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Abstract

Background: Spine operations may be indicated for treatment of diseases including vertebral injuries, de-
generative spinal conditions, disk disease, spinal misalignments, or malformations. Surgical site infection (SSI)
is a clinically important complication of spine surgery. Staphylococcus aureus, including methicillin-resistant
Staphylococcus aureus (MRSA), is a leading cause of post-spinal SSIs.
Methods: PubMed and applicable infectious disease conference proceedings were searched to identify relevant
published studies. Overall, 343 full-text publications were screened for epidemiologic, mortality, health care
resource utilization, and cost data on SSIs associated with specified spine operations.
Results: Surgical site infection rates were identified in 161 studies from North America, Europe, and Asia.
Pooled average SSI and S. aureus SSI rates for spine surgery were 1.9% (median, 3.3%; range, 0.1%–22.6%)
and 1.0% (median, 2.0%; range, 0.02%–10.0%). Pooled average contribution of S. aureus infections to spinal
SSIs was 49.3% (median, 50.0%; range, 16.7%–100%). Pooled average proportion of S. aureus SSIs attrib-
utable to MRSA was 37.9% (median, 42.5%; range, 0%–100%). Instrumented spinal fusion had the highest
pooled average SSI rate (3.8%), followed by spinal decompression (1.8%) and spinal fusion (1.6%). The SSI-
related mortality rate among spine surgical patients ranged from 1.1%–2.3% (three studies). All studies
comparing SSI and control cohorts reported longer hospital stays for patients with SSIs. Pooled average SSI-
associated re-admission rate occurring within 30 d from discharge ranged from 20% to 100% (four studies).
Pooled average SSI-related re-operation rate was 67.1% (median, 100%; range, 33.5%–100%). According to
two studies reporting direct costs, spine surgical patients incur approximately double the health care costs when
they develop an SSI.
Conclusions: Available published studies demonstrate a clinically important burden of SSIs related to spine
operations and the substantial contribution of S. aureus (including MRSA). Preventive strategies aimed spe-
cifically at S. aureus SSIs could reduce health care costs and improve patient outcomes for spine operations.
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site infection

Surgical site infections (SSIs) are potential compli-
cations occurring after surgery. Despite the availability of

prophylactic antibiotics and aseptic technique, they remain a
cause for concern [1,2]. Surgical site infections are the sec-
ond most common health care-associated infection in the

United States, representing 22% of all such infections [3].
Although SSIs are considered a preventable post-operative
outcome [4], according to the published literature on spine
opeations, SSI rates have been reported to range from 0.5% to
20% [2,5–9].
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The leading causal agent of SSI after spine operations is
Staphylococcus aureus [2], with several studies reporting that
the pathogen was responsible for 41% to 90% of spinal SSIs
[6,10–15]. The type of spine surgical procedure impacts SSI
rates [8]. Instrumentation has become an integral component
of spine operations for the treatment of spinal abnormalities
[5]. According to one of the largest studies investigating SSI
rates after spine operations, instrumentation increases the rate
of post-operative infections [16] by up to 28% [8]; this is
attributed to increased exposure of the wound to air, soft
tissue dissection, and muscle/skin retraction [5]. This same
study also reported a 33% greater rate of SSI after spinal
fusion compared with procedures without fusion [8].

The repercussions of SSIs include prolonged hospitaliza-
tion, increased morbidity, worse long-term patient outcomes
[5], and greater direct and indirect costs [4]. The mounting
pressure to manage health care resource utilization and rising
health care costs has resulted in the downsizing of reim-
bursement for the treatment of preventable complications [3]
such as SSIs.

