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ABSTRACT: Since the reagent dosage is manually adjusted according to work conditions, an event-triggered constrained model
predictive control is proposed for rare earth extraction. First, the linear predictive system, based on a state space model, is
established. Subsequently, the feedback correction link is fine-tuned to reduce the prediction error. Following this, an objective
optimization function, incorporating input and output constraints, is introduced to calculate the appropriate reagent dosage. Finally,
an event-triggering mechanism, underpinned by a designated threshold, is designed to update the controller. Simulation outcomes
substantiate the efficacy of the proposed approach.

■ INTRODUCTION
Rare earth elements, colloquially referred to as “industrial
vitamins”, have escalated into crucial strategic resources.
Although China’s theoretical grasp of the rare earth extraction
process has reached global prominence,1 the automation level
within the industry remains subpar. This shortfall results in
diminished production efficiency, extensive resource con-
sumption, and inconsistent product quality, thereby hindering
expansion of the rare earth industry. Consequently, significant
research efforts have been directed toward the modeling,
control, and optimization of the rare earth extraction process,
yielding substantial findings.

Regarding extraction process modeling, a bilinear dynamic
model factoring in state lag was established in ref 1, predicated
on the multistage dynamic characteristics of rare earth
extraction. This model, however, neglects the interaction
between stages and subsequently loses certain dynamic traits.
In ref 2, the mixer clarifier was approximated as a mixer
coupled with a pure hysteresis link, leading to the establish-
ment of a dynamic model of the copper extraction process
based on a material balance relationship. Concurrently, an
extraction equilibrium relationship between two phases was
described by using the extraction balance model. Reference 3
expanded upon ref 2 by providing a more granular depiction of

the clarifier, which brings the model closer to actual extraction
processes. In ref 4, a dynamic model of the rare earth
extraction process was proposed based on the principle of
stepwise extraction, and the system’s dynamic and static
characteristics were thoroughly analyzed. Reference 5 modeled
the multicomponent separation process of rare earth extraction
by solving a vast array of nonlinear equations. Some
researchers have employed data-driven methodologies such
as artificial neural networks6,7 and multi-RBF neural network
models8 to create rare earth extraction models. Nevertheless,
these methods struggle to accurately represent the extensive
dynamic process of rare earth extraction. Upon review of the
preceding analysis, a conspicuous absence of a state space
model based on the mechanism of rare earth extraction is
evident.
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For drug dosage control within the rare earth extraction
process, the current industrial practice revolves around “offline
analysis, manual adjustment, and experience control”.9,10 An
optimization control system for the rare earth extraction
process, predicated on two-layer architecture and case-based
reasoning technology, was proposed in ref 11. However, only
case-based reasoning technology was utilized in its optimiza-
tion layer. A control method fusing static setting with dynamic
compensation was introduced in ref 12, showcasing promising
results in experimental settings, albeit with stringent require-
ments on industrial data. A novel multimodel switching
predictive control scheme was proposed in ref 13 premised on
the development of a multi-input and multioutput local linear
model. Nevertheless, this scheme failed to discuss the stability
of the model switching. In ref 14, a control method for
component content distribution in the rare earth extraction
process was proposed, wherein a progressive step model is
established according to each stage and the control target is
achieved by dynamically adjusting the extractant and detergent
flow. Taking into consideration the characteristic that the
content of rare earth elements merely needs to be confined
within a certain range, ref 15 proposed a combination of an
interval control strategy and a generalized predictive control
algorithm, employing different control intensities and strategies
for varying system operating conditions. In ref 16, PID
controllers were designed for distinct specific operating
conditions to implement distributed control of the extraction
system. However, the sole utilization of PID exhibits
limitations for a demanding production process. The extraction
mechanism analysis of the generalized predictive control
method, in conjunction with the dynamic characteristics of
the rare earth extraction process, was discussed in ref 17.

