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Abstract

In recent years, codon substitution models based on the mutation–selection principle have been extended for the
purpose of detecting signatures of adaptive evolution in protein-coding genes. However, the approaches used to date
have either focused on detecting global signals of adaptive regimes—across the entire gene—or on contexts where
experimentally derived, site-specific amino acid fitness profiles are available. Here, we present a Bayesian site-
heterogeneous mutation–selection framework for site-specific detection of adaptive substitution regimes given a
protein-coding DNA alignment. We offer implementations, briefly present simulation results, and apply the approach
on a few real data sets. Our analyses suggest that the new approach shows greater sensitivity than traditional methods.
However, more study is required to assess the impact of potential model violations on the method, and gain a greater
empirical sense its behavior on a broader range of real data sets. We propose an outline of such a research program.
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Introduction
Codon substitution models (Goldman and Yang 1994; Muse
and Gaut 1994) are among the important modern tools used
for uncovering potential signals of molecular adaptation from
protein-coding gene alignments. One set of broadly used
models focuses on estimating the ratio of rates of nonsynon-
ymous (dN) and synonymous (dS) substitutions. These mod-
els introduce a multiplicative parameter, denoted x, to
entries in a codon substitution matrix corresponding to non-
synonymous events. Because x is the only distinction be-
tween the rate specification of nonsynonymous and
synonymous events, it directly corresponds to x ¼ dN=dS.

Fitting a model with a single (global) nonsynonymous
multiplicative parameter almost always leads to x < 1
(Yang 2006), given the pervasive purifying selection that oper-
ates at most codon sites over most of evolutionary history.
Many efforts were thus made to develop codon substitution
models with distributions of x values across sites and/or
across the branches of a phylogeny (reviewed in Yang
2019). A common objective of such developments is to un-
cover specific sites having evolved under an adaptive regime
(e.g., with x > 1), perhaps along a particular branch of the
phylogeny.

Meanwhile, another set of codon substitution models was
proposed, with a focus on accounting for purifying selection
at the amino acid level in a site-heterogeneous manner
(Halpern and Bruno 1998). Having nucleotide-level parame-
ters controlling a mutational process, and amino acid fitness

profiles controlling selection, they have come to be known as
mutation–selection models (e.g., Yang and Nielsen 2008;
Rodrigue et al. 2010). In these models, the dN/dS ratio is
not explicitly parameterized. Instead, it is an emerging quan-
tity, induced by the interplay between mutation, selection,
and drift. Spielman and Wilke (2015) have shown how to
calculate the dN/dS induced by the mutation–selection
framework—which we denote x0 (Rodrigue and Lartillot
2017)—and found that, under specific conditions (i.e., a sub-
stitution process at equilibrium, without selection on synon-
ymous variants), it is always true that x0 � 1, as expected
from a model focused on purifying selection.

In the last few years, the mutation–selection framework
has been extended for the purpose of detecting genes having
evolved under an adaptive regime, in either a global (Rodrigue
and Lartillot 2017) or site-specific (Bloom 2017) manner. Like
their traditional predecessors, these recent mutation–selec-
tion models introduce a multiplicative parameter on non-
synonymous rates. However, because amino acid profiles
are also involved in modulating nonsynonymous rates, such
a multiplicative parameter—which we denote as x�
(Rodrigue and Lartillot 2017)—cannot be interpreted as the
dN/dS ratio; we chose to emphasize this distinction with an
asterisk in the notation. Given that the mutation–selection
formulation itself induces a certain dN/dS ratio, x0, the net
overall dN/dS ratio, x, can be thought of as x ¼ x0 � x�,
which can be rearranged to x� ¼ x=x0. The latter equation
helps clarify the interpretation of x� as a measure of the
deviation in nonsynonymous rates from the expectation
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under the pure mutation–selection equilibrium; in particular,
x� > 1 indicates that nonsynonymous rates are higher than
expected, even though they might not be so high as to lead to
x > 1.