Current evidence-based clinical guidelines established by
the North American Spine Society (NASS) include the sug-
gested use of pre-operative prophylactic antibiotics to de-
crease infection rates in patients undergoing spine surgery
[1]. Prophylactic antibiotics are also recommended to reduce
SSIs after uninstrumented lumbar spine surgery and may be
considered after instrumented spine surgery [1]. However, a
consensus statement issued by NASS acknowledged that
despite the availability of prophylaxis, SSIs still occur after
spine surgery [1]. In addition to the sub-optimal effectiveness
of prophylactic antibiotics, adherence by health care pro-
fessionals to the available guidelines may be an issue. A
cross-sectional survey of 163 U.S. hospitals highlighted that
guidelines regarding vancomycin dosing are not applied
universally [17].

The objective of this study was to review the burden of
SSIs among patients who have undergone selected spine
operations and the contribution of Staphylococcus aureus.
We report recent epidemiology of these specific SSIs and
their associated patient outcomes, health care resource use,
and costs.

Patients and Methods

Study design

The focus of this study was on the following spine surgical
procedures: Spinal fusion with or without instrumentation
and spinal decompression (including laminotomy and lami-
nectomy). An extensive literature search within the time
period August 2008 to May 2015 was performed using the
PubMed database. Language was limited to English. The
searches were conducted with the following primary key-
words: (Spinal surgery OR spine surgery OR lumbar spine
OR spine fusion OR spinal fusion OR lumbar fusion OR
instrumentation OR instrumented fusion OR decompression
OR laminectomy OR laminotomy) AND (post-surgical in-
fection OR surgical site infection OR post-operative infection
OR deep surgical site infection OR Staphylococcus aureus
OR S. aureus OR MRSA [methicillin-resistant Staphylo-
coccus aureus] OR MSSA [methicillin-sensitive Staphylo-
coccus aureus] OR methicillin resistance) in combination
with each of the following groups of search terms (where

[TIAB] refers to the presence of the search term in the ‘‘title
or abstract’’ and is used to focus the search):

1. (epidemiology OR epidemiological OR prevalence OR
incidence)

2. (sequelae[TIAB] OR morbidity[TIAB] OR complica-
tion[TIAB] OR disability[TIAB] OR quality of life
[TIAB] OR adverse event[TIAB] OR revision[TIAB]
OR mortality[TIAB] OR death[TIAB])

3. (re-operation OR re-admission OR recurrence)
4. (current treatment OR clinical practice OR current

practice OR clinical treatment)
5. (burden[TIAB] OR resource[TIAB] OR hospitaliza-

tion[TIAB] OR hospital[TIAB])
6. (cost OR costs OR economic OR economical OR

financial)*
7. (guideline OR practice guideline)*

Because of limited available studies relevant to searches 6
and 7, the timeframe for these searches was expanded five
years to include the time period August 2003 to May 2015.
Criteria for exclusion throughout were randomized con-
trolled trials, case reports, commentaries, editorials, news,
letters, and studies with small populations (n < 10). Inter-
ventional studies that evaluated the effects of a given anti-
biotic treatment specifically (e.g., intra-wound vancomycin
powder) compared with an untreated control group were
excluded. However, studies that used routine or standard of
care antibiotic prophylaxis, which may or may not have been
indicated in the study methodology, were included.

Available conference proceedings from the Infectious
Diseases Society of America (IDSA), Surgical Infection
Society (SIS), and Interscience Conference of Antimicrobial
Agents and Chemotherapy (ICAAC) from 2011 to 2015 were
searched manually for spine operations of interest and related
infections.

