
REVIEW
published: 31 July 2020

doi: 10.3389/fimmu.2020.01615

Frontiers in Immunology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 1615

Edited by:

Ye Htun Oo,

University of Birmingham,

United Kingdom

Reviewed by:

Guido Moll,

Charité – Universitätsmedizin

Berlin, Germany

Orestis Argyros,

GlaxoSmithKline, United Kingdom

*Correspondence:

Hideki Ohdan

hohdan@hiroshima-u.ac.jp

Specialty section:

This article was submitted to

Alloimmunity and Transplantation,

a section of the journal

Frontiers in Immunology

Received: 01 April 2020

Accepted: 17 June 2020

Published: 31 July 2020

Citation:

Tanimine N, Ohira M, Tahara H, Ide K,

Tanaka Y, Onoe T and Ohdan H (2020)

Strategies for Deliberate Induction of

Immune Tolerance in Liver

Transplantation: From Preclinical

Models to Clinical Application.

Front. Immunol. 11:1615.

doi: 10.3389/fimmu.2020.01615

Strategies for Deliberate Induction of
Immune Tolerance in Liver
Transplantation: From Preclinical
Models to Clinical Application
Naoki Tanimine 1, Masahiro Ohira 1,2, Hiroyuki Tahara 1, Kentaro Ide 1, Yuka Tanaka 1,

Takashi Onoe 1,3 and Hideki Ohdan 1*

1Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima

University, Hiroshima, Japan, 2Medical Center for Translational and Clinical Research Hiroshima University Hospital,

Hiroshima, Japan, 3 Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan

The liver exhibits intrinsic immune regulatory properties that maintain tolerance to

endogenous and exogenous antigens, and provide protection against pathogens.

Such an immune privilege contributes to susceptibility to spontaneous acceptance

despite major histocompatibility complex mismatch when transplanted in animal models.

Furthermore, the presence of a liver allograft can suppress the rejection of other

solid tissue/organ grafts from the same donor. Despite this immune privilege of the

livers, to control the undesired alloimmune responses in humans, most liver transplant

recipients require long-term treatment with immune-suppressive drugs that predispose

to cardiometabolic side effects and renal insufficiency. Understanding the mechanism of

liver transplant tolerance and crosstalk between a variety of hepatic immune cells, such

as dendritic cells, Kupffer cells, liver sinusoidas endothelial cells, hepatic stellate cells and

so on, and alloreactive T cells would lead to the development of strategies for deliberate

induction of more specific immune tolerance in a clinical setting. In this review article, we

focus on results derived from basic studies that have attempted to elucidate the immune

modulatory mechanisms of liver constituent cells and clinical trials that induced immune

tolerance after liver transplantation by utilizing the immune-privilege potential of the liver.

Keywords: tolerance, liver, transplantation, immunosuppression, immunomonitoring

INTRODUCTION

Liver transplantation is currently a highly successful treatment for end-stage liver disease. It is
well-known that liver allografts are tolerogenic, and stable grafts can be maintained across major
histocompatibility complex (MHC) barriers without immunosuppression (IS) in some species
(1–3). Furthermore, the presence of a liver allograft can suppress the rejection of other solid tissue
grafts (e.g., heart and skin) from the same donor; hence, the liver favors introduction of immune
tolerance rather than immunity (2, 4). Such a capacity of the transplanted liver to establish tolerance
in an allogeneic host has been ascribed to the unique features and anatomical structure of hepatic
constituent cells. In a clinical setting, however, the majority of liver transplant (LT) recipients
require long-term immunosuppressive drug treatment to control the alloimmune responses. The
undesired adverse effects of life-long IS remain a concern, that is, an increased risk of chronic
kidney disease, metabolic disorders, infection and malignancy in LT recipients.
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Safely minimizing or discontinuing IS without compromising
liver allograft can be an attractive strategy to improve long-
term survival after liver transplantation. For this purpose,
significant efforts have been made to identify sensitive and
specific biomarkers of immune tolerance in LT recipients or to
establish reliable immune monitoring methods. Understanding
the mechanism of the inherently tolerogenic nature of the
liver would lead to the development of strategies for deliberate
induction of more specific immune tolerance in clinical liver
transplantation. Immune regulation in the liver is mainly
controlled by a variety of antigen presenting cells (APCs), which
spatiotemporally react with alloreactive T cells in LT recipients.
In addition to professional APCs, such as dendritic cells (DCs),
unique populations of non-professional APCs consisting of
Kupffer cells, liver sinusoidal endothelial cells (LSECs), and
hepatic stellate cells (HSCs) that express low levels of MHC class
I/II and co-stimulatory molecules are resident in a steady-state
liver. These cells are likely involved in fine-tuning themodulation
of local and systemic tolerance and/or immunity after liver
transplantation. In this review article, we focus on studies that
attempted to elucidate the immune modulatory mechanisms of
these APCs, and clinical trials that induced immune tolerance
after liver transplantation by enjoying the immune-privilege
potential of the liver.