New Approaches
Here, we conduct the first exploration of a Bayesian muta-
tion–selection model with site-heterogeneous amino acid fit-
ness profiles and site-heterogeneous x� values. The Bayesian
nature of the model qualifies it as a random-effects approach,
in contrast to the fixed-effects approach utilized to date in
maximum-likelihood versions of mutation–selection models
(Halpern and Bruno 1998; Holder et al. 2008; Tamuri et al.
2014; Bloom 2017).

Results and Discussion

Models with Global x or x�
We first contrasted the difference in behavior between a tra-
ditional codon substitution model inspired from Muse and
Gaut (1994), with a global x parameter (a traditional model
we denote MG-M0, described in detail in the Materials and
Methods section), and a mutation–selection model with a
Dirichlet process prior on amino acid profiles across sites and
a global x� parameter (a model presented in Rodrigue and
Lartillot, 2017, which we denote here as MutSel-M0*, and also
described in the Materials and Methods section).

Simulations
Figure 1 shows results of the two models on data generated
through a simulation approach explicitly allowing for fluctu-
ating selection at some sites; for these sites, amino acid fitness
profiles change along the branches of the phylogeny, as de-
scribed in Rodrigue and Lartillot (2017) and in the Materials
and Methods section. The simulation system is an attempt at
mimicking an adaptive substitution process, where the sim-
ulated substitution history tracks a changing amino acid fit-
ness optimum along the branches of the tree, and thus
accrues more nonsynonymous substitutions than expected
under a pure nearly neutral regime (i.e., mutation–selection
balance). An important distinction with Rodrigue and
Lartillot (2017) is that here the simulated data set contains
only 10% of codon sites generated under adaptive regimes,
and 90% of codon sites generated under a pure nearly neutral
mutation–selection formulation (Rodrigue et al. 2010). We
produced alignments of 300 codons in length, repeating the
simulation thrice, with different sets of empirically inferred
amino acid profiles (see Lowe and Rodrigue 2020, and the
Materials and Methods section).

Results under the traditional MG-M0 model (red) reflect
the overall purifying selection governing most of the data-
generating processes, with posterior mean x values at 0.14,
0.15, 0.13 in three replicates displayed in panels 1A, 1B, and
1C, respectively. The fact that 10% of sites where produced
under an adaptive regime is underwhelming to the MG-M0
model, and indeed little is generally expected of it in practice.
Results under the MutSel-M0* model (blue) show a posterior
distribution for x� situated above 1, with pðx� > 1jDÞ �

0:99 (where D refers to the data set) for the first two replicates
(fig. 1A and B); indeed, the second replicate has a posterior
mean that surpasses 2. For the third replicate, we find a
slightly lower probability, at pðx� > 1jDÞ � 0:93, still highly
suggestive of a signal for adaptive evolution.

Previous studies (Rodrigue and Lartillot 2017; Lowe and
Rodrigue 2020) have shown that a simulation conducted with
100% of sites under the pure nearly neutral mutation–selec-
tion formulation leads to a posterior distribution of x� situ-
ated around 1 (while the x parameter inferred under the
MG-M0 model on such simulated data tends to be closer
to 0 than to 1, as shown in Rodrigue and Lartillot 2017). Here,
however, 10% of sites have evolved with higher than expected
nonsynonymous rates, which pulls the distribution of x� to
the right. Already with the use of single additional parameter,
x�, the mutation–selection framework allows us to detect
adaptation where the traditional framework with a single x
parameter would not. Note that these results are under ideal
conditions, however, free of the numerous potential model
violations present in real data that could sway inferences of
x�.

Real Data
Figure 2 shows the results of these models on a hand-full of
real alignments. Figure 2A displays the results on the well-
known b-GLOBIN alignment sampled across 17 vertebrates
(Yang et al. 2000). As in the simulation, the MG-M0 model
indicates that x < 1. In contrast, under MutSel-M0*, the
posterior mean of x� is around 1.8, with a high posterior
probability in favor of a value greater than 1,
pðx� > 1jDÞ > 0:99, suggesting the presence of adaptive
evolution in this gene. As described with the simulation ex-
periment presented above, and assuming negligible effects of
potential model violations, adaptive evolution on even a rel-
atively small fraction of the sites of the gene could be suffi-
cient to induce such a rightward shift in the posterior
distribution of x�.

