NAFLD, as reviewed by (16).
At least four genetic variants that play a role in lipid metabolism
in the liver are robustly associated with the development and
progression of NAFLD in humans. Patatin-like phospholipase
domain-containing protein 3 (PNPLA3), involved in lipid droplet
remodeling, is the most robust and replicable genetic variant
associated with NAFLD. Transmembrane 6 superfamily member
2 (TM6SF2) is involved in very low-density lipoprotein (VLDL)
secretion. Other genes causing the development of NASH are
membrane bound O-acyltransferase domain-containing 7
(MBOAT7) and glucokinase regulator (GCKR). Additionally,
November 2020 | Volume 11 | Article 597583
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FIGURE 1 | Stages of NASH.
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other genetic variants involved in the regulation of lipid
metabolism, inflammation, insulin signaling, oxidative stress
and fibrogenesis in NAFLD progression have been studied (16).

This review explores the role of food intake regulating
peptides in the pathology of NAFLD and NASH. Special
attention will be paid to several anorexigenic peptides, such as
leptin, glucagon-like peptide-1 (GLP-1), and to the orexigenic
peptide ghrelin. Because anorexigenic peptides are currently
promising substances in the treatment of obesity, they may
also play an important role in the future treatment of liver
pathology. On the other hand, the inhibition of the orexigenic
peptide ghrelin could prevent age-associated hepatic steatosis.
Another aim of our review is the critical view of experimental
models for the study of NAFLD and NASH.
FEATURES OF NASH

The individual markers for NASH, such as biochemical markers
and inflammatory or fibrogenic factors, improve our
understanding of disease pathogenesis and allow therapies to be
developed. Biochemical markers measured in plasma or the liver,
such as alanine aminotransferase (ALT) and aspartate
aminotransferase (AST), reflect nonspecific hepatocellular
damage. Aminotransferase levels can be increased two to four
times the upper normal limit in NASH. Other biochemical
markers such as triglyceride (TG) and cholesterol levels are
measured in plasma and from liver biopsies. A high content of
liver hydroxyproline (originating mostly from collagen) was also
observed in obese leptin‐deficient (ob/ob) mice, in both obesity
and NASH mouse models (17). On the other hand, inflammatory
cytokines and chemokines such as tumor necrosis factor a
(TNFa), interleukin (IL)-6, chemokine CC ligand-2 (CCL2) and
another inflammation marker, C-reactive protein (CRP), are
Frontiers in Endocrinology | www.frontiersin.org 3
among the main markers of NASH (18–20). Moreover, liver
biopsy is used to verify or diagnose the stage of NASH and to
monitor histopathological changes in NASH. To monitor these
histopathological changes, several histological scoring systems,
including the NAFLD activity score (NAS) and the fibrosis scoring
system, were established. The NAS system evaluates the severity of
macrovesicular and microvesicular steatosis, hepatocellular
ballooning or lobular inflammation. Fibrosis is scored in 7
grades with the Laennec scoring system, in which 0 indicates no
fibrosis; 1, minimal fibrosis; 2, mild fibrosis; 3, moderate fibrosis;
4A, cirrhosis, mild, definite, or probable; 4B, moderate cirrhosis;
and 4C, severe cirrhosis (21). However, noninvasive approaches
such as magnetic resonance spectroscopy provide a sensitive
method to detect hepatic steatosis (22). Other inflammatory and
fibrotic markers discovered by liver mRNA sequencing include
the inflammatory marker cluster of differentiation 68 (CD68),
which is highly expressed in macrophages, the cluster of
differentiation molecule 11b (CD11b) marker expressed in
Kupffer cells (also known as stellate macrophages located in the
liver) and fibrosis markers, such as collagen type 1 a 1 chain
(col1a1), collagen type 3 a 1 chain (col3a1) and a-smooth muscle
actin (a-SMA) (17, 21, 23, 24).
MOUSE MODELS OF NASH

Various mouse models that mirror both the pathophysiology and
the histopathology of NAFLD/NASH have been developed to
elucidate the progression of NAFLD to NASH and its link to
metabolic syndrome. Dietary approaches including a high-fat
diet (HFD) and atherogenic and methionine- and choline-
deficient (MCD) diets with many variations produce different
severity of disease and are widely used (Table 1) (25). Other
commonly used models are mice with genetic manipulations that
November 2020 | Volume 11 | Article 597583
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allow to study different lipid pathways or glucose metabolism
during the development of steatosis or fibrosis (Table 1). Toxin-
induced models are not very commonly used; however, these
models also develop some features of NAFLD and NASH with
connection to metabolic syndrome (Table 1).

Nutritional (Dietary) Models
High-Fat Diet
Dietary models, including obesogenic and nutrient-deficient
models, can effectively trigger the development of NAFLD/
NASH. Obesogenic models imitate overnutrition and a
sedentary lifestyle leading to overweight or obesity in humans;
therefore, the use of diet-induced obesity (DIO) models
represents the natural development of NASH. The classic HFD
contains 45%–75% of total calories from fat, without any
nutrient deficiencies, and represents the most commonly used
model of obesity in rodents (Table 2) (62). Mice fed this diet
develop obesity with an increase in adiposity and metabolic
syndrome (63, 64) and display severe liver steatosis with micro-
and macrovesicular lipid accumulation and increased total liver
TG but without marks offibrosis (26–28). However, the length of
diet administration, the content and type of fat used, the sex,
species, and genetic background of the model can play roles in
adiposity and subsequent NAFLD development.
Frontiers in Endocrinology | www.frontiersin.org 4
High-Fat Diet With High-Fructose/Sucrose
To increase hepatic fibrosis and preserve steatosis, HFD with
high-fructose or high-sucrose (HF/HFr or HF/Hsucrose)
consumption can be used; moreover, this approach has been
linked to the development of NASH (Table 2) (65, 66). The
metabolism of fructose differs from that of glucose. Hepatic
metabolism of fructose favors de novo lipogenesis, and fructose
stimulates the synthesis of TG and free fatty acids (FFAs).
Fructose overconsumption is related to the obesity epidemic
(67). In addition, high fructose consumption and increased fat
intake is reported to be a risk factor for the development of
NAFLD (29, 68). Fructose consumption, even in the absence of
obesity, causes serious changes in the liver, such as dyslipidemia,
insulin resistance, and NAFLD, with areas of inflammation (30).
Compared to lean controls, male mice fed a high-fat, high-
fructose (HFr) diet alone or combined with a high-fat (HF/
HFr) diet had increased plasma cholesterol and TG and
increased homeostasis model assessment for insulin resistance
(HOMA-IR). Nevertheless, a dramatic increase in body mass was
observed only in the HFD and HF/HFr groups and not in the
HFr group. All three groups displayed features of NAFLD, with
increased lipogenesis mediated by sterol regulatory element
binding protein 1c (SREBP-1c), peroxisome proliferator-
activated receptor g (PPARg) and reduced peroxisome
proliferator-activated receptor a (PPARa). Inflammation was
observed in the HFr and HF/HFr groups, leading to the
development of NASH (30). It was reported that mice fed a
high-fat, high-carbohydrate diet and a 55% fructose and 45%
sucrose solution for 16 weeks developed obesity and a NASH-like
phenotype with significant fibrosis (31). Mice fed a high-fat,
high-sucrose diet developed severe hepatic steatosis with low-
grade inflammation and fibrosis and increased inflammatory and
fibrosis marker expression (32).