At present, the dosage of the rare earth extraction drug is still
manually controlled, leading to difficulties in adjusting the inlet
flow in a timely and accurate manner when production
conditions vary. This often results in the rare earth production
index falling short of the requirements. Thus, given that model
predictive control18,19 can surmount the variation of rare earth
extraction conditions20 to enhance the system’s anti-interfer-
ence ability, this paper employs this method in lieu of manual
control of drug dosage, considering the perspective of the rare
earth extraction mechanism. Model predictive control is widely
criticized for its frequent online timing sampling communica-
tion and substantial computational requirements. However,
when the process index error is negligible and does not
compromise product quality, the event trigger determines

whether to update the controller based on the current state of
the system, effectively reducing the frequency of controller
updates.21,22 In ref 23, the event-triggered control was
employed in the equilibrium point temperature control of a
continuous stirred tank reactor (CSTR), improving the
system’s robustness and significantly saving energy. The
fuzzy control method of the event-triggering mechanism was
proposed and applied to the temperature control of a zinc
baking furnace in ref 24, drastically decreasing controller
execution and mitigating actuator wear. In ref 25, an event-
triggering mechanism was designed as a control increment
threshold to efficiently reduce the number of controller
updates.

In summary, this paper proposes and applies a constrained
model predictive control method for rare earth extraction,
predicated on an event-triggering mechanism, to the flow
control of extractants and detergents in the rare earth
extraction process. The first step involves a comprehensive
analysis of the characteristics of the rare earth extraction
mechanism, culminating in the derivation of a linear state space
model. Second, in light of the input and output constraints
inherent in the extraction process and the explicit constraint
handling capability of predictive control,26 an objective
optimization function featuring input and output constraints
is established. Subsequently, to swiftly counteract the
secondary disturbances of the extractant and detergent flow,
cascade control27 is utilized to enhance flow control precision.
Moreover, in consideration of the varying impact of different
mining conditions on the weight of its objective optimization
function, a fuzzy method28 is employed to adjust the output
error weight matrix of its objective optimization function.
Finally, a fixed-threshold event-triggering mechanism is
designed to effectively alleviate the execution burden on the
controller.

■ PROCESS DESCRIPTION AND CONTROL SCHEME
ANALYSIS

Process Description. The current practices in the rare
earth industry predominantly employ a method known as
cascade fractionation for extraction. This process involves
repeated interaction of the aqueous phase with the organic
phase, facilitating the separation and extraction of individual
rare earth elements of the desired purity from a composite rare
earth solution. Referring to Figure 1, let us assume the feed
liquid to be an organic phase feed. The comprehensive rare
earth extraction production line is composed of an n-stage

Figure 1. Rare earth extraction process description.
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extraction section followed by an m-stage washing section,
cumulatively consisting of n + m extraction tanks. The solution
situated beneath each stage of the extraction tank is
categorized as the aqueous phase, while the solution above is
delineated as the organic phase. During the operational
procedure, extractant u1 is introduced into the first stage of
the extraction tank. Subsequently, material liquid u2 is infused
into the n-stage extraction tank, while detergent u3 is
incorporated into the n + m stage extraction tank. Due to
the distinctive architectural design of the extraction tanks
coupled with the impact of the stirring force, the organic phase
is observed to flow from left to right. Conversely, the aqueous
phase demonstrates a flow from right to left within all levels of
the extraction tank. As a result of the interplay between the
extractants and detergents, the rare earth solution undergoes a
step-by-step extraction. In conclusion, the aqueous phase exit
of the initial stage in the extraction section yields a product, B,
which is challenging to extract. Conversely, the organic phase
exit of the n + m stage in the washing section procures product
A, which exhibits a more straightforward extraction profile.

In the rare earth extraction procedure, the flow rate of the
feed liquid is contingent on the daily throughput stipulated by
the production plan. Given a constant processing capacity, the
feed liquid flow usually remains unaltered. However, it can
experience minor fluctuations due to the influence of the
transportation pump. The primary objective of the rare earth
extraction process is to calibrate the flow rates of the extractant
and detergent in such a manner that the purity of the easily
extractable product A from the organic phase and the difficult-
to-extract product B from the aqueous phase both adhere to
the stipulated production standards.

On the industrial floor, technicians determine the flow rates
for both the extractant and detergent based on empirical
testing outcomes. Once these rates are initially established by
the operator, drawing on prior experience, they can be fine-
tuned using PID technology, acting as an inner loop, as
illustrated in Figure 1. Because the rare earth extraction process
is a complex industrial process, the production operation mode
is seriously lagging behind, and when the operating conditions
change, the rare earth extraction production process needs a
long time to stabilize.
Control Scheme Analysis. The inner loop of the

proposed control system is regulated by PID, while the outer

loop is controlled by the model predictive control method,
which supersedes manual adjustments of the extractant and
detergent flow. Furthermore, based on the variance of process
indicators within a specified range, an event-triggering
mechanism is utilized to reduce the frequency of communi-
cation and actuator execution. The control scheme, illustrated
in Figure 2, encompasses various modules including a trigger
mechanism, outer loop model predictive control, inner loop
PID control, and fuzzy reasoning. The process begins with the
derivation of the prediction model for rare earth extraction. To
account for any discrepancies between the model and the
actual rare earth extraction process, a correction link is
implemented. Subsequently, the optimal objective function
with input and output constraints is established. The output
error weight matrix is set by employing a fuzzy reasoning
method, in accordance with the separation coefficient and raw
material allocation under ore entry conditions. The optimiza-
tion problem is then resolved to obtain the extractant and
detergent flow values that align with real-time operating
conditions, with subsequent control of these values being
facilitated by a PID controller.

