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1  | INTRODUC TION

Temperature is a crucial factor determining the rates of evolutionary 
processes that drive biodiversity patterns including the latitudinal di-
versity gradient (Allen & Gillooly, 2006; Allen, Gillooly, & Brown, 2007; 
Brown, 2013; Clarke & Gaston, 2006; Connell & Orias, 1964; 
Dobzhansky, 1950; Fischer, 1960; Gaston, 2000; Jablonski, Roy, & 
Valentine, 2006; McKenna & Farrell, 2006; Pianka, 1966; Rohde, 1992; 
Stehli, Douglas, & Newell, 1969). Mechanisms underlying the tem-
perature effects on evolutionary speed fall into two categories 
(Figure 1). The ecological effects, involving indirect consequences 
of temperature, are mediated by changes in habitat productivity and 
the strength or complexity of biotic interactions. Higher tempera-
tures often, though not always, increase ecosystem productivity 

(Allen et al., 2007; Fischer, 1960; Gaston, 2000; Rohde, 1992), which 
would lead to larger population sizes and thus an increase of muta-
tional supply and a decrease of the importance of drift relative to se-
lection (Gillespie, 1998). Moreover, greater productivity usually leads 
to more intense and complex biotic interactions, both within and be-
tween species (Abrams, 1995; Harpole & Tilman, 2007; Huston, 1979; 
Rosenzweig, 1995), and the stronger biotic interactions may often cre-
ate more opportunities for fluctuating selection, resulting in faster evo-
lution (Bell, 2008; Brown, 2013; Connell & Orias, 1964; Rohde, 1992; 
Thompson, 2005; Van Valen, 1973). Those ecological effects may often, 
but not always, lead to a positive temperature–evolutionary speed re-
lationship (Connell & Orias, 1964; Dobzhansky, 1950; Dowle, Morgan-
Richards, & Trewick, 2013; Fischer, 1960; Pianka, 1966; Schemske, 
Mittelbach, Cornell, Sobel, & Roy, 2009; Vazquez & Stevens, 2004).
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Abstract
Temperature determines the rates of all biochemical and biophysical processes, and 
is also believed to be a key driver of macroevolutionary patterns. It is suggested that 
physiological constraints at low temperatures may diminish the fitness advantages 
of otherwise beneficial mutations; by contrast, relatively high, benign, temperatures 
allow beneficial mutations to efficiently show their phenotypic effects. To experi-
mentally test this “mutational effects” mechanism, we examined the fitness effects 
of mutations across a temperature gradient using bacterial genotypes from the early 
stage of a mutation accumulation experiment with Escherichia coli. While the inci-
dence of beneficial mutations did not significantly change across environmental tem-
peratures, the number of mutations that conferred strong beneficial fitness effects 
was greater at higher temperatures. The results therefore support the hypothesis 
that warmer temperatures increase the chance and magnitude of positive selection, 
with implications for explaining the geographic patterns in evolutionary rates and 
understanding contemporary evolution under global warming.
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Meanwhile, the more direct, physiological, consequences of 
increased temperatures may have consistently positive effects on 
the rate of evolution (Figure 1). For example, higher temperatures 
(within the normal ranges for organisms) can shorten generation 
times (Gillooly, Charnov, West, Savage, & Brown, 2002; Martin & 
Palumbi, 1993; Rohde, 1992) and elevate mutation rates (Chu et al., 
2018; Gillooly, Allen, West, & Brown, 2005; Martin & Palumbi, 1993; 
Ryan & Kiritani, 1959; Zuckerkandl & Pauling, 1965). It has also been 
argued that warmer temperatures may speed natural selection, most 
likely by affecting the fitness effects of mutations (Fischer, 1960). 
However, this “mutational effects” hypothesis has been largely over-
looked; and empirical evidence is lacking.

