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Abstract
Background: Transcriptional regulation of gene expression is crucial for the adaptation and survival of bacteria.
Regulatory interactions are commonly modeled as Gene Regulatory Networks (GRNs) derived from experiments
such as RNA-seq, microarray and ChIP-seq. While the reconstruction of GRNs is fundamental to decipher cellular
function, even GRNs of economically important bacteria such as Corynebacterium glutamicum are incomplete.
Materials and Methods: Here, we analyzed the predictive power of GRNs if used as in silico models for gene
expression and investigated the consistency of the C. glutamicum GRN with gene expression data from the GEO
database.
Results: We assessed the consistency of the C. glutamicum GRN using real, as well as simulated, expression data
and showed that GRNs alone cannot explain the expression profiles well.
Conclusion: Our results suggest that more sophisticated mechanisms such as a combination of transcriptional,
post-transcriptional regulation and signaling should be taken into consideration when analyzing and construct-
ing GRNs.
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Introduction
Bacterial genomes are small and compact; on average,
88% of their genomes consist of coding genes.1 Conse-
quently, the ability to regulate gene expression in
diverse environments is crucial for stabilizing cell ho-
meostasis and adapting to environmental challenges.2

Computational systems biology uses Gene Regulatory
Networks (GRNs) to understand the mechanisms
that coordinate the shifts in gene expression and to rep-
resent the transcriptional gene regulation of organisms.
These networks are consistently expanding our un-
derstanding of how the genotype manifests in the phe-
notype of an organism. Computationally, GRNs are

modeled as directed graphs with nodes representing
genes and edges or links representing the interactions
between regulators, also known as transcription factors
(TFs), and their target genes (TGs).3,4

Techniques to measure gene expression levels and
infer GRNs include microarrays,5 ChIP-seq,6 and
RNA-Seq.7 Microarrays measure the expression levels
of known genes through the quantification of the fluo-
rescence emitted by chemically marked complemen-
tary DNA attached to a solid surface. Microarrays
can also determine the binding site of TFs when com-
bined with chromatin immunoprecipitation.8,9 ChIP-
seq is also used to determine the TF binding sites by
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sequencing DNA fragments that are bound to the TFs
during chromatin immunoprecipitation, and is then
used to map them to a reference genome.6 RNA-Seq
is used to quantify the entire set of RNA in a biologi-
cal sample at a particular moment through high-
throughput sequencing.7 Several methods to infer
GRNs from such gene expression data have been devel-
oped and evaluated10–12; these networks are commonly
modeled as Boolean and Bayesian networks.13–16 These
methods have been applied to reconstruct experimen-
tal GRNs and have resulted in multiple databases and
online platforms for the analysis of model organisms.
Such resources include RegulonDB,17 Subtiwiki,18

CoryneRegNet,19 and Abasy Atlas,20 for Escherichia
coli, Bacillus subtilis, Corynebacterium glutamicum,
and several organisms, respectively. Previous evalua-
tions of gene expression-based methods to infer
GRNs demonstrated a moderate performance on ex-
perimental microarray data and a better performance
on in silico-generated gene expression data.10,11 Infer-
ence methods developed for both bulk and single-cell
data were evaluated with single-cell transcriptomic
data, and reached the conclusion that the algorithms
performed poorly using both experimental or in silico-
generated data.21,22

Despite the importance of GRNs and the low perfor-
mance of GRN inference methods, few studies system-
atically evaluated the consistency of these networks
with gene expression data. In 2003, Gutiérrez-Rı́os
et al.23 assessed the consistency of the E. coli GRN in
a few well-studied genes. Later, Siegel et al.24 developed
a mathematical framework evaluating the consistency
in interaction graphs; they used an in silico experiment
derived from experimental literature data of gene and
metabolic networks to test their approach. Based on
this framework, Guziolowski et al.25 analyzed the con-
sistency of the E. coli GRN using three independent
microarray datasets and ascertained the inconsistency
of the network. Guziolowski et al. developed Bio-
Quali,26 a Cytoscape app for detecting inconsistencies
in GRNs and suggesting changes that would restore
the network consistency with the user-provided expres-
sion data. Other Cytoscape apps such as contradictions
in microarrays,27 CytoASP,28 and SigNetTrainer29 as-
sess the consistency of interaction networks and ex-
pression data from a single study. The first makes use
of Boolean network models to detect inconsistencies
in interaction networks. CytoASP28 uses logical roles
through Answering Set Programming to identify
inconsistencies and to suggest how to repair them. Sig-

NetTrainer29 uses Integer Linear Programming to de-
tect and remove inconsistencies from the networks.
Collectively, these pioneer works allowed researchers
to evaluate the consistency of the existing GRNs and
their gene expression data. Furthermore, some of them
pointed to the inconsistency of the GRNs, or gene sets,
when evaluated with small sets of regulatory data.