Figure 2B displays results on an alignment of the alcohol
dehydrogenase (ADH) gene sampled across 23 species of
Drosophila. Here again, the MG-M0 model indicates that
x < 1, with a posterior mean �0.13. In contrast, with the
MutSel-M0* model, we find a posterior mean x� �1.2, and
pðx� > 1jDÞ > 0:95. As for the b-GLOBIN alignment, and
again assuming no major effects from potential model viola-
tions, this result could be explained by a fraction of sites
evolving under adaptive evolution regimes. No previous phy-
logenetic approach has found signals of adaptive evolution in
this gene, in spite of the fact that population-genetic
approaches have long suggested adaptation in many instan-
ces (e.g., McDonald and Kreitman 1991; Matzkin and Eanes
2003; Matzkin 2003). While a specific scenario of ADH adap-
tation in specific species has been refuted by Siddiq and
Thornton (2019), their study nonetheless provides strong ex-
perimental evidence of major fitness effects of some muta-
tions, suggesting adaptive opportunities across Drosophila.

The four remaining panels of figure 2 (C–F) show results on
four genes sampled across placental mammals (Lartillot and
Delsuc 2012). Again, x < 1 in all four genes, whereas x� is
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either around 1, or slightly below, which does not suggest
adaptive evolution in these genes across placental mammals.
This does not rule out the possibility that some of these genes
have some sites under adaptive evolution, but perhaps these
sites are too few and/or too mildly adaptive to raise x� be-
yond 1. Previous simulations studies have pointed to epistasis
(Rodrigue and Lartillot 2017) or weak evolutionary signal
(Lowe and Rodrigue 2020) as potential reasons for x� < 1.
In the absence of major effects from model violations, these
are conditions that tend to make the model conservative in
the detection of adaptive regimes.

Models with Heterogeneous x or x�
In spite of the potential of the MutSel-M0* model—able to
capture relatively subtle signals of adaptive evolution—it
still does not directly allow us to pinpoint which sites are
most responsible for such signals. This is one of the moti-
vations of site-models. Classical site-models (Nielsen and
Yang 1998; Yang et al. 2000; Yang and Swanson 2002) con-
sider alignment sites as having been produced from a

distribution of possible x values. They are typically used
in the context of an empirical Bayes approach for identify-
ing sites with a strong statistical support for a x > 1; and
they are more efficient at detecting positive selection than
the simple MG-M0 model with a single x for all sites. For
instance, they do find sites under positive selection in the
case of the b-GLOBIN gene (detailed below, but also see Yang
et al. 2000). On the other hand, site-models might still miss
those sites under weaker positive selection. In particular, an
adaptive regime at a site could be sufficiently strong to
increase the dN/dS ratio, but not to the point of driving
it well above 1. In other words, at least in their current
version, these models might present the same limitation
as the classical MG-M0 model, as compared with MutSel-
M0* model, although now at the level of the single site. This
in turn suggests that the rationale of estimating x� in the
context of a mutation–selection model should be explored
not just globally over the whole gene (Rodrigue and
Lartillot 2017), but as a distribution across sites of the
gene (Bloom 2017).
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FIGURE 1:. Posterior distributions of x (red, under MG-M0) and x� (blue, under MutSel-M0*) on simulated data sets with 10% of sites evolved
under adaptive evolution (see Materials and Methods section).
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FIGURE 2:. Posterior distributions of x (red, under MG-M0) and x� (blue, under MutSel-M0*) on b-GLOBIN, ADH, VWF, ADORA3, RBP3, S1PR1 data sets
(see Materials and Methods section).
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To illustrate this point, and for simplicity here, we work
with the classical MG-M3 model, inspired from Muse and
Gaut (1994) and Yang et al. (2000), which invokes a finite
mixture of three x values—with their respective weights—
jointly estimated with all other parameters given the data. We
also study a new model referred to as MutSel-M3*, which is
built from a finite mixture of three x� values, and respective
weights, combined with the Dirichlet process prior on amino
acid profiles across sites, and global mutational parameters.
The two forms of across-site heterogeneity are independent
in the model construction, in that each site draws its amino
acid profile and its x� independently from the two corre-
sponding mixtures.