Mice fed a high fat, high-fructose and high-cholesterol (FFC)
diet demonstrated increased body weight, plasma cholesterol,
ALT, and AST and hepatic TG. Mice presented steatosis with an
NAS score of 3 and fibrosis with a score of 1–3 and increased
expression offibrillary collagens such as col1a1 and collagen type
1 a 2 chain (col1a2) (33–35, 69). These mice also exhibited
leukocyte infiltration in the liver and high expression of
monocyte chemotactic protein-1 and TNFa (34).

The consumption of a HFD alone or a HFD enriched with
other mentioned components greatly mimics features of human
obesity and steatosis. However, only low-grade fibrosis and
inflammation develop with the consumption of different types
of HFDs. Therefore, the addition of fructose or cholesterol could
enhance all features of NASH.

Atherogenic (High-Cholesterol, High-Cholate) Diet
An atherogenic diet enriched with cholesterol and cholic acid (or
sodium cholate) has been widely used to study atherosclerosis
and coronary heart disease (Table 2). A diet supplemented with
1.0% cholesterol and 0.3% sodium cholate increased body weight
and led to elevated AST, ALT and cholesterol in Wistar rats. The
liver displayed features of increased steatosis, hepatic necrosis,
macrophage infiltration and hepatic fibrosis (36). An atherogenic
diet induced dyslipidemia, lipid peroxidation and stellate cell
TABLE 1 | Number of publications in mouse models of NASH.

Mouse models
of NASH

Number of
publications

Nutritional
(dietary) models

Fat-enriched diets:
HFD, HF/HFr, HF/
Hsucrose, FFC

> 5,000

Atherogenic diet > 5,000
MCD diet 418

Genetic models Impairment of
leptin function

ob/ob mice > 1,000

db/db mice > 1,000
Impairment of FA
oxidation

Carnitine deficiency 66

Deletion of PPARs 717
Mutation of keratin
8 and 18

18

Mutation of
SREBP-1c

346

Less common
genetic models

KKAy mice 256

Mutation of Fatty acid
translocase (CD36)

96

PTEN deficiency 436
Toxin/drug-
induced models

STZ/Diabetes
model

20

MSG model 109
DDC 13
This table represents number of publications found in Pubmed using key words “name of
model and liver and mice” published between 1950 and 2020.
DDC, 3,5-diethoxy-carbonyl-1,4-dihydrocollidine; FA, fatty acid; FFC, high-fat diet with
high fructose and cholesterol diet (FFC); JVS, juvenile visceral steatosis; HFD, high-fat diet;
HF/HFr, high-fat diet with high-fructose; MCD, methionine- and choline-deficient; MSG,
monosodium glutamate; PPAR, peroxisome proliferator-activated receptor; PTEN,
phosphatase and tensin homolog; SREBP-1c, sterol regulatory element binding protein
1c; STZ, streptozotocin.
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activation leading to precirrhotic steatohepatitis after 24 weeks
on the diet, and in contrast to HFD, cellular ballooning, one of
the features of NASH, was observed. An atherogenic diet
increased the expression of genes for fatty acid (FA) synthesis,
Frontiers in Endocrinology | www.frontiersin.org 5
oxidative stress, inflammation, and fibrogenesis, which were
further accelerated by the addition of a HFD but did not
change body weight. This model suggests the critical role of
lipids in causing oxidative stress and insulin resistance leading to
TABLE 2 | Mouse model and features of NAFLD/NASH.

Mouse model of NASH BW Metabolic profile Liver histology Liver markers References

HFD ↑ ↑ leptin ↑ insulin, ↑ glucose (plasma),
↑ TG (liver)

macro- and microvesicular steatosis
no fibrosis

(26–28)

HF/HFr diet ↑ ↑ insulin ↑ cholesterol
↑ TG (plasma),
↑ ALT (plasma)

necroinflammation (29–32)

FFC diet ↑ ↑ cholesterol (plasma)
↑ALT ↑AST (plasma),
↑TG (liver)

steatosis
fibrosis
inflammation

↑mRNA of col1a1
↑mRNA of col1a2
↑mRNA of TNFa

(33–35)

Atherogenic diet ↑ ALT ↑ AST (plasma),
↑ cholesterol (plasma)

steatosis
cellular ballooning
fibrosis
inflammation

(36, 37)

MCD diet ↓ glucose ↓ insulin, ↓ leptin (serum),
↑ lipids (liver)

macrovesicular steatosis
fibrosis
inflammation

↑ mRNA of hepatic col1a1
and TGFb1

(38, 39)

Ob/Ob mice
on a FFC diet

↑ ↑ insulin ↑ glucose (plasma),
↑ lipids (liver)
↑ cholesterol (plasma)
↑ ALT, ↑ AST (plasma)
↑ TG, ↑ TC (liver)

macrovesicular steatosis
inflammation
no fibrosis
hepatocellular ballooning
fibrosis
inflammation

↑ col1a1
↑ galectin-3

(17, 33)

Db/Db mice ↑ ↑ glucose ↑leptin (serum), macrovesicular steatosis
no fibrosis

(40, 41)

Carnitine deficiency mice ↓ ↓ glucose ↓ carnitine (serum),
↑ ammonia (serum)
↑ total lipids, ↑ TG (liver)

microvesicular steatosis
no necrosis

(42)

PPARa deletion mice
on a HFD
PPARb/d deletion mice
Fed CCl4
PPARg deletion mice
PPARg liver deletion

↑ TG (liver)
↑ ALT, ↑ TNF
↑ FFA, TG
↑ insulin

steatosis
steatosis
protected against steatosis on HFD

↓ expression of
proinflammatory genes
↓ expression of
proinflammatory genes

(43–45)

Mutation of K8 mice
Mutation of K18 mice
with DDC

↑ ALT ↑ AST (serum), necrotic foci
steatosis
tumors
macrovesicular steatosis

MDBs (46, 47)

SREBP-1c deficient mice
SREBP-1c overexpression

↓ TG ↓ cholesterol (plasma),
↑ cholesterol (liver)
↑ FA (liver)
↑ TG ↑ FFA, ↑ insulin (serum),

steatosis (48, 49)

KKAy mice ↑ ↑ insulin ↑ glucose (plasma), microvesicular steatosis ↑ lipogenesis in liver (50)
CD36 deficient mice
CD36 overexpression

↑ cholesterol ↑ NEFA (serum),
↑ TAG (serum)
↓ glucose (serum)
↑ VLDL (HFD)

resistant to steatosis on
high-carbohydrate liquid diet
↓ steatosis o HFD

(51, 52)

PTEN no changes ↑ TG (liver)
↑ ALT ↑ AST (serum),

microvesicular steatosis
no fibrosis

(53)

STZ mice ↑ glucose (serum)
↑ ALT, ↑ AST (serum)
↑ lipids, ↑ TG (liver)

macrovesicular steatosis
inflammation
fibrosis
carcinoma

↑ F4/80+ macrophages (54–56)

MSG mice ↑ ↑ glucose, ↑ insulin
↑ total cholesterol
↑ TG

steatosis
cellular ballooning
fibrosis
inflammation
carcinoma

(57–59)

DDC fibrosis ↑ CD11b
MDBs

(60, 61),
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steatohepatitis (37). Hypercholesterolemia should be considered
a risk factor for hepatic fibrosis, and it could be enhanced to
develop all metabolic features when a high content of cholesterol
is combined with a high content of fat in the diet.