Recently, Larsen et al.30 studied E. coli GRNs and
found that they are inconsistent when evaluated with
gene expression data. The authors used a conservative
sign consistency approach on a large microarray data
compendium. Here, we analyzed the consistency of
C. glutamicum GRN using a similar approach and
also included RNA-seq gene expression data to obtain
an exhaustive data compendium. In general, we assume
that activations should increase the expression of the
TGs when the TF is upregulated. Likewise, repressions
should reduce the TGs’ expression, when the TF is also
upregulated. Our results show a positive correlation in
both cases, contradicting our current understanding of
the role of TF regulation. The consistency model as-
sessment indicates that the C. glutamicum GRN is
even less consistent than random GRNs, implying
both that additional research is needed to further refine
GRNs and additional factors have to be considered to
explain gene expression.

Materials and Methods
C. glutamicum GRN and gene expression data
The experimental GRN of C. glutamicum was down-
loaded from CoryneRegNet 7.0.19 The gene expression
compendium was retrieved from Gene Expression Omni-
bus (GEO)31 and consisted of microarray and RNA-seq
data with a total of 429 samples (see Supplementary
Data S1 for more information about the datasets).

Gene expression data normalization
All gene expression datasets were normalized using
limma.32 Microarray data were background corrected
before applying lowess (two-color microarrays) and
quantile normalization. Similarly, RNA-seq data
were quantile normalized using the voom method.33

Finally, to have all the data on the same scale, we com-
bined and z-score normalized all gene expression data
using the survJamda package.34 The z-normalized dis-
tribution of the expression data is given in Supple-
mentary Figure S1.

In silico data generation
The in silico GRN and gene expression data were
generated using GeneNetWeaver.35 This software

Parise, et al.; Network and Systems Medicine 2021, 4.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0014

52



uses an experimental network as the model to create an
in silico network with similar topology and to simulate
gene expression data for the novel network.

Inconsistency detection and assessment
We used the same method applied by Larsen et al.30 to
assess E. coli GRN. In the first step, the method identi-
fies genes that are up- or downregulated in each exper-
iment (contrasts). This is performed by computing the
contrasts as the difference between the expression of
the reference and the case(s) in the experiment. Next,
it uses a conservative sign consistency model similar
to the one applied in COMA27 and BioQuali.26 For
each contrast, the model labels the vertices as: upregu-
lated, downregulated, or unchanged. The labels are at-
tributed based on the expression differences between
the control and each case in the contrast, and on a
threshold _t_. Then the labels are compared with the
role of the regulatory interactions in the GRN to deter-
mine the consistency. Finally, we compared the exper-
imental network with random data by applying two
perturbation methods. The first method shuffles the
expression profiles and keeps the network topology,
whereas the second shuffles the network topology
and keeps the node degrees and gene expression pro-
files. For more details about this method, refer to the
work from Larsen et al.30

Statistical analyses
The mean correlation (mc) was calculated by first add-
ing the correlation of each TF and TG/operon pair
(cPairs), and then dividing the sum by the total number
of pairs (nPairs).

mc = ( +
nPairs

i = 1

cPairsi)=nPairs

This same process was applied to compute the
means for Pearson’s and Spearman’s correlation. We
computed the mean of the global inconsistency load
(mGlobal) of the two applied perturbation methods
by adding the global inconsistency load (global) of
each iteration and then dividing the sum by the num-
ber of iterations (nIteration).

mGlobal = ( +
nIteration

i = 1

globali)=nIteration

We determined the mean edge inconsistency
(mEdge) through the sum of the number of inconsisten-
cies of each TF and TG/operon pair (nIncons), which
we then divided by the total number of pairs (nPairs).

mEdge = +
nIncons

i = 1

nInconsi)=nPairs

The significance of the comparison between the
inconsistency load in contrasts with and without per-
turbation was computed using the Mann–Whitney
U-test.36 We used the same test to compute the signif-
icance of the number of up- or downregulated genes in
each contrast, with and without perturbation.

Results

Correlation between gene regulatory
interactions and gene expression profiles
To assess the correlation between expression profiles
of known regulatory interactions (e.g., a TF regulating
a TG), we applied Pearson’s correlation coefficient
(Fig. 1). We analyzed the distribution of correlations
between known TF–TG pairs and of all possible TF–
TG pairs. The mean correlation of known TF–TG
pairs is 0.09, whereas for all the possible TF–TG
pairs it is�0.0003 (Fig. 1A). For activations, we expect
a positive correlation (e.g., increased TF expression
enhances TG expression), whereas repressions should
result in a negative correlation (e.g., increased TF ex-
pression reduces TG expression). However, separately
analyzing the distribution of the correlations of
known TF–TG pairs by interaction role, we see a
very low mean correlation in both cases: 0.11 for
activating interactions and to 0.07 for repressing in-
teractions. Complex regulations where multiple TFs
control the same TG could influence the results ob-
served in Figure 1B. Taking this into account, we
also analyzed the TF–TG pairs where the TG is regu-
lated by a single TF (Fig. 1C). Of interest, the results
are similar (0.10 and 0.04 for activating and repressing
interactions, respectively).