Lastly, given that the content of rare earth components lies
within a reasonable range, it becomes unnecessary to further
adjust the drug dosage. Based on this observation, an event-
triggering mechanism is introduced to assess whether any
component content within the monitored process level
surpasses the allowed range, thus determining whether
controller implementation is necessary.

■ CONSTRAINED MODEL PREDICTIVE CONTROL OF
THE RARE EARTH EXTRACTION PROCESS BASED
ON EVENT TRIGGERING

State Space Model for the Rare Earth Extraction
Process. The production process of two-component rare earth
extraction in a rare earth production enterprise is taken as the
object, and the stages of extraction and washing are
respectively n = 13 and m = 9. According to its industrial
production data, the feed liquid composition is fa = 0.47 and f b
= 0.52, respectively, so the ratio of raw materials is xF = 1.1.
The cumulative totals of the aqueous phase and organic phase
in the tank are 14.7 and 2.6 L, respectively. The inlet flow rates
of the extractant, feed, and detergent are u1 = 9.1 L/min, u2 = 1
L/min, and u3 = 1.9 L/min, respectively. With the

Figure 2. Constrained model predictive control scheme for the rare earth extraction process based on event triggering.
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concentration of each rare earth element in each aqueous
phase and organic phase as the state quantity, it is assumed
that xA(k) and xO(k) represent the concentrations of the
difficult extraction element in each aqueous phase and the easy
extraction element in each organic phase, respectively. Taking
the content of rare earth elements in difficult and easy
extraction as the output, it is assumed that Y1,1 is the purity of
difficult extraction elements in the first stage and Y2,n+m is the
purity of easy extraction elements in the n + m stage.
According to the extraction theory,29,30 the state space model
of extraction is as follows.

x k Ax k B u k
y k C x k
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Then, the state space increment model of the linear discrete
real-time system is as follows.

x k A x k B u k
y k C x k y k

( 1) ( ) ( )
( ) ( ) ( 1)
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where Δx(k) = x(k) − x(k − 1), Δu(k) = u(k) − u(k − 1),
Δx(k) is the state increment, Δu(k) is the control input
increment, and yc(k) is the controlled output.
Model Predictive Control with Input and Output

Constraints. Assuming that p and m represent the prediction
horizon and control horizon, respectively, the derivation of the
control law necessitates the computation of the predicted state
for future p steps pertaining to the content of rare earth
elements. Following this, the predicted output is procured
through feedback correction and substitution of the objective

function. Subsequently, the constrained optimization problem
is reformulated into a quadratic programming form, ultimately
yielding the requisite drug dosage.

According to eq 2, the state increment of step k + 1 is as
follows.

x k k A x k B u k( 1 ) ( ) ( )u+ | = + (3)

The state increment of step k + m is obtained by iteration:

x k m k A x A B u k

A B u k

( ) ( )

( 1)

m m
u

m
u

1

2

+ | = +
+ + + ···

B u k m( 1)u+ + (4)

Then, the state increment of step k + p is as follows:
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Calculate the forecast output from k + 1 to k + p based on the
forecast state. According to eq 2, the predicted output of step k
+ 1 is

y k k C A x k C B u k y k( 1 ) ( ) ( ) ( )c c c u c+ | = + + (6)

Get the predicted output of step k + m by iterating:
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Then, the predicted output of step k + p is as follows:
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(8)

In order to improve the accuracy of the model, by calculating
the error e(k + j) between the actual output in the production
process of step k + j, j ∈ [0, p − 1], and the output value
predicted by the model, the feedback correction results in the
predicted output value of step k + j + 1 as follows:

y k j k y k j k e k j( 1 ) ( 1 ) ( )ce c+ + = + + + + (9)