Methionine- and Choline-Deficient Diet
Nutrient-deficient models with low contents or lacking certain
nutrients could also be used for the development of NAFLD/
NASH features. The MCD diet contains high sucrose (40%) and
fat (10%) but lacks methionine and choline, which are essential for
hepatic b-oxidation and VLDL production (Table 2). Rats fed an
MCD diet develop macrovesicular steatosis, inflammation, and
hepatic fibrosis (70). In mice, the MCD diet caused liver injury,
which is associated with hepatic microsomal lipid peroxidation.
Livers revealed macrosteatosis and inflammation, together with
perivenular and pericellular fibrosis (71). In different strains
and animal models, the severity of NASH induced by an MCD
diet differed; however, C57BL/6 mice developed the most
inflammation and necrosis and best approximated the
histological features of NASH (72). Although the MCD diet
causes severe inflammation, oxidative stress, mitochondrial
damage, apoptosis, and fibrogenesis, the metabolic profile of the
model is the opposite of that of typical human NASH (73).

Specifically, mice fed an MCD diet show weight loss,
decreased fasted glucose, no insulin resistance and low insulin
and leptin levels (38, 39). On the other hand, the main advantage
of the MCD diet is that it is easy to obtain and use.

Genetic Models
Impairment of Leptin Function
Ob/ob Mice With Leptin Deficiency
Ob/obmice carry a spontaneous mutation in the leptin gene (74)
but do not have impaired leptin receptors. Ob/ob mice develop
severe obesity due to hyperphagia and reduced energy
expenditure (Table 2). Hyperinsulinemia, insulin resistance
and hyperglycemia develop before obesity occurs (75, 76).
Leptin-deficient mice are predisposed to develop severe
steatohepatitis with macrovesicular steatosis; however, when
maintained on a standard chow diet, they do not develop
fibrosis (35). Ob/ob mice are protected from fibrosis because
leptin is a mediator of hepatic fibrosis during chronic toxic liver
injury (77). Nevertheless, leptin-deficient mice maintained on an
FFC diet are more susceptible to developing features of NASH,
such as steatohepatitis and fibrosis than wild-type C57BL/6J
mice (33). Generally, it is believed that additional stimuli, such as
an MCD diet or toxin exposure, must be added to develop
inflammation and fibrosis, but interestingly, ob/ob mice fed a
MCD diet develop moderate lobular inflammation and no
detectable fibrosis (40, 77).

Ob/ob mice on an FFC diet displayed strong features of
NASH with fibrosis, elevated plasma ALT, AST and total
cholesterol, and high expression of col1a1, a marker of fibrosis,
and galectin-3, a marker of inflammation (17).

Db/db Mice With Leptin Receptor Mutation
Db/db mice have a spontaneous mutation in the leptin receptor,
and therefore, they are resistant to the effects of leptin (78, 79).
Frontiers in Endocrinology | www.frontiersin.org 6
These mice are hyperphagic, and early onset morbid obesity
occurs with severe T2DM, insulin resistance, hyperglycemia and
hyperleptinemia (Table 2) (80, 81). Db/db mice have
macrovesicular hepatic steatosis, but they have only modestly
increased liver TG compared to the control mice and do not
spontaneously develop steatohepatitis or fibrosis. When db/db
mice are exposed to a MCD diet, they exhibit increased
inflammation and serum ALT compared with db/db mice fed a
control diet and even ob/ob mice. Moreover, db/db mice fed a
MCD diet revealed pericellular fibrosis (40). Interestingly,
hepatic steatosis and insulin resistance, as well as body weight
and adiposity, were reversed to the level of control mice in db/db
mice by caloric restriction, a condition under which mice receive
a restricted amount of food (2 g/day) (41).

Impairment of FA Oxidation
FA oxidation takes place in three cellular organelles:
mitochondria, peroxisomes and the endoplasmic reticulum
(ER) (microsomes). Mitochondrial b‐oxidation is the main
route for the metabolism of FAs under normal physiological
conditions (82). Deficiencies of the enzymes involved in FA
oxidation have been recognized as important causes of the
pathogenesis of macrovesicular and microvesicular hepatic
steatosis (Table 2).

Carnitine Deficiency Leading to Juvenile Visceral Steatosis
Mice
Juvenile visceral steatosis (JVS) mice have a systemic carnitine
deficiency caused by mutation of the organic cation/carnitine
transporter 2 gene, which encodes a plasma membrane
carnitine transporter (Table 2) (42, 83). JVS mice develop severe
lipid accumulation in the liver from an early age, with
microvesicular swelling of hepatocytes, hypoglycemia, high levels
of ammonia in serum, and growth retardation (42, 83, 84). This
model can represent a model to examine changes in FAmetabolism
in the liver.

Deletion of Peroxisome Proliferator-Activated Receptors
Peroxisome proliferator-activated receptors (PPARs) belong to
the nuclear receptor transcription factor family. This class
comprises three PPAR isoforms, namely, a, b/d, and g, which
are expressed in various tissues; PPARs play a role in the
transcriptional regulation of glucose and lipid metabolism
(Table 2) (85, 86).

PPARa is ubiquitous, but it is most highly expressed in the
liver. It has a critical role in the regulation of FA uptake, b-
oxidation, ketogenesis, bile acid synthesis, and TG turnover (85).
PPARa was suggested to have an anti-inflammatory role in the
liver and in adipose tissue. Mice lacking PPARa are more
susceptible to the negative effects of a HFD, and feeding them
a HFD results in increased steatosis and oxidative stress and
inflammation markers compared to their controls (43).

PPARb/d is highly expressed in skeletal muscle, adipose
tissue, and skin. PPARb/d is also expressed in the liver,
hepatocytes, Kupffer cells and hepatic stellate cells, suggesting a
potential role in inflammation and fibrosis (85). A study with
PPARb/d-deficient mice suggested that PPARb/d is
November 2020 | Volume 11 | Article 597583

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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hepatoprotective against chemically induced hepatotoxicity, such
as carbon tetrachloride (CCl4), by downregulating the expression
of proinflammatory genes (87).