The same process was repeated using an in silico
network and gene expression data to demonstrate the
extent of the correlations expected from a GRN that
is consistent with the observed expression data. The
in silico data were generated based on the C. glutami-
cum GRN using GeneNetWeaver.35

The mean correlation of known interactions was
�0.06 and the mean correlation of all possible TF–
TG pairs was 0.002 (Fig. 1D). The correlation of the
interactions (Fig. 1E) separated by the interaction
role presented a distinct partition between them: the
mean correlation was 0.22 and �0.28 for activation

Parise, et al.; Network and Systems Medicine 2021, 4.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0014

53



and repression interactions, respectively (Fig. 1E).
Upon analyzing only the single regulators, an even
stronger separation between them was noticed: mean
0.51 and �0.52 for activation and repression interac-
tions, respectively (Fig. 1F).

Consistency assessment between the regulatory
networks and the expression profiles
To assess the consistency between the GRN and gene
expression, the model we applied makes use of a
threshold. Our threshold considers any changes in
the expression data (upregulation, downregulation,
or unchanged) and assumes *50% of the contrasts
to be up- or downregulated, as previously explained
by Larsen et al.30 This resulted in a threshold of
– 0.25 for the experimental data and – 0.82 for the

in silico data. We compared the global inconsistency
load of the experimental and in silico GRNs against
randomly perturbed GRNs and expression profiles.
The global inconsistency load (Fig. 2A) of the exper-
imental network (31,922 inconsistencies) was higher
than the mean of the perturbed data (31,030.30 and
31,733.00 inconsistencies in swapped edges and
swapped expression profiles, respectively). These
numbers indicate that the consistency between the
experimental network and the expression data are
not more significant than the consistency in the ran-
dom networks. In contrast, the original in silico net-
work (Fig. 2D) had fewer inconsistencies (20,538)
than the mean of the perturbed data (34,133.40 and
33,180.00 in swapped edges and swapped expression
profiles, respectively).

FIG. 1. Distribution of Pearson correlation for TF and TG/operon pairs. Comparison between the correlation
of all possible TF–TG pairs and all known TF–TG pairs. [(A) Corynebacterium glutamicum and (D) in silico].
Comparison between the correlation of known TF–TG pairs separated by interaction role: activation and
repression [(B) C. glutamicum and (E) in silico]. Comparison between the correlation of known TF–TG pairs
where each TG has only one regulator [(C) C. glutamicum and (F) in silico]. Dashed vertical lines show the mean
correlation for each TF and TG/operon pair. TF, transcription factor; TG, target gene.
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Analyzing the edge inconsistencies separated by the
interaction role revealed that the number of inconsis-
tencies was larger for repressions (mean 64.8) than
for activations (mean 49.7; Fig. 2B). The analysis of sin-
gle regulators presented similar results, but slightly
larger means (mean 66.1 and 51.3 for repressions
and activations, respectively) in both cases (Fig. 2C).
For the in silico data, the inconsistencies separated
by the interaction role (Fig. 2E) presented similar
numbers in both cases (mean of 49.5 and 53.4 for re-
pressions and activations, respectively). The results
for single regulators (Fig. 2F) were smaller and even
more similar (mean 37.7 and 37 for repressions and
activations, respectively).

Association between inconsistency load
in contrast with and without perturbation
To check if perturbed experiments result in a higher
level of inconsistencies, we analyzed the inconsis-
tency load across the cases in each experiment,
resulting in 239 contrasts. It resulted in a range
from 5 to 306 inconsistencies with a mean of
133.56 (Fig. 3A). The number of inconsistencies
was slightly more substantial in the contrasts with
perturbed conditions than with the unperturbed
ones (means of 145.31 and 127.88, respectively;
Fig. 3B). Perturbed conditions in the experimental
gene expression profiles include stress, overexpressed
genes, knockout, and double-knockout genes. Genes

FIG. 2. Evaluation of the inconsistency load in the GRN and perturbed GRN models. Comparison among
the global inconsistency load (total number of inconsistent cases) in the GRNs with two random GRN
models. The experiments were repeated 200 times for the random models [(A) Corynebacterium
glutamicum and (D) in silico]. The edge inconsistency distribution split by interaction role: repression and
activation [(B) C. glutamicum and (E) in silico]. The edge inconsistency distribution is split by role: repression
and activation where a single TF regulates the TG/operon (C, F). In [(B, C) C. glutamicum, (E, F) in silico]
dashed vertical lines show the mean inconsistency for each pair TF and TG/operon. GRN, Gene Regulatory
Network.
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considered to be up- or downregulated are associated
with a higher level of inconsistencies in the network
(Fig. 3C). Finally, a higher number of genes on aver-
age were considered up- or downregulated within the
perturbed contrasts (Fig. 3D).