Data extraction and analysis

Data extracted included country, study type, year of study,
duration, and population for all outcomes of interest. Some
studies have more than one study cohort (i.e., total number of
study cohorts used to evaluate a given outcome of interest
may exceed the total number of studies). Prevalence data
were categorized as SSI (percentage of procedures that de-
veloped SSIs), S. aureus SSI (percentage of procedures that
developed S. aureus SSIs), and MRSA SSI rates (percentage
of S. aureus SSIs attributable to MRSA). Not all studies
evaluating prevalence data reported all outcomes of interest
(i.e., number of SSIs, S. aureus SSIs, and MRSA infections).
The type of infection (i.e., acute or chronic) was also ex-
tracted when available, according to the length of time of
development after the index procedure. The mortality rate
was calculated as a percentage of patients who died after
developing an SSI after spine surgery. Health care resource
utilization (hospitalization) was reported as length of stay
(LOS). Re-admission and re-operation rates were reported as
percentages of procedures that developed SSIs. Costing data
were presented as the ratio between health care costs of pa-
tients undergoing spine surgery complicated by SSIs and
those of patients without SSIs. The data were synthesized
using descriptive statistics, including pooled averages, me-
dians, ranges, and ratios, where appropriate.
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Results

Search results

A total of 3,095 records were identified from the PubMed
database search described previously and another two from
conference abstracts (Fig. 1). After elimination of duplicates,
the titles and abstracts of 3,082 records were screened ac-
cording to exclusion criteria, yielding 343 references for full-
text screening. A final 193 studies were deemed relevant for
inclusion in this review.

Surgical site infection rates

Of the 171 available studies reporting epidemiology data,
161 evaluated SSI rates among 425,180 patients who un-
derwent spine operations of interest (Fig. 2) [6,7,9–15,18–
169]. The pooled average SSI rate was calculated to be 1.9%
(median, 3.3%; range, 0.1%–22.6%) based on 196 different
study cohorts (some studies had more than one cohort).
Among these studies, 29 classified SSIs according to the time
of onset following the index procedure [11,13,15,20,22,
25,32,37,54,56,66,78,82–84,86,95,117,132,142,144,147,154,
156,160,164,167,170,171]. The majority of studies used
the more common Tsukayama et al. [172] classification
system, in which acute (early) infections occur within one
month of the index procedure and chronic (late) infections
occur more than one month after the index procedure. The
pooled average early SSI rate among 14,517 patients was
2.1% (median, 2.6%; range, 0.5%–16.7%) [11,13,20,22,
25,32,78,82–84,86,142,147,156,164,167,170,171] compared
with 0.8% (median, 0.9%; range, 0.1%–4.7%) for pooled
average late SSI rate among 12,238 patients [11,13,54,
83,167,171]. In terms of specific types of spine operations,
52 studies evaluated SSI rates among patients who under-

went spinal fusion [9,10,14,15,21,24,27,30,33,42,43,46,52,
56,58,62,63,68–70,72,75,76,92,103,105,107–109,111,113–
115,119,120,123,125,128,133,139,141–144,146,150,151,157,
161,162,164,173]. The pooled average SSI rate was calcu-
lated to be 1.6% (median, 2.8%; range, 0.2%–18.3%) based
on 64 cohorts comprising a total of 212,639 patients. Patients
who underwent instrumented spinal fusion procedures were
evaluated for SSIs in 35 identified studies [6,12,25,28,35,
37,39,48,50,61,67,74,77,78,84,85,90,93,97,98,101,112,121,
122,126,127,132,134,135,137,148,154,156,160,174]. The
pooled average SSI rate was calculated to be 3.8% (median,
4.2%; range, 0.4%–20%) based on 39 cohorts with a total of
28,628 patients. Furthermore, we identified six studies that
evaluated SSI rates among patients who underwent lami-
nectomy [10,21,65,80,82,102]. The pooled average SSI rate
was calculated to be 1% (median, 2.8%; range, 0.9%–9.1%)
based on seven cohorts with a total of 26,552 patients. Seven
studies were identified that evaluated SSI rates among pa-
tients who underwent spinal decompression [26,40,41,66,
79,124,147]. The pooled average SSI rate was calculated to
be 1.8% (median, 2.4%; range, 1%–6.7%) based on nine
cohorts with a total of 8,057 patients.