ROLE OF APCs IN IMMUNE TOLERANCE
IN LIVER TRANSPLANTATION

Dendritic Cells
In mice, liver, but not other organ allografts, are accepted
permanently and with donor specificity between many strain
combinations, without the requirement for IS (3). It has
been demonstrated that donor-derived DC precursors of liver
allografts can be propagated in granulocyte macrophage colony-
stimulating factor (GMC-SF) from the bone marrow (BM)
or spleen of unmodified LT recipients in mouse model,
suggesting that bidirectional leukocyte migration and donor cell
chimerism contribute to liver graft acceptance and acquired
transplantation tolerance (5). A recent study supported the
assumption that DCs contribute to tolerance by demonstrating
that recipients of DC-depleted liver allograft showed acute
rejection while those receiving non-manipulated liver allograft
showed indefinite acceptance in a transgenic mouse model (6).
It has been previously shown that Flt3 ligand administration,
which increases interstitial DCs and their interleukin (IL)-
12 production, abrogated the acceptance of transplanted liver,
and IL-12 neutralization markedly prolonged graft survival
in mice receiving the Flt3 ligand (7, 8). In addition, it has
been reported that the transmembrane adaptor protein, DNAX-
activating protein of 12 kDa (DAP12), negatively regulates
liver myeloid DC maturation and stimulation ability, and
DAP12−/− livers are rejected in relation to increased pro-
inflammatory cytokines including IL-12p40 (9). These results
suggest that DAP12 expression by liver DCs may be critical
for the induction of tolerance. Hence, donor-derived DCs
assuredly contribute to tolerance status; however, it likely

depends on the DC subset and inflammatory status after
transplantation. Recently, it has been reported that DCs
contribute to tolerance in another mechanism in context of
regulatory T cells (Tregs) IS, i.e., antigen (Ag)-specific Tregs
that are formed strong interactions with DCs, result in the
removal of the Ag and MHC class II complex from DC
surface and reducing DC’s Ag-presenting capacity (10). This
might be one mechanism of tolerance induction by DCs. Based
on such knowledge obtained in the preclinical models, clinical
trial for operational tolerance using regulatory DCs has been
conducted (11). As a result, it has been shown that infusion
of donor-derived, ex-vivo generated regulatory DCs can achieve
operational tolerance in patients after liver transplantation,
encouraging tolerance induction strategy with regulatory DCs in
the future.