Simulations
As a verification, figure 3 shows the results under the MG-M3
(red) and MutSel-M3* (blue) models on three simulated data
sets, this time generated entirely under the pure mutation–
selection framework (i.e., no adaptive regimes within the
data-generating processes). In accordance with the simula-
tion, no sites have high probabilities of having x� > 1 (or
x > 1). Most sites have posterior probabilities of x� > 1
ranging from 0 to 0.5, or not much more, suggesting that
the MutSel-M3* model tends to mildly underestimate some
site-specific x� values. One possible reason for such under-
estimates is the fact that, in its current form, the mutation–
selection apparatus utilized tends to overestimate x0 (the
nonsynonymous to synonymous rate ratio induced by the

amino acid fitness profiles), as shown by Spielman and
Wilke (2015). Overall, however, if the data-generating process
does not depart too drastically from the model’s assumptions,
this behavior tends to make MutSel-M3* conservative vis-�a-
vis inferences of adaptive evolution.

These simulations also highlight an inherent risk built into
the MutSelM3* model’s construction, in comparison with
MG-M3: the threshold for a site to considered of interest—
in terms of potential adaptive evolution—is much closer to
the value expected under the null (of no adaptive regime)
under MutSelM3* than under MG-M3, with the latter report-
ing site-specific probabilities of having x > 1 that are close to
0; for the second replicate in particular (fig. 3B), pðx > 1jDÞ
never surpasses 0.007. In other words, finding a site with pð
x > 1jDÞ > 0:95 under the MG-M3 model represents a
dramatic increase in nonsynonyomous rate, compared to
finding one with pðx� > 1jDÞ > 0:95 under the
MutSelM3* model, which could make MutSelM3* more vul-
nerable to false positives from stochastic effects, or from the
effects of model violations.

Figure 4 shows the results on the three simulated data sets
studied in figure 1 (i.e., with 10% of sites simulated with an
adaptive regime). The panels include vertical marks at the
top, showing the 30 codon sites simulated under adaptive
regimes. Sites evolving under an adaptive regime tend to ac-
crue more nonsynonymous substitutions than under a nearly
neutral regime, which would shift x� to the right of the unit.
With a threshold posterior probability of 0.95 for
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FIGURE 3:. Site-specific posterior probabilities of x (red, under MG-M3) and x� (blue, under MutSel-M3*) being greater than 1 on data sets
simulated under the pure mutation–selection framework.
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pðx� > 1jDÞ, the MutSel-M3* model correctly identifies 23/
30 sites (76%), calls 1 false positive, and misses 7 sites for the
first and second replicates, whereas for the third replicate it
correctly identifies 20/30, with no false positives. Of note, a
single false positive out of 24 discoveries, using a threshold of
0.95, corresponds to an accuracy of �96%, thus suggesting
that the posterior probabilities are reasonably well-calibrated,
reflecting our actual rate of true discovery. The MG-M3 mod-
els identify no sites at this threshold, although the plot sug-
gests that it nonetheless faintly detects some adaptive signal.
Interestingly, the sites leading to false positives under the
MutSel-M3* model also tempt the MG-M3 model; the sim-
ulations are stochastic processes, and can, from time to time,
accumulate a disproportionately high number of nonsynon-
ymous substitutions, even when the configuration of the sim-
ulating model is one of pure mutation–selection balance. In
other words, false positives may not come about solely as a
result of a problem with MutSel-M3* model itself, but rather,
at least partly, from a chance occurrence in the simulation.
Still, this demonstrates the increased risk of the MutSelM3*

model over MG-M3. However, the MG-M3 model also clearly
lacks sensitivity; the sure way of having no false positives is to
have no positives at all. It is particularly noteworthy that some
of the sites correctly identified by MutSel-M3* show virtually
no signal under MG-M3 (e.g., sites 52, 103, 285 in the first
replicate, fig. 4A). In contrast, all of the sites simulated with an
adaptive regime but missing the 0.95 threshold under MutSel-

M3* nonetheless have relatively high probabilities of having
x� > 1. Overall, under ideal conditions, the MutSel-M3*

model seems to have considerably greater sensitivity than
the traditional-style MG-M3, at the cost of a mildly increased
risk of false positives.