Fischer (1960) proposed that the fact warmer environments allow-
ing a larger range of physiological and structural variants to survive may 
lead to faster natural selection. In other words, Fischer envisioned a sce-
nario that lower temperatures render the otherwise beneficial mutations 
to become deleterious, reducing the availability of beneficial mutations. 
We may also imagine another scenario that lower temperatures simply 
reduce the size of fitness effects of beneficial mutations. The tempera-
ture influences on mutational effects may arise naturally because of 
the ubiquitous effects of temperature on biochemical and biophysical 
processes that life activities depend on, for example enzyme reaction, 
protein synthesis and ligand-binding processes (DePristo, Weinreich, 
& Hartl, 2005; Echave & Wilke, 2017; Hochachka & Somero, 2002; 
Malerba & Marshall, 2019; Padfield, Yvon-Durocher, Buckling, Jennings, 
& Yvon-Durocher, 2016; Schaum, Buckling, Smirnoff, Studholme, & 
Yvon-Durocher, 2018; Vacca et al., 2004). Low temperatures could 
lead to strong constraints on many, if not all, physiological functions. 
Therefore, a mutation that improves a specific biological function may 
likely fail to improve the overall growth performance due to the lim-
itation of other functions, or even reduce organism growth if it incurs 

certain fitness costs. By contrast, the fitness of an organism at higher, 
relatively benign, temperatures may be limited by a smaller number of 
physiological constraints; hence, the potentially beneficial mutations 
would have greater chances to actually confer the fitness benefits. 
Note that very high temperatures that are stressful for organisms may 
instead allow a smaller range of mutations to survive and decrease the 
likelihood of beneficial mutations, where protein stability but not the 
rates of physiological processes becomes the major determinant of or-
ganism growth performance (Berger, Stangberg, & Walters, 2018; Chen 
& Shakhnovich, 2010; Dandage et al., 2018).

The present study experimentally tests the hypothesis that warmer 
temperatures enhance beneficial mutation effects. This question has 
been poorly understood, while previous research on the temperature 
dependence of mutational effects usually focused on deleterious mu-
tations and the influences of stressful thermal conditions (Baer et al., 
2006; Bank, Hietpas, Wong, Bolon, & Jensen, 2014; Berger et al., 
2018; Dandage et al., 2018; Goho & Bell, 2000; Trindade, Sousa, & 
Gordo, 2012). Positive selection which drives long-term adaptive evo-
lution depends on the occurrence of beneficial mutations, and natural 
populations are typically located in benignly hot and modestly cold 
environments (Brown, 2013; Fischer, 1960; Rohde, 1992). Therefore, 
a better understanding of how normal range temperatures affect ben-
eficial mutation effects would be crucial.

2  | MATERIAL S AND METHODS

2.1 | Mutation accumulation

Mutation accumulation (MA) experiments have long been used 
for studying the fitness consequences of spontaneous mutations. 

F I G U R E  1   A summary of possible mechanisms through which temperature can affect evolutionary speed
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MA experiments with bacteria involve propagating clonal popula-
tions through repeated single-individual bottlenecks, during which 
the effective population size is extremely low, and thus, selection is 
weak relative to drift. It is expected that all mutations present in a 
population, except lethal ones, may reach fixation in a nearly neutral 
fashion (Baer et al., 2006; Eyre-Walker & Keightley, 2007; Halligan & 
Keightley, 2009; Kibota & Lynch, 1996; Kondrashov & Houle, 1994; 
Morgan, Ness, Keightley, & Colegrave, 2014; Shewaramani et al., 
2017; Szafraniec, Borts, & Korona, 2001). While the fitness effects of 
total mutations would be deleterious in the long run as most sponta-
neous mutations would be detrimental, short-term experiments may 
obtain MA lines with fitness gains, reflecting the occurrence of bene-
ficial mutations (Dickinson, 2008; Trindade, Perfeito, & Gordo, 2010).

Our MA experiment was conducted with the bacterial strain 
Escherichia coli B REL606 mutS, which is a mutator derivative of the 
wild-type strain. This strain was constructed by P1 transduction 
of a disrupted allele of mutS, mutS::Tn5, into REL606 (Siegel, Wain, 
Meltzer, Binion, & Steinberg, 1982). The mutS protein is involved in 
the mismatch repair system by recognizing and binding to mispaired 
nucleotides. A total of 60 MA lines went through 30 bottlenecks 
at three temperatures, 25, 28 and 37°C, with 20 replicates at each 
temperature (Chu et al., 2018). In the present study, bacterial geno-
types from bottleneck 10 of all the 60 MA lines were investigated. 
Here, we did not use genotypes from longer periods of MA because 
we were concerned that fitness effects of any beneficial mutations 
would be masked by the increasing numbers of accumulated dele-
terious mutations (Long, Paixão, Azevedo, & Zufall, 2013; Trindade 
et al., 2010; Vassilieva, Hook, & Lynch, 2000). Based on previous MA 
experiments (Dickinson, 2008; Trindade et al., 2010), we expected 
that, with a total of 60 bacterial genotypes from the very early stage 
of our MA experiment, more than 10 genotypes may show fitness 
gain relative to the ancestral strain.