Discussion
In this work, we applied microarray and RNA-seq data
to investigate the widely accepted assumption in which
changes in the expression of gene regulators affect the
expression of their TGs. The regulation type (activation

A
B

C
D

FIG. 3. Evaluation of the inconsistency load of Corynebacterium glutamicum across contrasts. Distribution
of the number of inconsistencies across the 239 contrasts (A). Perturbations (e.g., stress conditions) increase
the inconsistency load in contrasts when compared with nonperturbations (B). Relationship between the
number of deregulated genes (up or down) and inconsistency load in contrasts (C). Comparison between the
number of deregulated genes in the model for the contrasts with and without perturbation (D). The p-values
in (B) and (D) were computed using the Mann–Whitney U-test.
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or repression) determines the effect of expression
changes. Of interest, our results show that this is not
the case for C. glutamicum, particularly at the tran-
scriptional level. We found a positive mean correlation
between the TFs and the TGs, even for repression inter-
actions, which are supposed to have a negative correla-
tion. When multiple TFs regulate the same TG, we
cannot expect all regulations to be consistent. However,
when analyzing the TGs that are regulated by a single
regulator, a positive mean correlation between the
TFs and the TGs was also observed. Larsen et al.
found a similar behavior in the E. coli GRN30; consid-
ering it is more complete than C. glutamicum GRN,37 it
is not surprising that C. glutamicum GRN is also not
consistent with its expression data. Pearson’s correla-
tion analysis may not identify nonlinear relationships
between the expression of TFs and TGs. We, thus,
also applied Spearman’s rank correlation (Supplemen-
tary Fig. S2) and observed a slightly positive interaction
when analyzing, first, all known interactions at once
(mean correlation of 0.09), then those split by interac-
tion role (activations and repressions, mean correlation
of 0.12 and 0.08, respectively) and, finally, for single
regulators (mean correlation of 0.11 and 0.05 for acti-
vations and repressions, respectively). It demonstrates
that nonlinearity does not affect our results.

The analysis of the global inconsistency load (Fig. 2A)
shows that the experimental network is slightly more in-
consistent than the perturbed ones. This may imply that
the experimental GRN is not explained by the expres-
sion data retrieved from the GEO database. Because
the chosen threshold could have influenced these re-
sults, we repeated the analysis using thresholds that
consider *33% and *66% of the contrasts as up- or
downregulated, as previously suggested by Larsen et al.,30

with no noticeable effect on the inconsistency between
the GRN and the gene expression data (Supplementary
Figs. S3–S6). Supplementary Figures S7–S9 demon-
strate that network perturbation increases the global
inconsistency of the in silico network while it has little
effect on C. glutamicum GRN.

The high inconsistency between the C. glutamicum
network and the expression data may be owing to tech-
nical or biological reasons. For example, the methods
used to generate the GRNs from the experimental
data may have performed poorly.10,11,21,22 Another ex-
planation may be the unavailability of adequate time-
series experimental data, which would reveal regulatory
interactions at different time points.38 In addition,
other regulatory mechanisms such as post-translational

modifications,39,40 inactive conformation of the TFs
and metabolites23 are neither identified by microarrays
nor by RNA-seq data. Moreover, a low correlation be-
tween transcriptome and proteome data exists.41,42

Conclusion
Our results corroborate previous studies that analyzed the
consistency between E. coli GRN and gene expression
data, and further showed that, when considering the
static GRN, the networks are inconsistent.23,25,30 These
results suggest that the traditional methods to reconstruct
GRNs may not be able to fully represent the complexity
of gene expression regulation. In the case of C. glutami-
cum, an accurate and consistent GRN is essential for
the development of various robust strains that are re-
quired to meet its industrial demand in the production
of biomolecules, such as amino acids.43 Although the ac-
curate construction of C. glutamicum GRNs may provide
an understanding of possible biosynthetic routes for these
molecules, the inconsistency of GRNs and gene expres-
sion data suggest that extra caution should still prevail
when using GRNs to elucidate probable amino acid bio-
synthetic routes in the biotechnology industry.

In our view, the incorporation of multi-omics time-
series data and robust statistical approaches, as well as
the performance of multiple perturbations within bio-
logical systems, are necessary to model the GRNs accu-
rately. Moreover, a single GRN may not be adequate
to capture the regulatory landscape across all possible
conditions, requiring the development of condition-
specific and dynamic GRNs in the future.
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