PPARg is highly expressed in adipose tissue, where it controls
adipocyte differentiation, adipogenesis, and lipid metabolism,
but the expression of PPARg in the liver is very low (85). Mice
with adipose tissue-specific PPARg deficiency have increased
plasma FFA and TG, fatty liver, and enhanced hepatic
gluconeogenesis (88). Moreover, these mice were significantly
more susceptible to HFD-induced steatosis, hyperinsulinemia,
and insulin resistance than their controls. Ob/ob mice with
PPARg deficiency in the liver had increased serum TG and
FFA and decreased mRNA expression of hepatic lipogenic
genes compared with their controls. A deficiency in hepatic
PPARg further aggravated the severity of diabetes in ob/ob
mice due to decreased insulin sensitivity in muscle and fat.
Hepatic PPARg plays a critical role in the regulation of TG
content and in the homeostasis of blood glucose and insulin
resistance in steatotic diabetic mice (89).

Models with PPAR deficiencies are used to study the role of
PPARs in glucose and lipid metabolism, but studies on their role
in the development of NASH features could be considered
rather uncommon.

Mutation of Keratin 8 and Keratin 18
Keratins belong to a large family of intermediate filaments, and
they are expressed in epithelial cells as specific keratin pairs.
Keratin 8 (K8) and keratin 18 (K18) are expressed mainly in adult
hepatocytes, and mutations of this K8/K18 pair can lead to various
liver diseases (Table 2) (90–92). Mice expressing mutant K8/18
represent an animal model for human chronic hepatitis and for
studying the tissue-specific function of K8/18 (93). The increased
frequency of keratin K8/K18 variants in NAFLD patients was
previously reported (94). Keratin phosphorylat ion,
transamidation and glycosylation (95) are involved in
rearranging the keratin cytoskeleton into cytoplasmic inclusions,
known as Mallory-Denk bodies (MDBs), found in specific liver
diseases such as alcoholic hepatitis and cirrhosis (90).

Mutation of Sterol Regulatory Element Binding
Protein-1c
SREBP plays a key role in lipid homeostasis by regulating the
expression of genes involved in lipid synthesis (96, 97). SREBP-1c
is transcriptionally controlled by various factors, mainly insulin
and glucose, and regulates hepatic glucose and lipid metabolism
(Table 2) (98). In cultured hepatocytes, insulin and glucose
activate the transcription of the SREBP-1c gene, whereas
glucagon has an inhibitory effect (99, 100). SREBP-1c
expression was positively correlated with fatty acid synthase
(FASN) expression, and higher levels were found in the liver in
NAFLD models than in controls (101). The SREBP-1 gene has a
role in the genetic predisposition of metabolic diseases such as
obesity, T2DM, and dyslipidemia (102).

SREBP-1c deficiency led to the reduced expression of enzymes
involved in FA and TG synthesis. SREBP-1c KO mice had
reduced total plasma TG and cholesterol. In contrast, the liver
Frontiers in Endocrinology | www.frontiersin.org 7
cholesterol content was higher in SREBP-1c KOmice than inWT
mice (48). Mice with liver-specific overexpression of human
SREBP-1c (a lb-SREBP-1c ) deve loped hepat ic l ip id
accumulation featuring a fatty liver by the age of 24 weeks.
Moreover, liver-specific over-expression of human SREBP-1c
(alb-SREBP-1c) mice had increased liver FA levels, serum TG
and FFA, and insulin levels, indicating insulin resistance (49).

Less Common Genetic Models
KKAy Mice
Yellow KKAy mice carry the yellow obese gene (Ay) and they
develop spontaneous obesity due to hyperphagia with increased
adiposity and diabetic symptoms. KKAymice are characterized by
insulin resistance with increased blood glucose, circulating insulin
levels and increased lipogenesis in the liver and in adipose tissue
(Table 2) (103). The livers of KKAy mice had microvesicular
steatosis and an increased degree of hepatic steatosis (50). KKAy
mice represent a model that closely resembles obesity and T2DM
in humans, who develop several metabolic diseases therefore, this
model is valuable for the development of potential therapeutic
strategies not only for diabetes (104).

Deficiency or Overexpression of Fatty Acid Translocase
(CD36)
Fatty acid translocase, or cluster of differentiation 36 (CD36), is
a transmembrane glycoprotein that facilitates lipid transport
(105). The circulating serum level of CD36 is increased in
NAFLD and correlates with the histological grade of steatosis
intrahepatic lipids, ALT and TG (106, 107). CD36-deficient
mice showed a significant increase in fasting levels of
cholesterol, non-esterified fatty acid (NEFA) and TG with
lower fasting serum glucose levels (Table 2) (51). CD36 KO
mice are resistant to hepatic steatosis when fed a high-
carbohydrate liquid diet, and they do not develop alcoholic
steatosis when chronically fed alcohol (108). CD36 was
suggested to be a protective metabolic sensor in the liver
under lipid overload and metabolic stress (52).

Mutation of Phosphatase and Tensin Homolog in the Liver
Phosphatase and tensin homolog (PTEN) is a tumor suppressor
gene mutated in many human cancers but has multiple roles in
organisms. Its expression is reduced or absent in almost half of
hepatoma patients (109, 110). The hepatocyte-specific null
mutation of PTEN in mice (PTEN-HEP-KO) showed marked
hepatomegaly and steatohepatitis with TG accumulation, a
phenotype similar to that observed in human NASH (Table 1).
PTEN deficiency in hepatocytes led to steatosis through
increased FA uptake and de novo lipogenesis (53).

Toxin/Drug-Induced Models
Streptozotocin Diabetes Model
Streptozotocin (STZ) is a broad-spectrum antibiotic with
antitumor, oncogenic, and diabetogenic properties (111).
Multiple small intraperitoneal injections of STZ (40 mg/kg) in
mice produce pancreatic insulitis, with the selective destruction
of pancreatic b cells and diabetes mellitus (112), causing insulin
deficiency, hyperglycemia, polydipsia, and polyuria, all of which
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mimic human type 1 diabetes mellitus (Table 2) (113). Hepatic
changes, including lipid peroxidation, mitochondrial swelling,
peroxisome proliferation and hepatocyte proliferation inhibition,
occur before STZ induces hyperglycemia (114). In the subacute
phase, intraperitoneal injection of STZ resulted in an increase in
serum glucose and in serum and liver lipids and a decrease in
liver glycogen (54). Neonatal male mice exposed to low-dose STZ
developed liver steatosis with diabetes after one week on a HFD.
With continuous HFD, neonatal STZ mice develop NASH
pathology with decreased hepatic fat deposits and increased
lobular inflammation and fibrosis. At older ages, mice develop
hepatocellular carcinoma (55). Neonatal STZ mice demonstrated
focal liver lesions and hepatocellular carcinoma. Hematoxylin-
eosin staining showed macrovesicular steatosis, lobular
inflammation, hepatocellular ballooning and mild fibroblast
proliferation by silver impregnation (56). This model
represents a model of NASH linked to diabetes and
hepatocellular carcinoma without the accumulation of fat and
the development of steatosis.