Liver Sinusoidal Endothelial Cells
The sinusoids correspond to the capillaries of the liver, and
have a more complex structure than ordinary capillaries. The
diameter of the sinusoids is 5–7µm, which is narrow enough
to allow circulating lymphocytes to contact LSECs closely
with effective immune interaction. In fact, LSECs constitutively
express the molecules necessary for Ag presentation (CD80,
CD86, CD40, and MHC classes I and II), and have the capacity
for Ag presentation, which is not observed in endothelial
cells of other organs (12). Furthermore, LSECs express Fas-
ligand and programmed death-ligand (PD-L) 1, which has
been recently attracted due to Nobel-prize winning checkpoint
inhibitor studies (13–15). These molecules on LSECs induce
apoptosis of reactive T cells, and suppress allo-reactive and
Ag-specific T cells in a mouse model (12, 16–18). LSECs can
also endocytose foreign Ag and suppress cognate T cells in
allogeneic, exogenous, and cancer Ag models (16, 19, 20). The
immunological suppressive capacity of LSECs was reported in
an in vitro model (12, 21) as well as in vivo models (22). In
these studies, chimeric livers, produced by adoptive transfer
of allogeneic LSECs, induced suppression of allo-specific T
cells in vivo; however, the suppressive effect of LSECs was
attenuated by anti-PD-L1 antibody (Ab) during engraftment of
allogeneic LSECs. Another study using a similar model, proved
that LSECs have the ability to induce tolerance of carbohydrate
reactive B cells through the PD-L1 pathway by demonstrating
that chimeric α1,3-galactosyltransferase gene knockout (GalT)
mice in which Gal-deficient LSECs were replaced with wild-
type LSECs by adoptive transfer, lost the ability to produce
anti-Gal Abs even after repeated immunization (23). This
result suggests that LSECs also contribute to establishment
of spontaneous tolerization of B cells in ABO-blood type
incompatible liver transplantation. In a mouse orthotopic
liver transplantation model, it has been reported that PD-
L1 mediates the immune regulatory function of graft non-
hematopoietic non-parenchymal cells including LSECs (24, 25).
In this model, liver allografts from chimeric mice with PD-
L1+/+ hematopoietic cells and PD-L1−/− non-hematopoietic
cells were rejected, whereas those from wild-type mice with PD-
L1+/+ hematopoietic cells and PD-L1+/+ non-hematopoietic
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FIGURE 1 | Mechanism implicated in regulating anti-donor immune cells by LSECs in grafted liver. LSECs constitutively express classes I and II and have the capacity

for Ag presentation. LSECs contribute to the establishment of immunological tolerance in grafted liver by promoting apoptosis of donor-MHC reactive T and B cells

through Ag-presentation and PD-1/PD-L1 signaling.

cells were accepted in vivo, suggesting that PD-L1+/+ non-
hematopoietic cells, such as LSECs or stellate cells, likely
contribute to the tolerogenicity of the liver via the PD-L1/PD-
1 axis. In summary, these results suggest that LSECs contribute
to the establishment of immunological tolerance in grafted
liver by promoting apoptosis of donor-MHC reactive T and
B cells through Ag-presentation and PD-1/PD-L1 signaling
(Figure 1).

Notably, both in a mouse model and clinical living related
liver transplantation, we have recently reported that portal
hypertension enhances alloimmune responses, likely due to the
impaired immune-suppression capacity of LSECs (26). In these
studies, we demonstrated that expression of molecules necessary
for Ag presentation and PD-L1, and the suppressive capacities
of LSECs were decreased in portal hypertension. These results
also strongly imply that LSECs contribute to the establishment
of tolerance status after liver transplantation and importance
of control of portal hypertension for achieving tolerance in
liver transplantation.

Heptic Stellate Cells (HSCs)
HSCs are pericytes found in the Disse space, which is a space
between the sinusoid s and hepatocytes. HSCs are classified
as fibroblasts, and are well-described for their important role

for hepatic fibrosis and storage of vitamin A. It has been
recently shown that HSCs also function as APCs (27). HSCs
express CD1d, MHC class II, and CD86, which are integral
for APC, and present Ag to reactive T cells. It has been
reported that mouse and human HSCs express PD-L1, and
activated HSCs markedly upregulate PD-L1 expression and
induce T cell-hyporesponsiveness in vitro (28, 29). This immune-
suppressive effect of HSCs is triggered by IFN-γ and regulates
the MEK/ERK pathway (30). Furthermore, it has been recently
reported that HSCs preferentially induce Foxp3+ Tregs by
the production of retinoic acid (31). In an in vivo model,
co-transplantation of HSCs effectively protects islet allograft
from rejection through PD-L1 signaling (32). These results
suggest that HSCs have immune suppressive features similar
to LSECs and play an important role in tolerogenic status
in the liver. Of note, HSCs may be related to pericytes or
mesenchymal stem/stromal cells in vivo due to their genetic
proximity and similarities of phenotype and differentiation
potency (33–35). These cells have been shown to elicit very
elaborate immunoregulatory effects (36–38). In fact, a phase
I-II clinical study of infusion of MSC after deceased liver
transplantation to achieve operational tolerance has been
reported (39). This study also might encourage a clinical
application of HSC.
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OTHER BASIC MECHANISMS OF IMMUNE
TOLERANCE IN LIVER TRANSPLANTATION
INVOLVING BREG CELLS AND NKT CELLS