Real Data
Figures 5 and 6 display the results obtained from analyzing
the six real data sets mentioned above with the MG-M3 and
MutSel-M3* models. For the b-GLOBIN alignment (fig. 5A), our
Bayesian version of the classic MG-M3 model leads to the
same set of sites identified with these traditional models in
the maximum likelihood context (Yang et al. 2000): at the
95% threshold, the sites are 7, 11, 42, 48, 50, 54, 67, 85, and 123.
Under the MutSel-M3* model, these same sites are also found,
and the following three are added: 10, 74, and 84. (The com-
plete lists of sites identified at different thresholds are
reported in table 1.) It is interesting to note that the MG-
M3 model found pðx > 1jDÞ ¼ 0:381 for site 10, pðx > 1
jDÞ ¼ 0:244 for site 74, and pðx > 1jDÞ ¼ 0:074 for site 84.
These last three sites, and site 84 in particular, yield results
compatible with the interpretation of having evolved under a
mild adaptive regime, of changing amino acid fitness profiles
over time, leading to an increase in nonsynonymous rate; the
increase is not to the point where x > 1 at a site in question,
although it is enough for x� > 1. Sites 10 and 74 are known
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FIGURE 4:. Site-specific posterior probabilities of x (red, under MG-M3) and x� (blue, under MutSel-M3*) being greater than 1 on data sets
simulated with 30 sites (marked with at top of panels) under an adaptive regime, and the remaining 270 sites under the pure mutation–selection
framework.
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FIGURE 5:. Site-specific posterior probabilities of x (red, under MG-M3) and x� (blue, under MutSel-M3*) being greater than 1 on b-GLOBIN, ADH,
and VWF.
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to be involved in oxygen affinity, which could indeed make
them a target for adaptive evolution.

The sites uncovered by MutSel-M3* on the b-GLOBIN data
set are conditional on the overall construction of the model,
which makes many oversimplified assumptions. As such, the
list of sites should be considered provisional, in need of more
thorough investigation by external means, and in the context
of a larger scale application of the model. Some of the model
violations potentially at play here, and that have mislead
other types of approaches to detecting adaptive evolution,
include variable effective population size (Rousselle et al.
2018), biased gene-conversion (Ratnakumar et al. 2010), mul-
tinucleotide mutations (Venkat et al. 2018), and nonhomo-
geneous/nonneutral synonymous substitution rates
(Wisotsky et al. forthcoming). Richer simulation studies will
be needed to better understand how the MutSel-M3* model
reacts to such violations, and the extent to which they could
be responsible for false positives.

Results of the analysis of ADH (fig. 5B, table 1) suggest sev-
eral sites under adaptive evolution under the MutSel-M3*

model, whereas the MG-M3 yields posterior probabilities of
x > 1 at all sites that are numerically indistinguishable from
0. Given that most studies suggesting adaptation in this gene
have relied on population-genetic methodologies, which pool
the statistics across all sites, a comparison of sites uncovered
by the MutSel-M3* model with previous results is not
possible.

As with the analyses of the b-GLOBIN data set, much more
work will be required to determine the plausibility of these
new results on the ADH data set. In addition to the aforemen-
tioned potential model violations, with a sampling across

Drosophila, which have high effective population sizes, fea-
tures such as uneven codon usage can become highly pro-
nounced (Powell and Moriyama 1997), potentially misleading
inferences of site-specific adaptation as well. As a hypothetical
example, suppose that the codon TTG is used almost exclu-
sively for encoding leucine, and that GTG is similarly strongly
favored for encoding valine. Also suppose that leucine and
valine are of equivalent fitness at a given site. In such a con-
text, nonsynonymous substitutions between TTG and GTG
accumulate more readily than synonymous substitutions. If
this feature were to be present to a high extent, it could
mislead the MutSel-M3* model into inferring x� > 1, thus
suggesting adaptive evolution where the regime is in fact one
of strict purifying selection on codon usage. Simulations
should eventually be used to study effects relevant to high
effective population sets of taxa—such as codon usage—on
the inferences of MutSel-M3*.