Monosodium Glutamate Model
Subcutaneous injections of monosodium glutamate (MSG) into
newborn mice cause acute neuronal necrosis mainly in the
arcuate nucleus (ARC) of the hypothalamus. MSG-treated
mice display stunted growth due to impaired growth hormone
production (115), marked obesity, and female sterility, but they
are rather hypophagic (116). MSG mice had an 8 times higher
fat-to-body mass ratio and developed hyperglycemia and
hyperinsulinemia (Table 2) (117–119), which was more
pronounced in males than in females. The obesity-related
changes in the feeding behavior of the MSG-treated mice are
possibly the result of missing leptin and insulin receptors in
ARCs and consequent altered neuropeptide signaling (120). The
injection of MSG in ICR mice leads to the development of
significant inflammation, central obesity, and T2DM.
Compared with control mice, MSG-ICR mice had increased
concentrations of glucose, insulin, total cholesterol, and TG
(57). MSG-ICR mice developed NAFLD and NASH-like
pathology and had steatohepatitis and dysplastic nodular
lesions within the fibrotic liver (121). A different strain, MSG-
DIAR (ddY, Institute for Animal Reproduction, Japan) mice,
revealed a similar pattern of T2DM and macrovesicular steatosis,
lobular inflammation with neutrophils, and ballooning
degeneration. At an older age, they developed cellular
structures mimicking human hepatocellular carcinoma (58).
The crucial metabolic window for studying pathophysiological
events involved in NAFLD/NASH progression is considered at
4–6 months of age, the age at which MSG-treated mice also have
peripheral insulin resistance (59). The MSG model develops
features of NASH with obesity and steatosis, high TG, and
insulin resistance; however, this model is not used frequently.

Porphyrinogen Agent as Inducer of NASH-Like Liver
Lesions
Feeding with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)
leads to chronic xenobiotic-induced cholangiopathy in mice
(Table 2). DDC feeding results in significantly increased number
Frontiers in Endocrinology | www.frontiersin.org 8
of CD11b-positive cells. Moreover, mice fed DDC have a biliary
type of liver fibrosis (60). DDC triggered the formation of MDBs
and with that, the expression of keratins 8/18 was elevated (61).
ROLE OF ANOREXIGENIC PEPTIDES
IN NASH

Anorexigenic peptides, of both hypothalamic and gut origin, play
important roles in the pathology of NAFLD and NASH. The
most studied peripheral gut hormones include cholecystokinin,
leptin, amylin, GLP-1, oxyntomodulin, and bombesin, and the
main hypothalamic anorexigenic peptides include cocaine- and
amphetamine-regulated transcript peptide, a-melanocyte-
stimulating hormone, corticotropin-releasing factor and
prolactin- releasing peptide. This review is focused mainly on
leptin and GLP-1 as they are the best known anorexigenic
peptides involved in NAFLD and NASH pathogenesis (122, 123).

Leptin
Leptin, a product of the ob gene, is a hormone secreted by white
adipose tissue that acts as a major regulator of food intake and
energy homeostasis. Because leptin receptors are found in the
brain and in many peripheral tissues, leptin triggers many
biological effects and has the potential to affect a wide range of
diseases (124–127). Obese individuals usually have high plasma
leptin concentrations, and this hyperleptinemia leads to leptin
resistance (128). Mutations in the ob gene are rarely responsible
for obesity in humans, but several animal models with ob gene
mutations exist (73).

The binding of leptin to its receptor activates Janus kinase 2
(JAK2) and phosphorylates specific tyrosine residues of the
receptor and downstream proteins, including signal transducer
and activation of transcription (STAT3), Src homology region 2
(SH2)-containing protein tyrosine phosphatase 2 (SHP2), insulin
receptor substrate 2 (IRS2), and phosphatidylinositol 3-kinase
(PI3K), which regulate the transcription of genes involved in
food intake and lipid metabolism. Leptin activates 5′ adenosine
monophosphate-activated protein kinase (AMPK) and decreases
acetyl-CoA carboxylase (ACC) activity in skeletal muscle while
increasing mitochondrial b-oxidation. Another aspect of the
metabolic activity of leptin is the inhibition of hepatic stearoyl-
CoA desaturase-1 (SCD-1) activity, which regulates lipoprotein
metabolism and energy consumption. On the other hand, leptin
inactivates AMPK, increases ACC activity and decreases food
intake in the hypothalamus (126).

Role of Leptin in NAFLD/NASH Progression
to Fibrosis
Ten years ago, hepatic lipotoxicity and non-hepatic factors such
as adipose tissue inflammation and gastrointestinal imbalance
were linked to evolution of NAFLD (129). Nowadays, the degree
of adipose tissue inflammation was shown to directly correlate
with the severity of NAFLD. Consumption of higher caloric
intake is increasingly emerging as a fuel for metabolic
inflammation not only in obesity-related disorders but also
November 2020 | Volume 11 | Article 597583

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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NAFLD. Gut microbiome in NAFLD is gaining importance too
(130). Characteristic features of NAFLD progression include
imbalance in FA metabolism, cytokine dysregulation, and
oxidative metabolic stress. Oxidative stress is mainly
characterized by the excessive production of reactive oxygen
species by three main mechanisms, namely, lipid peroxidation,
cytokine induction, and Fas ligand (type II transmembrane
protein belonging to the TNF family), and induces
the progression from steatosis to steatohepatitis and to fibrosis
(131). In NAFLD progression, oxidative stress causes
the induction of purinergic receptor X7 expression at both the
mRNA and protein levels in inflammatory cells, but the detailed
mechanisms are not yet clear (132).

Circulating leptin levels primarily reflect energy stores in the
body but also indicate acute changes in caloric intake. Leptin
appears to exert a dual action in experimental NAFLD models; it
protects against liver steatosis, at least in the early stages of the
disease, but it also acts as an inflammatory and fibrogenic
mediator when the disease persists or continues (133). An
important role of leptin is to reduce the deposition of TG in
adipocytes and at the same time to limit the storage of TG in
nonadipose tissues, including the liver, and thus protect them
from lipotoxicity and lipoapoptosis (Figure 2) (134). Leptin
prevents liver steatosis in animal models by affecting both lipid
and glucose metabolism. Under normal conditions, leptin
suppresses hepatic glucose production and hepatic lipogenesis
(135). Chronic central administration of leptin reduces the
expression of hepatic lipogenic genes and reduces TG content
by stimulating hepatic sympathetic activity; this function requires
PI3K signaling because the leptin-mediated impairment of PI3K
signaling leads to hepatic steatosis without inducing obesity
(Figure 2) (133). For lipid accumulation in the liver, glycerol is
needed. A decrease in glycerol availability might be involved in the
beneficial effects of leptin on NAFLD. Integral membrane
aquaglycerolporins (AQP3, AQP7, AQP9, and AQP10) form a
channel across the cell membrane and thus facilitate glycerol
A