Staphylococcus aureus rates

A total of 39 studies evaluating S. aureus SSI rates among
patients who underwent spine operations of interest were
included in this study (Table 1A) [6,7,10–15,32,37,45,47,
48,52,53,62,77,84,90,91,101,103,111–113,117,122,126,129,
132,137,138,140,146,155,160,164,167,173]. The pooled av-
erage S. aureus SSI rate was calculated to be 1% (median,
2%; range, 0.02%–10%) based on 42 cohorts evaluating a
total of 112,135 patients. Among eight of these studies, which
categorized S. aureus SSIs according to time of onset

FIG. 1. PRISMA diagram.
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following index procedure [32,37,84,101,117,132,164,167],
the pooled average early (less than one month) S. aureus SSI
rate was 2.5% (median, 2.8%; range, 1.4%–5.4%) [32,84,
164,167] among 1,017 patients compared with a single study
with 737 patients reporting a late (more than one month) S.
aureus SSI rate of 0.4% [167]. An assessment of the S. aureus
SSI rates after specific types of spine operations was only
possible for spinal fusion and instrumented spinal fusion
because of availability of data. On the basis of nine studies
with nine cohorts consisting of a total of 9,604 patients who
underwent spinal fusion, the calculated pooled average rate
was 1.8% (median, 2.6%; range, 1.1%–8.3%) [14,15,52,62,
103,113,146,164,173]. According to 13 studies consisting of
14 cohorts with a total of 14,835 patients who underwent
instrumented spinal fusion, the calculated pooled average
rate was 1.4% (median, 2%; range, 0.1%–10%) [6,37,48,
77,84,90,101,112,122,126,132,137,160]. The pooled aver-
age contribution of S. aureus infections to spinal SSIs was
calculated to be 49.3% (median, 50%; range, 16.7%–100%;
2,272 SSIs) [6,7,10–15,32,37,45,47,48,52,53,62,77,84,90,

91,101,103,111–113,117,122,126,129,132,137,138,140,146,
155,160,164,167,173].

Methicillin-resistant Staphylococcus aureus rates

There were 30 studies that assessed the proportion of S.
aureus SSIs after spine operations of interest that were at-
tributed to MRSA (Table 1B) [6,10–14,22,25,32,37,45,53,
62,84,90,111,113,117,122,126,129,137,138,146,155,160,164,
167,175,176]. The pooled average proportion of S. aureus
SSIs attributable to MRSA was calculated to be 37.9% based
on 32 cohorts with a total of 1,071 patients experiencing S.
aureus SSIs (median, 42.5%). According to seven studies re-
porting early MRSA (less than one month), this proportion was
slightly greater at 52.4% (median, 100%) among a total of
42 patients experiencing S. aureus SSIs [22,25,32,84,90,164,
167]. A single study investigating involvement of MRSA in
late (more than one month) SSI found that it was not present in
the three patients experiencing S. aureus SSIs [167]. On the
basis of six studies evaluating patients who underwent spinal

FIG. 2. Pooled average surgical site infection (SSI) rates according to category of spine surgery.

Table 1A. Pooled Average and Median Staphylococcus aureus Surgical Site Infection

Rates among Patients Who Underwent Spine Operations

Type of spine operation

Total number
of studies

(total number
of cohorts)

Total number
of patients who

underwent
spine operations

Pooled average
S. aureus SSI rate

(% of spine
surgical patients)

Median S. aureus
SSI rate (% of spine

surgical patients) Range

All types 39 (42) 112,135 1.0 2.0 0.02–10.0
Early infectiona 4 ( 5) 1,017 2.5 2.8 1.4 – 5.4
Late infectiona 1 ( 1) 737 0.4 0.4 NA

Spinal fusion 9 ( 9) 9,604 1.8 2.6 1.1 – 8.3
Instrumented spinal fusion 13 (14) 14,835 1.4 2.0 0.1 –10.0

aNot all studies classified S. aureus infections as early or late according to the Tsukayama et al.170 classification system.
SSI = surgical site infection; NA = not applicable for a single study.
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fusion, this proportion was calculated to be 24.6% among a
total of 175 patients experiencing S. aureus SSIs (median,
29.4%) [14,62,113,146,164,175]. Furthermore, according to
10 studies with patients who underwent instrumented spinal
fusion, this proportion was calculated to be 35.5% among a
total of 166 patients experiencing S. aureus SSIs (median,
38.8%) [6,25,37,84,90,122,126,137,160,176].