Considering the characteristics of the rare earth extraction
production process, the input (feed, extractants, and
detergents) and output (element component content) both
meet certain constraints. In order to make the output response
track the reference trajectory, an optimization objective
function with input and output constraints is established:
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s.t. Δx(k + i + 1|k) = AΔx(k + i|k) + BuΔu(k + i); yce(k + i|k) =
CcΔx(k + i|k) + yc(k + i − 1|k) + e(k + i − 1); umin = 0 ≤ u(k +
i) ≤ umax = 80, i ∈ [0, m − 1]; ymin = 0 ≤ yce(k + i) ≤ ymax = 1, i
∈ [1, p].

where rj(k + 1) is the jth component of the given reference
input sequence. Since the input variables are the extractant,
feed liquid, and detergent and the output variables are the
component content of difficult and easily extracted rare earth
elements, nu and ny are 3 and 2, respectively. The output error
weight matrix is Qy1

def = diag{Q1,1
y , ... , Qp,1

y }p×p and Qy2
def =

diag{Q1,2
y , ... , Qp,2

y }p×p, respectively.
Since the optimization objective function (eq 10) has

constraints, the optimization objective can be transformed into
a quadratic programming problem. Then, the optimal control
sequence ΔU*(k) is obtained, and the first element of the
solution is applied to the controlled system.
Output Error Weight Matrix Adjustment Based on

Fuzzy Inference. The weighting matrix in eq 10 is generally
fixed after adjustment. However, the tracking performance is
mainly affected by output error weight matrices Qy1 and Qy2.
Within the rare earth extraction process, elements such as the
separation coefficient of the stock liquid, the allocation of raw
materials, and other ore entry conditions significantly impact
the production index.31 Different mining conditions correlate
with varied operating conditions, hence necessitating distinct
dosages for production.32 In order to adapt to different
operating conditions, Qy1, Qy2, and mining conditions can be
established as follows:
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Q f x
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where f(· | ψ) represents a fuzzy function whose parameters are
ψ (such as membership function and fuzzy semantic control
rules). β and xF represent the separation coefficient and the
ratio of raw material allocation, respectively.

Based on fuzzy system theory, the parameter ψ can be
written as follows:
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where k represents the proportion (scale) factor of fuzzy
control and subscripts h, g, and u represent the separation
coefficient, the ratio of raw material allocation, and weight,
respectively. a, b, and c represent the set of parameters for the
triangular membership function, as shown in Figure 3. When
two adjacent membership functions are determined, their

intersection point, λ, is determined. In general, the intersection
point λ should be located at the center of the two membership
functions, which can respond quickly to the input and
accurately to changes in a small range of the input.

The membership function of the characteristic parameters is
shown in Figure 3. After establishing the fuzzy rule table, the
inverse fuzzy is carried out, the gravity center method is used
to deblur the fuzzy output, and the corrected output weight is
finally obtained.
Event-Triggering Mechanism. In a conventional time-

triggered MPC, measurement signals are sampled at consistent
intervals, and control signals undergo periodic updates. This
process often results in an overabundance of sampling and
control operations. In contrast, event-triggered control
functions according to specific predefined conditions initiate
controller updates solely when these criteria are satisfied.
Consequently, event-triggered control significantly reduces the
frequency of controller and actuator operations, alleviating
computational and communication burdens.

As depicted in Figure 1, the contents of the hard-to-extract
"B" elements and easy-to-extract "A" elements in the rare earth
extraction process are confined within certain reasonable index
ranges. When the error between the actual and given values of
the component content at an outlet exceeds a certain
threshold, the controller is required to compute the current
dosage to manage the production condition. Thus, the
triggering mechanism can be articulated in set notation as
follows:

k r k y k e( ) ( )s i s i s opti= { | } (13)

where ks indicates the controller trigger time, ri(ks) is the set
value for the content of element i, yi(ks) is the content of
element i, and eopti > 0 is the threshold of component content
error.

■ SUMULATION RESULTS AND ANALYSIS
Parameter Setting. The control parameters are obtained

by cross verification in the simulation. For a predictive

Figure 3. Membership function of the characteristic parameter.