FIGURE 2 | Role of leptin in NAFDL/NASH progression.
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transport. The main gateway facilitating the release of glycerol
from adipocytes is AQP7; however, AQP3, AQP9, and AQP10
also aid in glycerol efflux from fat depots (Figure 2). Subsequently,
circulating plasma glycerol is transferred to hepatocytes by
hepatic-specific AQP9, where glycerol kinase catalyzes the initial
step for its conversion to glucose (gluconeogenesis) or to TG in ob/
ob mice (136). More specifically, leptin inhibits hepatic de novo
lipogenesis while stimulating FA oxidation, thereby reducing lipid
content in isolated livers (133, 137, 138). The steatosis observed in
ob/ob mice suggests that leptin is taken up by the fatty liver,
indirectly owing to central nerve pathways and directly by hepatic
AMPK activation. However, the regulation of glucose production
in the liver by leptin but not insulin requires hepatic AMPKa2
activity (131). On the other hand, leptin may promote hepatic
fibrogenesis through the upregulation of transforming growth
factor b (TGF-b) in Kupffer cells and sinusoidal endothelial
cells. Leptin prevents the upregulation of col1a1 mRNA, a
change associated with the fibrotic process in the liver. Fibrosis
develops in the absence of leptin in ob/ob mice; therefore, liver
fibrosis depends on the presence of leptin in chronic liver damage
(77, 139). In Kupffer cells, leptin induces cluster of differentiation
14 (CD14) expression by activating STAT3 (140). This results in a
hepatic hypersensitive response and progression from simple
steatosis or liver inflammation to fibrosis (Figure 2). This points
to possible therapeutic approaches for NASH by targeting leptin-
dependent STAT3 and CD14 signaling. During liver fibrosis, the
role of leptin and its functioning receptors, in particular in
activated hematopoietic stem cells (HSCs), has been
demonstrated. Increases in leptin-associated col1a2 gene
expression and in leptin-enhanced col1a2 gene promoter activity
were observed by ribonuclease protection analysis in vitro (141).
Furthermore, leptin enhances platelet-derived growth factor-
dependent proliferative responses in HSCs, most likely through
actions involving the PI3K/Akt pathway (140, 141).

In conclusion, it seems that in the initial stages of the disease,
leptin may protect against hepatic steatosis. However, when the
B
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disease progresses, leptin may act as an inflammatory and
fibrogenic agent. Leptin deficiency can lead to hepatic steatosis,
and excess leptin can promote hepatitis and fibrosis.

GLP-1
The gut incretin hormones glucose-dependent insulinotropic
peptide (GIP) and GLP-1 are secreted after the oral
administration of nutrients and stimulate insulin secretion,
which leads to a decrease in glucose concentration (142, 143).
GLP-1 slows gastric motility, enhances satiety, reduces appetite
and energy intake, and suppresses postprandial glucagon
secretion (Figure 3) (144, 145). Glucagon-like peptide-1
receptor (GLP-1R; also termed secretin-like receptor) belongs
to the G protein-coupled receptor family B. GLP-1R mRNA is
found in the pancreatic islets, lungs, hypothalamus,
hippocampus, cerebral cortex, brainstem, kidney, stomach,
intestine, skin, and heart of rodents and humans (146, 147).

GLP-1–Activated Pathways in Hepatic Lipid
Metabolism
GLP-1R agonists stimulate the production of cAMP through
adenylate cyclase, and cAMP activates protein kinase A (PKA)
and exchange protein activated by cAMP (Epac) (148, 149). PKA
and Epac induce insulin gene transcription and secretion (150).
Activation of cAMP in turn activates PKA, which leads to the
phosphorylation of AMPK (151). In addition, cAMP activation
stimulates the epidermal growth factor receptor, pointing to the
activation of the PI3K/Akt signaling pathway. These actions
suppress the expression of genes that have a key role in the
stimulation of insulin secretion affects the repression of hepatic
gluconeogenesis and lipogenesis and reduce postprandial plasma
FIGURE 3 | Role of GLP-1 in metabolism.
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glucose levels by elevating insulin-regulated glucose uptake
(Figure 3) (148, 149). Insulin or ER stimulation is required for
release SREBP-1c, which activates the expression of the lipogenic
genes ACC and fatty acid synthase (FASN) and enhances
glycolytic flux. The expression of lipogenic genes requires the
activation of the transcription factors SREBP-1c and
carbohydrate response element binding protein (ChREBP).
GLP-1R agonists reduce the expression of both ChREBP and
SREBP-1c genes and inhibit de novo lipogenesis in the liver
(98, 152).

PPAR transcription factors are also involved in the regulation
of lipid metabolism. GLP-1 analogs may have a key role in
increasing the expression of PPARa and suppressing PPARg
genes (153, 154).

The Role of GLP-1 in NAFLD/NASH Progression
to Fibrosis
GLP-1R agonists are approved for the treatment of T2DM, and
they have great potential in the treatment of NAFLD and NASH.
GLP-1R agonists enhance insulin secretion and improve glucose
tolerance, which leads to a decrease in lipogenesis de novo and
enhances hepatic FA oxidation and lipid export (Figure 3).
Moreover, receptor activation leads to the central regulation of
satiety and decreases in appetite and energy intake. GLP-1R
agonists alleviate metabolic inflammation and NASH by
suppressing the expression of inflammatory genes such as
TNFa, IL-6, and nuclear factor NF-kappa-B (NFkB) (155,
156). Many studies in mice show improvement and the
possibility of preventing hepatic steatosis using different GLP-
1R agonists (35, 157–161). GLP-1R agonists directly affect
Kupffer cell function and reduce the influx of macrophages
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into the liver (162). Together with dipeptidyl-peptidase 4 (DPP4)
inhibitors, they decrease not only proinflammatory but also
profibrotic mediators. Decreasing profibrotic mediators in mice
occurs via the reduction of TGF-b gene expression and other
profibrotic mediators through the stimulation of cAMP
production (151, 159, 163). Epac and PKA activation by cAMP
leads to a reduction in col1, col3, and angiotensin II expression
and to smad (TGF-b superfamily member) pathway inhibition
(164, 165).

GLP-1R Agonists in Experimental Models
Despite the fact that food intake-regulating peptides have great
potential in the treatment of metabolic diseases and NAFLD/
NASH, there is very little known about their effects on current
mouse models of NASH. Only GLP-1R agonists, primarily used
as antidiabetic/antiobesity drugs, are used as potential agents for
NAFLD/NASH treatment, as demonstrated in several studies
with mouse models. The GLP-1R agonists exenatide, liraglutide
and semaglutide are already used in clinical practice for the
treatment of T2DM and obesity. The available mouse models of
NASH address different aspects of the disease, leading to various
clinical utilities in drug discovery. The advantages and
limitations of current in vivo mouse models of NASH in view
of different targets for NASH treatment are summarized in the
review by Hansen et al. (23). The GLP-1R agonist Exendin-4 was
originally isolated from the saliva of the Gila monster. Because of
the change in the amino sequence at position 8, Exendin-4 has a
longer half-life and more stable interaction with DPP4 than
GLP-1 (148, 157). Treatment with Exendin-4 (synthetic form is
called exenatide) reduced serum glucose levels and body weight
and improved serum ALT in ob/ob mice. Exendin-4 also has a
positive effect on hepatocyte lipid metabolism. Treatment
significantly decreased hepatic lipid content and thiobarbituric
acid reactive substance concentration, which is an important
parameter of hepatic oxidative stress in NASH and NAFLD.
Moreover, Exedin-4 significantly reduced the mRNA levels of
SREBP-1c and SCD-1, parameters regulating de novo lipogenesis
in the liver, and increased the level of PPARa mRNA in ob/ob
mice (157). The results from the Trevaskis et al. study in ob/ob
and C57BL/6 mice on a HFD support the therapeutic potential of
the exendin-4 analog AC3174 in NASH and NAFLD treatment.
The analog AC3174 diminished plasma TG and ALT levels and
lipid accumulation in the liver and attenuated fibrosis (35). In db/
db mice fed an MCD diet, exendin-4 treatment attenuated
hepatic steatosis, TG and FFA content, oxidative stress and
hepatic inflammation (166).