2.2 | Fitness assays

The fitness of each of the 60 MA line and the ancestor, relative to 
a reference bacterial strain (an Ara + revertant from the ancestral 
strain), was measured via head-to-head competition assays (Lenski, 
Rose, Simpson, & Tadler, 1991). The assays were carried out across six 
temperatures, 21, 25, 29, 33, 37 and 41°C. These temperatures cov-
ered the normal thermal range of our study bacterial strain, which had 
a lower and upper temperature limits of ~ 19 and ~42.2°C, respec-
tively (Lenski & Bennett, 1993; Mongold, Bennett, & Lenski, 1996). 
Cultures were grown in 4 ml of LB Miller broth (in 50 ml centrifuge 
tubes), with ~400 rpm shaking. For each assay, the two competitors 
were first separately grown overnight at 37°C, 1% of which was trans-
ferred to fresh medium and grown for 24 hr at each assay temperature 
for acclimation. Then, the two competitors were added together into 
a single fresh microcosm (0.02 ml of culture from each), grown in com-
petition for 24 hr at each assay temperature (all cultures could reach 
a stationary growth phase within the 24 hr of growth, undergoing 
approximately 6.6 generations, regardless of the assay temperature). 

The initial and final densities during the course of competition were 
measured by plating culture dilutions on TA indicator agar plates, 
where the tested (Ara-) and the reference (Ara+) strains were dis-
tinguished as red and white colonies, respectively. Relative fitness 
of each tested genotype against the reference strain was estimated 
from the Malthusian parameters, W = mtested/mreference, where m was 
calculated as ln (Nf/N0) with N0 and Nf being the relevant initial and 
final densities, respectively. The fitness of each MA genotype relative 
to the ancestor was calculated as the difference between the two, 
analogous to a selection coefficient: WMA–Wancestor (Lopez-Pascua & 
Buckling, 2008). Each assay was replicated six times, and the mean 
value for each assay was used in the subsequent analysis.

2.3 | Data analyses

We examined several properties of the fitness distributions at every 
assay temperature, including mean values, standard deviation val-
ues, proportion of beneficial mutations (fitness > 0) and proportion 
of strong-effect beneficial mutations (fitness > 0.05). Generalized 
linear models were used for analysing the temperature depend-
ences of those distribution properties, with temperature included as 
a continuous explanatory variable. Normal errors were used for the 
analysis of mean and standard deviation values; binomial/quasibino-
mial errors were used for proportional data, where bound vectors of 
counts were included as the response variable (e.g. “cbind (count of 
fitness > 0, 60—(count of fitness > 0))” as the response variable for 
the analysis of proportion of MA lines with fitness > 0). The “Anova” 
function provided by the package “car” was used to test for the sig-
nificance of effects of the explanatory variable in the generalized 
linear models (F-test was used instead of chi-square test under con-
ditions of overdispersion). Furthermore, models with both a linear 
term and a quadratic term of temperature were also performed to 
test whether there is potential stress across assay environments. 
Statistical analyses were performed in R 3.5.2.

3  | RESULTS AND DISCUSSION

3.1 | Distribution of fitness effects across 
temperatures

Fitness of a total of 60 MA lines of E. coli relative to their ancestral 
strain was measured across six temperatures. Fitness assays were 
performed in a rich nutrient medium with aeration, and population 
sizes in all assay environments were fairly large (>108 cells/ml). In 
such assay environments, temperature could have directly affected 
bacterial growth, while its indirect effects through changes in the 
other environmental factors (such as oxygen availability or the rate 
of nutrient diffusion) were likely only minimal.

Fitness values of the 60 MA lines were overall consistent across 
the six assay environments (suggested by correlation analysis and 
variance partitioning analysis; Text S1 and Tables S1 and S2). The 



     |  1023CHU et al.

observed fitness value distributions were shown in Figure 2. The 
mean values of the distributions were all smaller than zero (Table S3; 
one-sample t test, p < .002), consistent with the idea that mutations 
are more likely to be deleterious than beneficial (Bell, 2008; Eyre-
Walker & Keightley, 2007; Lanfear, Kokko, & Eyre-Walker, 2014; Zeyl 
& DeVisser, 2001). The mean values did not show a significant rela-
tionship with assay temperature (Figure 2 and Figure 3; generalized 
linear model, �2

1,4
 = 1.206, p = .272), while the relationship between 

standard deviation values and temperature was marginally nonsig-
nificant (�2

1,4
 = 3.181, p = .075).