Mortality

In severe cases, mortality is a potential complication of
spinal SSIs. We identified four studies that reported SSI-
related mortality data among patients who underwent spine
operations of interest. A large prospective U.S. study of
24,774 veterans who had spine surgery for fusion, decom-
pression, or instrumentation reported a 30-d mortality rate of
1.06% among patients who developed SSI compared with
0.5% among those who had no SSI [169]. In a large retro-
spective Japanese study of 7,178 patients who had spine
surgery, the mortality rate was reported to be 2.2% among
those who developed SSIs [13]. Similarly, a relatively
smaller retrospective Spanish study of 481 patients who un-
derwent posterior spinal fusion and instrumentation reported
a mortality rate of 2.3% among patients who developed deep
SSIs [97]. Last, a retrospective analysis of data from a Jap-
anese nationwide administrative inpatient database reported
that among 465 patients who underwent spinal fusion surgery
for atlantoaxial subluxation and had rheumatoid arthritis, the
in-hospital mortality rate was 6.7% among patients who de-
veloped SSIs [46]. None of the patients without rheumatoid
arthritis who went on to develop SSIs died, suggesting that
patients with comorbidities may have a greater risk of SSI-
related complications.

Health care resource utilization

Surgical site infections are a relatively frequent source of
morbidity, often requiring extended hospitalizations, pro-
longed antibiotic treatment, and additional surgical proce-
dures [7]. These factors may contribute to an increased
burden on health care systems. Six studies assessing hospital
resource utilization as LOS by patients developing SSIs after
select spine operations of interest were included in this study
[11,35,53,146,169,177]. Three of these studies compared
mean LOS between patients with SSIs and those without SSIs
(Fig. 3); two of these studies included patients who under-

went various types of spine surgical procedures [11,169],
whereas the remaining included patients who underwent
spinal fusion [146]. This did not make it possible to make
comparisons of health care resource use attributed to SSIs
across types of spine operations, but in general, patients who
developed SSIs had a longer LOS (range, 7.1–19.3 d) com-
pared with those with no SSI (range, 4.0–9.3 d), with two of
the studies reporting statistical significance [11,146]. The
calculated ratios of LOS among patients with SSIs versus
those without ranged from 1.5 to 2.6.

Unplanned hospital re-admissions, such as those caused by
SSIs developing after spine operations, incur a substantial
financial burden on private and public payers, hospitals, and
patients themselves [124]. We identified 10 studies evaluat-
ing re-admission rates caused by SSIs developing after spine
operations of interest [52,64,69,90,118,124,156,177–179].
Based on four studies with a total of 135 procedures that
developed SSIs, the 30-day SSI-related re-admission rate
ranged from 20% to 100% [52,69,124,156]. Re-operation
rates resulting from SSIs developing after select spine oper-
ations were reported by 26 studies (Fig. 4) [11,13,20,37–
39,47,48,58,72,76,78,95,97,100,106,111,112,117,121,131,132,
142,147,169,173]. The pooled average re-operation rate for
all identified spine surgery-related SSIs was calculated to be
67.1% (median, 100%; range, 33.5%–100%) among 1,704
procedures that developed SSIs. This rate is lower than that
for instrumented spinal fusion, which was calculated to be
89.2% (median, 100%; range, 56.8%–100%) among 148
procedures that developed SSIs [37,39,48,78,97,112,121,
132] and that for spinal fusion, which was calculated to be at
86.4% (median, 100%; range, 50%–100%) among 22 pro-
cedures that developed SSIs [58,72,76,111,142,173]. How-
ever, the smaller denominators should be considered when
comparing the re-operation rates by type of surgery with the
overall rate (i.e., 148 and 22 versus 1,704).