Several studies in mice have shown that treatment with
liraglutide, a long-acting palmitoylated analog of GLP-1,
alleviates hepatic steatosis and has great potential to inhibit
NASH or NAFLD (160, 161, 167, 168). In two different NASH
mouse obesity models, an atherogenic diet model and ob/ob
mice, chronic treatment with liraglutide reduced body weight,
lowered steatosis scores and inhibited fibrosis (through a
decreased col1a1) (17). In male C57BL/6J mice fed a western
diet, liraglutide significantly improved insulin sensitivity and
prevented NASH pathology. Liraglutide improved lipid flux
between liver and adipose tissue, downregulated genes
Frontiers in Endocrinology | www.frontiersin.org 11
regulating de novo lipogenesis and increased the expression of
genes associated with b-oxidation, FA uptake and VLDL
transport (167). The administration of liraglutide in male
C57BL/6 mice fed a HFD reduced ALT and AST serum levels
and inhibited NOD-like receptor family pyrin-containing 3
inflammasome gene expression, which has a critical role in
NAFLD pathogenesis (161). Another study using (C/EBP)
homologous protein (CHOP) C57BL/6 KO mice fed an FFC
diet significantly attenuated hepatic steatosis after 4 weeks of
liraglutide treatment in WT mice and showed that CHOPs play
an important role in the protection of hepatocytes from diet-
induced ER stress (160).

GLP-1R and glucagon receptor (GLP-1R/GR) dual agonists
also have potential in the treatment of NAFLD. DIO C57BL/6
mice treated with GLP-1R/GR dual agonists showed improved
glucose metabolism and reduced food intake and weight loss. In
the liver, decreases in acetyl-CoA and malonyl-CoA were
observed, and ketogenesis was increased (169). Antiobesity
effects were not the only effects observed in C57BL/6J mice fed
a HFD treated with GLP-1R/GR dual agonists. This study
showed reduced mRNA expression of hepatic SREBP-1c and
SCD-1 and increased PPARa expression. Reduced levels of the
inflammation factors TNFa and IL-6 in plasma and of TGF-ß,
monocyte chemoattractant protein-1, matrix metalloproteinase-
9 and TNFa in the liver inhibited the development of NASH and
NAFLD (159). Moreover, a GLP-1R and GIP receptor dual
agonist attenuated NASH in C57BL/6J mice fed an atherogenic
diet, significantly decreased body and liver weight, decreased
liver TG and improved NAS, showing synergistic action
compared to monotherapy with GLP-1R agonist or GIP (170).
GHRELIN

Orexigenic peptides such as ghrelin, neuropeptide Y, agouti-related
protein, and orexins play an important role in the mechanism of
food intake (171). Ghrelin peptide is released from the stomach as
the endogenous ligand for the growth hormone secretagogue
receptor (GHSR), which stimulates growth hormone (GH)
release from the anterior pituitary gland. Ghrelin regulates food
intake, adiposity, body weight, glucose metabolism, taste sensation,
sleep modulation, brown fat thermogenesis, stress and anxiety
responses, muscle atrophy, gut motility, gastric acid secretion, and
cardiovascular function (172–174).

Ghrelin is the only known peptide with an attached FA. The
octanoylation of ghrelin is catalyzed by ghrelin-O-
acyltransferase. This modification is essential for the biological
activity of ghrelin (175). Ghrelin without the acyl group (des-acyl
ghrelin) is biologically inactive (101, 176). Des-acyl ghrelin is also
present at significant levels in both blood and stomach, but des-
acyl ghrelin can neither bind to GHSR nor exhibit GH
release (177).

Ghrelin-Activated Pathways in Hepatic
Lipid Metabolism
Ghrelin plays a complex role in hepatic metabolism and liver
diseases. On the one hand, ghrelin induces adiposity in the liver;
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on the other hand, ghrelin elicits a protective effect against
inflammation and fibrosis. Currently, there is no clear explanation
for opposite actions of ghrelin in these pathologies (178).

Central ghrelin administration leads to lipid storage in the
liver, which is independent of GH. Ghrelin promotes energy
storage to minimize negative effects in periods of food
shortage (179).

Ghrelin has a direct peripheral effect on lipogenesis in
hepatocytes. Ghrelin activates GHSR in hepatocytes, which
leads to increased TG synthesis, by increasing the expression of
lipogenesis-related genes in hepatocytes. These effects are
mediated by mammalian target of rapamycin (mTOR) –
PPARg signaling pathway activation (180). The activation of
this pathway is independent of the central stimulation of energy
intake in the hypothalamus, where activated AMPKmediates the
orexigenic action of ghrelin. Ghrelin stimulates the activity of
AMPK in the hypothalamus but inhibits AMPK activity in the
liver and adipose tissue, resulting in increased lipogenesis (181).

Other studies have shown that the tumor protein p53 is
crucial for the stimulation of lipid storage in fat and the liver
by ghrelin. Lack of p53 abolishes the stimulation of lipid storage
induced by administered ghrelin (182).

In the gastrointestinal tract, ghrelin has potent anti-
inflammatory properties. Exogenous ghrelin pretreatment
augmented the release of the anti-inflammatory cytokine
interleukin IL-10 (183) and inhibited the production of various
pro-inflammatory cytokines, such as IL-1b, IL-6, IL-8, and
TNFa (184). Furthermore, the hepatoprotective effect of
ghrelin is caused by inhibition of apoptosis and proliferation
stimulation in various cell types (185, 186).

The Role of Ghrelin in NAFLD/NASH
Progression to Fibrosis
The activation of the gastric ghrelin-brain axis is essential to
maintain biological homeostasis. The liver damage signal caused
by FA infiltration is sent to the brain and stomach via autonomic
nerve connections, which causes an increase in ghrelin release.
These signals could slow down the progression of NAFLD.
Impairment of this appetite control is necessary for NASH
pathology (187).

Low levels of acylated ghrelin in plasma are found in NASH
(188, 189). Moreover, decreased plasma ghrelin correlates with
increased immunoglobulin production that is often observed in
patients with chronic liver disease (190) and correlates with liver
inflammation (191). The most likely reason for the low ghrelin
levels in NAFLD patients is insulin resistance. Low ghrelin levels
are observed in several diseases characterized by insulin
resistance, including severe obesity (192), acromegaly (193),
hypogonadism (194), and polycystic ovary syndrome (195).
Nevertheless, the molecular mechanisms remain elusive (196).