Table 1. Qy1 Membership Function Value of Characteristic
Parameters

separation
coefficient

the ratio of raw material
allocation Qy1

no. ah1 bh1 ch1 ag1 bg1 cg1 ay1 by1 cy1
1 1 2 3 0.25 0.5 0.75 1.4 1.4 0.9
2 2 3 4 0.5 0.75 1 1.4 0.9 0.5
3 3 4 5 0.75 1 1.25 0.9 0.5 0.9
4 4 5 6 1 1.25 1.5 0.5 0.9 0.9
5 5 6 7 1.25 1.5 1.75 0.9 0.9 0.9

Table 2. Qy2 Membership Function Value of Characteristic
Parameters

separation
coefficient

the ratio of raw material
allocation Qy2

no. ah1 bh1 ch1 ag1 bg1 cg1 ay2 by2 cy2
1 1 2 3 0.25 0.5 0.75 1.6 1.6 1.1
2 2 3 4 0.5 0.75 1 1.6 1.1 0.6
3 3 4 5 0.75 1 1.25 1.1 0.6 0.4
4 4 5 6 1 1.25 1.5 0.6 0.4 0.3
5 5 6 7 1.25 1.5 1.75 0.4 0.3 0.3
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controller, p = 10, m = 2, and Qu = diag(0.03,0.08,0.03). For
the fuzzy inference module, the value of the feature parameter

ψ is determined. According to the process test and expert
experience, the separation coefficient theoretically spans from 1
to 7, with an established value of 4. Similarly, the theoretical
range for the ratio of raw material allocation is between 0.25

Figure 4. Simulation results of operating condition 1.

Figure 5. Simulation results of operating condition 2.

Figure 6. Simulation results of operating condition 3.

Figure 7. Simulation results of operating condition 4.
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and 1.75, with a set value of 1. The distinct parameter values
for the output error weight matrices Qy1 and Qy2 are detailed in
Tables 1 and 2, respectively.
Analysis of Comparative Methods. To demonstrate the

efficacy of our proposed method, we compared it with three
other techniques. These are method 1, which utilizes
unconstrained predictive control (MPC); method 2, which
employs constrained predictive control (CMPC); and method
3, which is based on the weight-adaptive constraint predictive
control (WACMPC). Our proposed approach is characterized
as method 4: the event-triggering constraint model predictive
control method, and the trigger threshold is eopt1 = eopt2 = 0.01.
The output error weight matrix for methods 1 and 2 is Qy =
diag(1,1). The output error weight matrix Qy = diag(Qy1,Qy2)
of methods 3 and 4 is obtained by fuzzy reasoning.

In the rare earth extraction process, the separation
coefficient of the stock liquid and the ratio of raw material
allocation have a great impact on the production index. These
two parameters directly depict the prevailing operating
conditions. This paper examines the performance of control
algorithms under four distinct operating scenarios representa-
tive of varied production processes: The first scenario is
characterized by a low separation coefficient and a high ratio of
the raw material allocation. In the second scenario, there is an
excessively large separation coefficient paired with a markedly
small ratio of raw material allocation. The third scenario
presents a condition where both the separation coefficient and
the ratio of raw material allocation are significantly large. The
fourth and final operating condition involves a small separation
coefficient coupled with a low ratio of the raw material
allocation.

(1) Typical operating conditions in condition 1: β = 1.7 and
xF = 1.1. Y1 is the component content of the hardly extracted
product, while Y2 is the component content of the easily
extracted product. The simulation results of component
contents Y1 and Y2 are shown in Figure 4. It can be seen
from Figure 4 that all four control algorithms can make the
content of rare earth components track the target value, but
the control algorithm proposed in this article realizes a smaller
overshoot and can quickly reach the target interval. Referring
to Figure 4b, it is evident that, in contrast to unconstrained
MPC, the other three algorithms satisfy the production
constraints. This observation underscores the notable benefits
of constrained model predictive control algorithms when
applied to real-world production systems. Moreover, a review
of the simulation outcomes reveals that systems with optimized
weights exhibit enhanced stability in their dynamic responses,
resulting in diminished fluctuations in system output.

(2) Typical operating conditions 2: β = 4.1 and xF = 0.5.
The simulation results of component contents Y1 and Y2 are
shown in Figure 5. As can be seen from Figure 5, the tracking
error of the proposed method is within 0.01, which meets the
reasonable range of rare earth element production. Methods 3
and 4 use fuzzy inference modules to achieve faster tracking
and smaller fluctuations. According to Figure 5b, CMPC can
make the content of rare earth components meet the constraint

Figure 8. Events triggered under different operating conditions.