Health care costs

Costs associated with SSIs resulting from spine operations
of interest were reported by one Japanese [53] and five U.S.
studies [9,180–183]. Only two studies reported costs related
to SSIs and compared them with costs associated with non-
SSI–infected patients [9,180]. Both were U.S. studies, re-
porting statistically significantly greater costs for patients
who develop SSIs. Among patients undergoing revision

Table 1B. Pooled Average and Median Proportion of Staphylococuss aureus Surgical Site Infections

Attributed to Methicillin Resistance among Patients Who Underwent Spine Operations

Type of spine operation

Total number
of studies

(total number
of cohorts)

Total number
of patients who

developed S. aureus
SSIs after spine

operations

Pooled average
proportion of
S. aureus SSIs
attributed to

methicillin resistance

Median proportion
of S. aureus SSIs

attributed to methicillin
resistance Range

All types 30 (32) 1,071 37.9 42.5 0–100
Early infectiona 7 ( 8) 42 52.4 100.0 11.8–100
Late infectiona 1 ( 1) 3 0 0 NA

Spinal fusion 6 ( 6) 175 24.6 29.4 3.8– 54.6
Instrumented spinal fusion 10 (10) 166 35.5 38.8 0–100

aNot all studies classified S. aureus infections as early or late according to the Tsukayama et al.170 classification system.
SSIs = surgical site infections; NA = not applicable for a single study.
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instrumented lumbar fusion, the mean two-year direct costs
were reported as $57,513 – $8,253 for those with SSIs com-
pared with $32,067 – $6,959 for the control group (p = 0.002)
[180]. Among patients who underwent sub-axial dorsal cer-
vical spinal fusion, direct health care costs were reported to
be $16,970 – $4,375 for patients with an SSI compared with
$7,658 – $2,625 for those without an infection (p < 0.0001)
[9]. Furthermore, when indirect costs were also taken into
consideration and the costs adjusted for inflation to 2013
values in the published study, the total cost for the infection
cohort was calculated to be $21,778 – $5,625 for the infection
cohort (versus $9,159 – $4,087 for the non-infection cohort)
[9]. Both studies demonstrate that spine surgical patients

incur approximately double the health care costs when they
develop an SSI.

Discussion

There has been an exponential increase in the number of
spine surgical procedures in the United States in the past two
decades [70]. It may be expected that the number of post-
operative complications including SSIs will also increase.
However, SSIs are believed to be largely avoidable patient
outcomes. The development of SSIs is perceived to reflect the
quality of care provided by a given health care institution and
can result in a negative grading and financial penalties [184].
Surgical site infections have become the target of cost re-
duction measures by an increasingly burdened health care
system [70]. The objective of this review was to identify and
characterize the SSI rate among patients undergoing spine
operations of interest, describe the contribution of S. aureus,
and evaluate the resulting clinical and economic impact.

Based on 161 studies included, the pooled average SSI rate
among spine operations of interest was calculated to be 1.9%,
which is within the somewhat wide range reported in the
literature [5]. When assessed by type of spine surgery, SSI
rate for instrumented spinal fusion was higher than for spinal
fusion and spinal decompression. This coincides with pre-
viously published reports that suggest that the higher SSI rate
associated with this type of spine surgical procedure is partly
attributed to its greater complexity (e.g., longer duration of
surgical procedure, increased need for instrumentation, re-
tractor usage, and soft tissue dissection) [5]. Furthermore,
when evaluating the time of onset of SSI after the index spine
surgical procedure, the higher pooled average rate for early
versus late infections (2.1% versus 0.8%) suggests that the
first 30 d are the most crucial period for acquiring SSIs. The
pooled average S. aureus SSI rate was calculated to be 1%,
which is a little more than half the pooled average SSI rate in
this study. Furthermore, the pooled average contribution of

FIG. 4. Pooled average re-operation rates caused by sur-
gical site infection (SSI) among patients who underwent
select spine operations and developed SSIs.