Around 1/4 of the MA lines showed fitness advantages against 
the ancestral strain (fitness > 0), comparable with several earlier 
short-term MA experiments (Dickinson, 2008; Trindade et al., 2010). 
There was not a significant relationship between the proportion of 
positive fitness values and assay temperature (Figure 2; Figure 3; 
generalized linear model, F1,4 = 1.022, p = .369). However, the dis-
tribution of the positive fitness values did differ among assay envi-
ronments. Specifically, the proportion of MA lines showing strong 
fitness advantages (fitness > 0.050) became significantly greater 
with increasing temperature (Figure 2; Figure 3; �2

1,4
 = 21.25, 

p < .001; little change in the result was observed if strong fitness 
advantages were instead defined as fitness > 0.040 or 0.060, see 
details in Table S4). Therefore, lower temperatures did not reduce 
the overall availability of beneficial mutations, but diminished their 
fitness effects. More detailed analyses based on distribution fitting 
provided consistent results (Text S1 and Table S5). Meanwhile, we 
did not find any significant temperature influence on properties of 
distributions of the negative fitness values, suggesting that the fit-
ness effects of deleterious mutations accumulated in our MA lines 
are largely insensitive to temperature (Text S1 and Table S6).

It is important to also consider the potential influences of envi-
ronmental stress on mutational effects for interpreting our results. 
With an assumption that 37°C is the most benign environment for 
the E. coli strain used in the study, we may have a prediction that 
the probability of mutations conferring fitness advantages is low-
est at 37°C and becomes larger at both lower and higher tempera-
tures. This is because beneficial mutations are expected to be less 
common in environments to which an organism is already well 
adapted (or say, near a fitness optimum on the adaptive landscape) 
(Pal, 1998; Tenaillon, 2014), and mutations may have more variable 
fitness effects, with a greater chance to confer fitness advantages, 
when an organism is faced with a less well-adapted (stressful) en-
vironment (Agrawal & Whitlock, 2010; Fisher, 1930; Martin & 
Lenormand, 2006). The prediction that the 37°C assay environment 
would see a low probability of beneficial mutations is not supported 
in the present study. When analysing the relationship between fit-
ness distribution properties and assay temperature, a quadratic term 

F I G U R E  2   Distributions of fitness values of the 60 MA lines 
at six assay temperatures. The dashed line in each panel indicates 
where fitness is zero (equal to the ancestor). Numbers annotated in 
panels are mean ± SD for the total 60 MA lines
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of temperature added into the linear model did not show any signifi-
cant effects (Table S4). Therefore, it is likely that every temperature 
we studied here did not cause significant stressful effects on the 
study organism, though this does not rule out a possible role of en-
vironmental stress at more extreme temperatures (which is beyond 
the scope of the present study).

3.2 | Caveats with the MA approach for studying 
mutational effects

The MA strategy has been extensively used for isolating mutations in 
studies of mutational effects (Dickinson, 2008; Trindade et al., 2010; 
Zeyl & DeVisser, 2001). However, there are limitations. First, there 
are typically more than one mutations accumulated in each MA line, 
and the fitness measured here only reflects the net effects of the 
multiple mutations, whether additive or epistatic. Second, while 
this approach minimizes selection, selection against severely del-
eterious mutations is likely to take place during the MA procedure 
(Eyre-Walker & Keightley, 2007; Halligan & Keightley, 2009; Long 
et al., 2013; Morgan et al., 2014). The operation of negative selec-
tion may result in an overrepresentation of beneficial mutations. The 
occurrence of selection during MA would not be problematic for in-
terpretation of our results as long as the selection is not environ-
ment-specific (as the focus of our study is not a precise description 
of absolute distribution of fitness effects). We addressed the pos-
sibility of environment-specific selection during MA by examining 
whether or not MA lines had accumulated mutations that are less 
deleterious in their “home” environment relative to “foreign” envi-
ronments. A signal of differential selection was indeed observed for 
the MA lines of 25°C origin, as the proportion of MA lines with nega-
tive fitness values was greater in the “foreign” assay environments 
relative to the 25°C assay environment (Table S7). Meanwhile, we 
did not observe such a signal of differential selection for the 28°C 
(29°C considered as their “home” environment in fitness assays) and 
37°C MA lines (Table S7).