Table 3. Performance Comparison of Different Control
Methods

cost MPC CMPC WACMPC
the proposed

method

operating
condition 1

216,211 215,460 213,965 214,883

operating
condition 2

205,026 205,030 204,033 204,335

operating
condition 3

209,768 209,739 204,750 204,355

operating
condition 4

215,312 215,312 210,402 207,564

Table 4. Control Performance and Trigger Analysis of
Different Operating Conditions

operating
condition

performance
deterioration rate

number of
triggers

trigger
reduction rate

operating
condition 1

0.43% 175 94.17%

operating
condition 2

0.15% 136 95.47%

operating
condition 3

−0.19% 105 96.50%

operating
condition 4

−1.3% 85 97.17%
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conditions well, while method 1 is not in line with the actual
situation because the output component content is greater
than 1 due to no constraint.

(3) Typical operating conditions 3: β = 5 and xF = 1.8. The
simulation results of component contents Y1 and Y2 are shown
in Figure 6. According to Figure 6, compared with MPC,
CMPC, and WACMPC, the method proposed in this paper
has a smaller overshoot and less dynamic process fluctuation.
In this paper, the event-triggering mechanism is added to make
the system tracking more smooth, and the component content
of export products can be within the set range of 0.01.

(4) Typical operating conditions 4: β = 3.1 and xF = 0.5.
The simulation results of component contents Y1 and Y2 are
shown in Figure 7. As can be seen from Figure 7, compared
with unconstrained MPC, CMPC, and WACMPC, the MPC
algorithm proposed in this paper can accurately track the target
value and achieve stability quickly, thus reducing the
adjustment time when the disturbance occurs.

As shown in Figures 4−7, the proposed method can meet
both production output constraints and threshold require-
ments to ensure a better control effect. Moreover, compared
with the nonevent-triggered method, the steady-state process
has no fluctuation and runs very smoothly.
Impact of the Triggering Mechanism on System

Performance. Figure 8 delineates the event-triggering
conditions under the four distinct operating scenarios
discussed in the previous section. From the figure, it is evident
that the frequency of event triggers fluctuates based on the
operating conditions. In some instances, triggers occur only
briefly, with the system predominantly maintaining a non-
trigger state. Such triggering predominantly transpires during
the system’s dynamic phase when the disparity between its
actual and set values surpasses the designated threshold.
Conversely, as the system transitions into a steady state, the
steady-state error remains below the threshold, meaning that
trigger conditions are unmet, and consequently, there is no
need for controller updates.

Table 3 presents the consumption data for the extractant
flow and detergent flow across the four methods. This metric

serves as a viable indicator of control efficacy: a reduced
consumption signifies superior control performance. Observing
Table 3, it becomes evident that, while the proposed method’s
effectiveness lags behind that of WACMPC under operating
conditions 1 and 2, it still outperforms both MPC and CMPC.
Table 4, on the other hand, details the event-triggering
conditions and control costs associated with the proposed
method across varying operational scenarios. As inferred from
Table 4, while the integration of event triggers may slightly
compromise the control performance, this degradation is
marginal, not exceeding 2%. Notably, there is a reduction of
over 90% in the frequency of event triggers, which substantially
alleviates the controller’s computational demands.

In the simulation experiment detailed in the previous
section, the threshold emerges as a critical parameter for the
controller, profoundly influencing both control performance
and the frequency of controller updates. To elucidate this
relationship, this paper scrutinizes the system’s control
behavior across various threshold scenarios. The event-
triggering scenarios are visualized in Figure 9, where events
labeled from 1 to 10 correspond to 10 distinct thresholds
spanning from 0.001 to 0.01. An examination of Figure 9
reveals that the selection of thresholds dictates the event-
triggering patterns with an upward trend in the threshold
resulting in fewer triggers.

In summation, the proposed methodology not only
enhances both dynamic and static response processes of the
system but also ensures that the rare earth component’s
content precisely aligns with the predefined set values.
Concurrently, it significantly alleviates the computational
demands placed on the controller.

■ CONCLUSIONS
Given the dearth of available state space models specific to rare
earth extraction for reference, this work innovatively proposes
a rare earth extraction state space model. Recognizing the
flexibility within which the rare earth component content can
operate during the production phase, a constrained model
predictive control method for the rare earth extraction

Figure 9. Triggers of events with different thresholds.
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component content, underpinned by an event-triggering
mechanism, is proposed herein. Finally, the control perform-
ance of the system under different typical operating conditions
is tested, which shows the effectiveness of the proposed
method. These findings pave the way for future explorations,
such as using the mechanism and data driven to increase the
accuracy of the model and distributed predictive control
technology to deal with the multicomponent rare earth
extraction process.
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