FIG. 3. Mean length of stay for patients who underwent spine operations of interest and did or did not develop surgical
site infections.
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S. aureus infections to spinal SSIs was calculated to be 49.3%.
This agrees with S. aureus reported as being the major
pathogen responsible for SSIs.

The SSI rates among spine surgical patients are not neg-
ligible, as supported by this study. Furthermore, when they do
develop, their management is challenging and frequently
require additional health care resources [7] to prevent detri-
mental sequelae (e.g., acute neurologic decompensation,
epidural abscess, death) [9]. In this review, the SSI-related
mortality rates among patients who underwent spine surgery
ranged from 1.06% to 2.3% based on three studies. Thus,
treatment for SSI needs to be aggressive and often necessi-
tates surgical debridement and antibiotic therapy [9]. In our
review, there were too few studies on a given type of spine
surgical procedure to make comparisons, however, the de-
velopment of SSIs resulted consistently in noticeably longer
LOS. In situations in which SSIs develop after discharge,
patients frequently need to be re-admitted if they require a
medical intervention. The 30-d re-admission rate in this study
ranged from 0.5% to 4.8%. Surgical site infection-related re-
admissions, including among patients who underwent spine
surgery, are yet another source of costly burden on the health
care system [124]. They are considered a key undesirable
outcome by the World Health Organization [185] and are the
major target for cost reduction measures via mandates of the
Patient Protection and Accountable Care Act of 2010 [124].
In the event that a further surgical intervention is required
upon re-admission, spine surgical patients with SSIs will
additionally impact the re-operation rate. The pooled average
SSI-related re-operation rate for spine operations of interest
was calculated to be 67.1% in this study.

Limitations to this study should be noted. The majority of
studies identified were from North America (predominantly
the United States), Europe, and Asia. The paucity of data
reporting SSI rates and their associated complications among
spine surgical patients from other geographic regions in-
cluding South America and Africa highlights an important
gap in the published literature in this field. Incomplete or
unclear study methodologies often prevented a more in-depth
analysis (e.g., standard error) of SSI rates, necessitating
comparisons that were restricted to crude analysis (e.g.,
pooled averages and ratios). It is also noteworthy that not all
studies evaluating prevalence data reported all the outcomes
of interest for this literature review (e.g., a study reporting S.
aureus SSIs may not necessarily report total SSIs). Similarly,
not all studies classified SSIs as late or early according to the
definition used in this study. This explains why there were
more studies reporting early infections among MRSA in-
fections (n = 9) than among S. aureus infections (n = 4). In the
case of health care resource utilization, different outcome
measures were often reported for hospitalizations and the
most common outcome (i.e., LOS) was chosen to make
meaningful comparison across studies that included a control
group with no SSIs. Direct comparisons of costs were not
feasible due to differences in years of costing and currency.
Furthermore, the absence of definitions for acute (early) and
chronic (late) SSIs as time of onset after index surgical pro-
cedure restricted comparisons across studies that used a
common definition.

Another key limitation is the inconsistency in the reporting
of the use of standard of care, which usually consists of pre-
operative systemic antibiotic prophylaxis. Several studies did

not state specifically its use in their study population; because
it has been reported that the administration of pre- and post-
operative prophylactic antibiotics is not always recorded by
institutions [8] and that its application can vary [160], a
possible explanation is provided for the large range of SSI
rates reported across studies in this review.

The persistence of SSIs after spine operations despite the
availability of prophylactic antibiotics [1] highlights the need
for an alternate strategy that focuses on prevention. Fur-
thermore, specifically targeting the more common pathogen,
S. aureus, may reduce avoidable SSI-related health care costs
and improve patient outcomes.
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