Our analysis of the mammalian-level alignment of the gene
VWF also suggests several sites with adaptive signatures under
the MutSel-M3* model, and none under the MG-M3 model
(fig. 5C, table 1). A previous study, utilizing branch-
heterogeneous models, has suggested adaptive evolution
conferring venom resistance to opposoms that prey on pit-
vipers (Jansa and Voss, 2011). Moreover, variants of this gene
have been found to have dramatic effects on its own expres-
sion levels in mice (Lemmerhirt et al. 2006), and hence with
high potential for strong fitness effects.

While these latter studies are precedents to finding sites
with signatures of adaptive evolution under the MutSel-M3*

model, many of the model violations mentioned above could
apply here as well. At the mammalian scale of this VWF data
set, a mutation–selection-based test of selection on codon
usage has been shown to be misled by the effect of CpG
hypermutability (Laurin-Lemay et al. 2018). This context-
dependent mutational feature could have the effect of inflat-
ing x� values beyond 1 at sites where there is in fact no
adaptive evolution (Suzuki et al. 2009). Again, however,
more simulation work is required to better understand
how such issues play out with the MutSel-M3*.

Of the remaining mammalian gene alignments studied
with the MutSel-M3* model, two suggest very few sites having
evolved under adaptive regimes (ADORA3 and S1PR1, in fig. 6A
and C, respectively), and one (RBP3, fig. 6B) with none. The
traditional MG-M3 model suggests no sites under adaptive
evolution for these data sets. These three genes may be typical
of results under the MutSel-M3* model at the mammalian
scale (i.e., few, if any sites with high pðx� > 1jDÞ), but
broader empirical studies evaluating the relative proportion
of genes with several sites having high probabilities of x� > 1
are pressing.

Future Directions
The traditional codon models based on x have become in-
creasingly well understood thanks to decades of empirical
applications and simulation studies. A similar project should
be considered within the mutation–selection framework. We

Table 1. Amino acid sites under positive selection.

Data Model Sites

MG-M3 77, 11, 4242, 4848, 5050 5454, 6767, 8585, 123123
b�GLOBIN

MutSel-M3* 77, 10, 11, 14, 4242, 4848, 5050 5454, 6767, 7474, 84, 8585,
110, 113, 123123

MG-M3 –
ADH

MutSel-M3* 9, 39, 49, 5757, 6868, 69, 72, 81, 85, 98, 133, 163,
165, 170, 185185, 187, 197, 201, 205, 208,
216, 229, 253

MG-M3 –
VWF

MutSel-M3* 5, 9, 26, 4141, 82, 85, 103, 108108, 125, 147, 148,
158, 177, 182, 197, 226, 227, 235235, 239239,
241, 242242, 247, 288, 291, 307, 313313, 318,
324, 339, 371, 379, 390

MG-M3 –
ADORA3

MutSel-M3* 2, 4, 93, 9696
MG-M3 –

RBP3
MutSel-M3* –
MG-M3 –

S1PR1
MutSel-M3* 1, 58, 144, 145, 146, 148

Note.—Numbers in italic font are at the 0.9 level, in plain font at the 0.95 level, and
in bold font at 0.99 level.
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have already suggested several lines of research meriting fur-
ther attention, and we expand on these themes below.