Further analysis that excluded the 25°C MA lines did not qualita-
tively change our results. Specifically, the mean values and standard 
deviations of the distributions of fitness of the 40 MA lines of 28 and 
37°C origin did not show a significant relationship with assay tem-
perature (for mean values, �2

1,4
 = 0.059, p = .809; for standard devia-

tion, �2

1,4
 = 3.325, p = .068), nor did the proportion of positive fitness 

values (F1,4 = 1.294, p = .32). The proportion of MA lines showing 
strong fitness advantages (fitness > 0.050) became significantly 
greater with increasing temperature (�2

1,4
 = 23.836, p < .001; little 

change observed if strong fitness advantages were instead defined 
as fitness > 0.040 or 0.060, �2

1,4
 = 20.584, p < .026; �2

1,4
 = 19.184, 

p < .001, respectively). When a quadratic term of temperature 

F I G U R E  3   Relationship between fitness distribution properties 
and assay temperature
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was added into the linear models for the analysis above, its effect 
was not significant for the mean and SD values of the distributions 
(�2

1,4
 = 2.028, p = .154; �2

1,4
 = 0.002, p = .969, respectively), nor for 

the proportion of strong beneficial mutations (for proportion of 
fitness > 0.04, 0.05 and 0.06, �2

1,4
 = 0.707, p = .401; �2

1,4
 = 1.821, 

p = .177; �2

1,4
 = 2.724, p = .099, respectively).

3.3 | Implications of our findings

Our observation that higher temperatures allow greater fitness ad-
vantages of beneficial mutations provides support for the tempera-
ture-selection speed hypothesis (Fischer, 1960; Rohde, 1992). This 
hypothesis helps to explain the faster evolution rates and greater 
magnitude of between-population divergence in the warmer regions 
(Fischer, 1960; Gillman, Keeling, Gardner, & Wright, 2010; Gillman, 
Keeling, Ross, & Wright, 2009; Martin & Mckay, 2004). On the other 
hand, stronger positive selection may reduce within-population ge-
netic diversity, contrary to the effect of increased mutation rates. This 
might be a major reason for the lack of a consistent latitudinal gradient 
in within-population genetic diversity (Adams & Hadly, 2012; Hirao 
et al., 2017; Vellend, 2005; Vellend & Geber, 2005).

Our findings also give implications for understanding contem-
porary evolution in the face of environmental change, in particular, 
of pathogenic microbes. For example, the increased crisis of disease 
transmission with rising temperature has usually been explained by 
physiological mechanisms such as enhanced parasite reproduction 
rate (Paaijmans, Read, & Thomas, 2009; Sturrock et al., 2011) and 
ecological mechanisms including the spread of vector populations 
(Altizer, Ostfeld, Johnson, Kutz, & Harvell, 2013; Pascual, Dobson, 
& Bouma, 2009). Our results highlight the possibility that elevation 
of local temperatures accelerates evolutionary adaptation of patho-
gens. A recent observational study also reported greater incidence of 
antibiotic resistance at higher temperatures (MacFadden, McGough, 
Fisman, Santillana, & Brownstein, 2018); this could, in part, be ex-
plained by more rapid adaptation to antibiotic environments, par-
ticularly in terms of compensating fitness costs associated with 
resistance (Bjorkman, Nagaev, Berg, Hughes, & Andersson, 2000).

Cautions should certainly be exercised when extending the re-
sults to extremely high temperatures that show stressful effects on 
organisms. Mutations relevant to thermal stability of proteins may be 
under stronger negative selection, and protein stability may become 
a more important determinant of organism growth performance rel-
ative to the rates of biophysical and biochemical processes in very 
hot environments (Chen & Shakhnovich, 2010; Dandage et al., 2018; 
Echave & Wilke, 2017; Tokuriki & Tawfik, 2009). A recent study 
combining a biophysical model of protein evolution with empirical 
data demonstrated that high, stressful, temperatures may generally 
exacerbate the fitness effects of deleterious mutations and hence 
suggested that the destabilizing effect of rising temperatures on 
protein folding would limit the potential for evolutionary adaptation 
(Berger et al., 2018). More research is clearly needed for the general 
importance of temperature-dependent fitness effects of mutations.
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