Patients with NASH had a twofold higher concentration of
des-acyl ghrelin compared with healthy humans. Des-acyl
ghrelin also correlated with ALT, AST, TG levels, fasting
glucose, MDBs, and portal fibrosis, which are strongly
associated with the occurrence of NASH (197).

Oxidative stress and inflammation are key factors in the
development of NAFLD/NASH. Thus, the impairment of these
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processes could revert the development of NASH. The
administration of ghrelin during and after NAFLD development
reduced inflammation, apoptosis, and oxidative stress and
improved lipid metabolism in the rat liver (198). In addition to
the protective effects of ghrelin mentioned above, ghrelin also
exerts antifibrotic and hepatoprotective effects in the injured livers
of rodents (199). Antifibrotic effects can also be seen in other
tissues, such as the heart (200) and colon (201).

Exogenous and endogenous ghrelin regulates fibrogenesis in
mice and humans (199). Antifibrotic effects are caused by several
mechanisms. Ghrelin protects hepatocytes from cell death by
reducing inflammatory cells, decreasing apoptosis, and
increasing the activation of hepatoprotective signaling pathways
such as Akt phosphorylation. Ghrelin modulates inflammation by
downregulating the NFkB pathway (202). The wound-healing
response to injury is caused by decreasing oxidative stress in
livers (199). Ghrelin also reduces profibrogenic cytokine TGF-b1
and p-Smad3 expression levels that are involved in increased
deposition of fibronectin, col1 and a-SMA in liver fibrosis.
Ghrelin suppresses autophagy, thus reducing available energy
from intracellular lipid degradation (202).
PHARMACOLOGICAL THERAPIES FOR
NAFLD/NASH

NAFLD is associated with obesity, T2DM, dyslipidemia, and
metabolic syndrome. Weight loss through dietary changes and
lifestyle modifications is now the only proven effective therapy
for patients with NAFLD/NASH. Nevertheless, these approaches
are not sufficient for the treatment of fibrosis and even cirrhosis.
Pharmaceutical companies are developing new drugs for the
treatment of NASH, but no drugs have yet been approved (203,
204). The pathophysiology of NAFLD is very complex and
associated with different features, such as lipotoxicity,
inflammatory cytokines, apoptosis, and insulin resistance.
Therefore, drugs to treat NASH could target these features (203).

In patients with T2DM, the prevalence of NAFLD is 75%
(205); therefore, the use of antidiabetic drugs to improve insulin
resistance could be one approach for treatment. Metformin is an
insulin sensitizer used as a major therapy for T2DM because of
its low cost, body weight-lowering effect and safety profile (203).
Nevertheless, metformin was reported to not significantly
improve liver histology and therefore is not recommended in
the treatment of NASH (206).

Pioglitazone belongs to the thiazolidinedione family, agonists
of PPARg, and improves glucose and lipid metabolism.
Treatment with pioglitazone improved insulin sensitivity,
plasma ALT and AST levels and liver steatosis, inflammation,
and ballooning (206, 207). Pioglitazone causes some side effects,
such as body weight gain, possible bladder cancer and bone loss
in women (206). Nevertheless, risks and benefits should be
considered, as pioglitazone improves liver histology in patients
with and without T2DM with NASH.

GLP-1R agonists and DPP4 inhibitors were also investigated
as possible therapeutics for NASH treatment. Liraglutide, a stable
GLP-1 analog, improved steatosis and hepatocyte ballooning and
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slowed fibrosis progression (205, 208). On the other hand, DPP4
inhibitors delay the quick inactivation of GLP-1 in plasma.
Sitagliptin was unable to improve the fibrosis score or NAS or
to reduce liver fat after 24 weeks of therapy (209, 210).
CONCLUSIONS

A large number of mouse models could be used to study NASH
pathogenesis and its possible treatment. However, some
approaches do not coincide with human NALFD. Currently,
NASH is associated with the development of prediabetes and
metabolic syndrome with elevated ALT, AST, cholesterol, and
FFA levels.

Genetic models represent advantages in the time required and
development of concrete metabolic features associated with
NAFLD. However, these mutations are very rare in humans.
Moreover, some of these models fail to induce the metabolic
comorbidities typically observed in humans with NASH, such as
insulin resistance, obesity and dyslipidemia.

Regarding nutritional models, a large number of different
approaches, with variable fat content, glucose/fructose
enrichment or other substance additions or deficiencies, create
complicated decisions for researchers. The crucial advantage of
nutritional models is the ability to mimic human NAFLD, both
pathophysiologically and phenotypically. In contrast, a longer
period is necessary for the development of NAFLD, and a lesser
degree of pathology is observed. Nevertheless, this issue could be
overcome by the use of high glucose/fructose levels or increased
cholesterol levels in the diet.

Finally, regarding chemically induced models, toxic agents are
not pathophysiologically related to NASH disease. However,
those models could be used to enhance fibrosis and cirrhosis
leading to liver failure.

All these models should be used with caution, and their
use should be limited to clearly defining liver-specific research
and to studying the pathologic features of humanNAFLD/NASH.

It seems that anorexigenic and orexigenic peptides are
involved in the pathology of NAFLD and NASH. Leptin may
have a potential dual action in NAFLD and NASH. Leptin may
protect the liver from hepatic steatosis at the initial stage of the
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disease but also acts as an inflammatory and fibrogenic marker
when the disease progresses. Leptin deficiency can lead to hepatic
steatosis, and excess leptin can promote hepatitis and fibrosis.
The efficacy of NASH treatment with anorexigenic leptin is
questionable, similar to potential treatment with orexigenic
ghrelin. Ghrelin induces adiposity in the liver, but also ghrelin
elicits a protective effect against inflammation and fibrosis.

Pharmaceutical companies are developing new drugs for the
treatment of NAFLD and NASH; however, no drugs have been
approved yet. Because NAFLD is associated with obesity, T2DM,
dyslipidemia, and metabolic syndrome, weight loss through
dietary changes and lifestyle modifications is now the only
proven effective therapy for patients with NAFLD/NASH.
Nevertheless, these approaches are not sufficient for the
treatment of fibrosis and even cirrhosis.

Recently, GLP-1R agonists used primarily as antidiabetic or
antiobesity drugs have shown the greatest potential in the
possible treatment of NASH. GLP-1R agonists enhance insulin
secretion and improve glucose tolerance, which leads to a
decrease in lipogenesis de novo and enhances hepatic FA
oxidation and lipid export. GLP-1R agonists alleviate metabolic
inflammation and NASH by suppressing the expression of
inflammatory genes. Nevertheless, more attention should be
paid to the potential role of other anorexigenic and/or
orexigenic peptides in the pathophysiology of NAFLD and
NASH in the future, especially in relation to the treatment of
obesity and T2DM.
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120. Maletıńská L, Toma RS, Pirnik Z, Kiss A, Slaninová J, Haluzıḱ M, et al. Effect
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