Simulation Studies
A flurry of recent research has shown how a variety of
approaches are highly susceptible to model violations, with
many instances of purported signals of molecular adaptation
being the result of unaccounted features of the evolutionary
process (e.g., Ratnakumar et al. 2010; Rousselle et al. 2018;
Venkat et al. 2018; Laurin-Lemay et al. 2018; Wisotsky et al.
forthcoming). From the codon substitution modeling per-
spective, this raises important questions regarding the muta-
tion–selection-based approach we propose here: whereas the
biological expectation under traditional models is for x values
closer to 0 than to 1, such that x > 1 is a drastic threshold,
representing a very pronounced increase in nonsynonymous
rates, the biological expectation under the new approach is
for x� values closer to 1, and thus naturally approaching
threshold of x� > 1. This could make the mutation–selec-
tion-based methods highly susceptible to model violations
that mildly increase nonsynonymous rates for reasons other
than adaptive evolution. We plan to use richer simulations to
study how the new approach reacts to such model violations,
and if expanding the model to recognize features such as
variable effective population size, CpG hypermutability, co-
don usage and gene conversion biases, could introduce
greater robustness to inferences of adaptive evolution.

Empirical Studies
A more detailed examination, ideally combined with experi-
mental corroborations, of the sites uncovered by the model is
pressing, and hopefully based on far more than the hand-full
of data sets of the present study. This would help build our
empirical understanding how the model behaves in a variety
of different contexts (Moutinho et al. 2019; Slodkowicz and
Goldman 2020). We hope to apply the model on a few thou-
sand genes from the OrthoMamm database (Scornavacca
et al. 2019) in a first step, before engaging broader applications
across varied taxanomic contexts.

Model Variations
While we have outlined the modeling strategy with a three-
component finite mixture of x� values, in combination with
a Dirichlet process prior on amino acid profiles, many other
possibilities could be considered: various parametric families
on x� (as did Yang et al. 2000, with x), nonparametric
approaches on x� (as proposed for x by Huelsenbeck et al.
2006), grids of predetermined x� values (in the spirit of
Murrell et al. 2013), along with similar choices on modeling
amino acid fitness heterogeneity (e.g., Rodrigue et al. 2010;
Rodrigue 2013; Rodrigue and Lartillot 2014). The potentially
complex interactions between the numerous combinations
also entail a large study.

Applications
We propose these modeling ideas in two independent soft-
ware packages (see below). One of our Markov chain Monte
Carlo implementations can run under fixed topology as well

as sample over trees, and thus enable studies of the impact of
phylogenetic uncertainty in inferences of adaptive evolution,
utilizing both traditional and mutation–selection codon sub-
stitution models; this also suggests more extensive studies on
the potential of such models for phylogenetic inference per se.
Another implementation we offer lends itself to integrative
modeling objectives, with a wide suite of potential research
avenues utilizing the mutation–selection-based approaches.
Foreseeable directions in the short-term with the latter im-
plementation include capturing the evolution of effective
population size over the phylogeny, along with joint infer-
ences of continuous-trait evolution, as formalized by Lartillot
and Poujol (2011).

Materials and Methods

Simulated Data
We used the simulation system described in Rodrigue and
Lartillot (2017) to generate artificial data sets using a muta-
tion–selection framework with global mutation parameters
and site-specific amino acid fitness profiles. The mutation-
level parameters (which assume no selection on synonymous
variants) are as given in Rodrigue and Lartillot (2017), as is the
phylogenetic tree (with 38 tips). With nearly neutral simula-
tions (i.e., with the pure mutation–selection formulation,
such as detailed below), the amino acid fitness profile used
to simulate a codon site is chosen at random from a set of
empirically derived profiles. We obtained such profiles by
running the pure Dirichlet process-based mutation–selection
model (Rodrigue et al. 2010) on a multigene data set at the
scale of placental mammals (Lartillot and Delsuc 2012), and
calculating the posterior mean amino acid profile at each site.
The simulation draws at random (with replacement) one
such site-specific posterior mean profile to run the evolution-
ary process along the tree at one codon site, repeating to
produce alignments of 300 codons. For simulations with
adaptive evolutionary regimes, the starting profiles are altered
along the branches of the phylogeny as detailed in Rodrigue
and Lartillot (2017), with the Red Queen parameter set to 0.01.
In contrast to the simulations in Rodrigue and Lartillot (2017),
however, the adaptive simulations herein are applied to only
10% of sites of the alignment; these 30 sites were chosen at
random, that is, they were spread out randomly across the
alignment. The remaining 270 codon sites are simulated with
the Red Queen parameter set to 0, thus constituting pure
mutation–selection regimes.

Real Data
We used previously studied alignments of protein-coding
genes provided by the authors of earlier works:

• b-GLOBIN: 17 vertebrate sequences of b-globin gene, 144
codons in length, taken from Yang et al. (2000);

• ADH: 23 Drosophila sequences of the alcohol dehydroge-
nase gene, 254 codons in length, taken from Yang et al.
(2000);

• VWF: 62 sequences, at the scale of placental mammals, of
the von Willbrand factor gene, 392 codons in length,
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taken from Lartillot and Delsuc (2012), as were the next
three alignments;

• ADORA3: 67 sequences of the adenosine receptor A3 gene,
107 codons in length;

• RBP3: 54 sequences of the retinol-binding protein 3, 412
codons in length;

• S1PR1: 67 sequences of the sphingosine-1-phosphate re-
ceptor 1 gene, 325 codons in length.

Substitution Models
The MG-M0 codon substitution model, inspired from Muse
and Gaut (1994), but with a single x parameter distinguishing
nonsynonymous events, has entries given as:

Qij ¼
lij; if i and j are synonymous;

lijx; if i and j are nonsynonymous:

(
(1)

Here, lij is the mutational parameterization, which we set
as a general-time reversible nucleotide-level model (Lanave
et al. 1984), with six exchangeability parameters (five degrees
of freedom) and four frequency parameters (three degrees of
freedom). The MG-M3 model has the same form, but rather
than a single x parameter, it invokes three different values
(with their respective weights), and has a likelihood function
consisting of the a weighted average of likelihood scores un-
der each of the three x values (Yang et al. 2000).

The MutSel-M0* model, presented in Rodrigue and
Lartillot (2017), is given as:

Q
ðnÞ
ij ¼

lij; if i and j are synonymous;

lijx�
S
ðnÞ
ij

1� e�S
ðnÞ
ij

; if i and j are nonsynonymous;

8>><
>>:

(2)

where S
ðnÞ
ij ¼ F

ðnÞ
j � F

ðnÞ
i ¼ 4Nesij ¼ 4Nef

ðnÞ
j � f

ðnÞ
i is the

scaled selection coefficient (scaled by the effective population
size Ne and a ploidy-dependent constant, in this example set
at 4 Yang and Nielsen, 2008), calculated from the difference in
fitness associated with a mutant protein with the amino acid
encoded by codon j at site n, denoted F

ðnÞ
j , with that of the

wild-type population where the amino-acid encoded by i is
fixed at that position, F

ðnÞ
i . Site-specific fitness profiles are

treated as random effects within a Dirichlet process system
(Rodrigue et al. 2010; Rodrigue and Lartillot 2014). As with the
MG-M3 model, the MutSel-M3* model invokes three distinct
x� values, with their respective weights, as a finite mixture
model of heterogeneity across sites.

Priors
Branch lengths are endowed with an exponential prior of
mean controlled by a hyperprior, itself endowed with an ex-
ponential prior of mean 1. Nucleotide exchangeabilities and
frequencies are each endowed with flat Dirichlet priors,
whereas x and x� have priors following a gamma law, con-
trolled by two hyperparameters, each endowed with expo-
nential priors of mean 1. Weights of finite mixture on x or x�

follow with flat Dirichlet prior. Amino acid fitness profiles
follow a Dirichlet process prior (Rodrigue et al. 2010), imple-
mented under a stick-breaking representation (Lartillot et al.
2013; Rodrigue and Lartillot 2014).

Data Availability
For convenience, all data sets (simulated and real) studied
herein are included in the Supplementary Material.

The models presented have been implemented in an ex-
perimental version (2) of PhyloBayes-MPI (https://github.
com/bayesiancook/pbmpi2), allowing for a joint sampling
across parameter space, auxiliary variables, and tree topology
space. We have also implemented the models in a new soft-
ware called BayesCode, which is focused on integrative com-
parative methods under fixed topology (https://github.com/
bayesiancook/bayescode). Example scripts demonstrating the
use of the software are provided in the Supplementary
Material.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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