Regulatory B Cells
Recent studies have shown the existence of a distinct subset
of B cells with immunomodulatory properties, which have
been termed regulatory B cells (Bregs), analogous to Tregs.
Bregs have been found to play a pivotal role in regulating
immune responses involved in inflammation, autoimmunity,
and malignancy (40). Their main mechanism of action is by
promoting the development of Tregs while suppressing effector
CD4+ and CD8+ T cells, primarily by secreting IL-10, IL-35,
and transforming growth factor β (TGFβ), which produce donor-
specific antibodies and induce antibody-mediated rejection.
However, recent studies have indicated that Bregs, which possess
antibody-independent effector functions, have the capacity to
control or regulate immune responses to a transplanted organ
(41, 42).

As one part of Breg cells, B cells were found to express
PD-L1 and PD-L2, which are well-known to have a pivotal
role in regulating autologous T cell-immune response in self-
immunity by engaging PD-1, providing immune homeostasis
and mediating the mechanisms of tolerance (43, 44). We have
recently demonstrated that the unique B-1 cell subset expressing
PD-L1 and PD-L2 inhibits alloimmune T cell responses in
mice (45).

Although the role of Breg cells in immune tolerance in
clinical liver transplantation remains to be elucidated, one study
revealed that sirolimus could amplify Bregs and Tregs among LT
recipients, which might be beneficial in mitigating the immune
response (46). The role of Breg cells in liver transplantation is
becoming increasingly understood, and tolerization relevant to
Breg cells might be expected to be applied clinically.

Natural Killer T Cells
Invariant natural killer T cells (iNKT cells), which express an
invariant T cell receptor (TCR) α-chain and recognize lipids
present on CD1d, secrete diverse cytokines (such as interferon-γ,
IL-4, IL-5, IL-10, and IL-13) and influencemany types of immune
responses (47). In general, iNKT cells are non-circulating, tissue-
resident lymphocytes, but the prevalence of different iNKT cell
subsets differs markedly between tissues, that is, the liver, lungs,
adipose tissue, and intestine (48). Among these tissues, iNKT cells
are most frequent in the liver in both mice and humans.

In organ/tissue transplantation, iNKT cells play a significant
immune-regulatory role in the maintenance of transplant
tolerance to allografts (49–51). It has been demonstrated that
CD40L/CD28 blockade fails to maintain tolerance to allograft in
iNKT cell-deficient recipients mice, while peripheral transplant
tolerance can be induced in wild-type recipients by that
treatment (51). Consistently, it has been shown that liver
allografts lacking iNKT cells manifested infiltration, hemorrhage
and necrosis with significant reduction of graft survival and
much less induction of tolerance compared with wild-type liver
allograft in mice (52). Hence, iNKT cells, particularly donor-
liver resident iNKT cells, are found to be immune regulatory

cells that play a vital role in inducing spontaneous tolerance
after allogeneic liver transplantation. In addition, we have also
demonstrated that iNKT cells play a significant role in the
immunosuppressive effects induced by LSECs on T cells with
indirect allospecificity (53).

IMMUNOSUPPRESSION WITHDRAWAL
TRIALS

In 1993, Reyes et al. in the Pittsburgh group reported the
first series of operational tolerant recipients whose allograft
did not show functional deterioration after cessation of
immunosuppressants (ISs) due to their mandatory requirements
such as severe infection and malignancy (54). Operational
tolerance is separately understood from immunological tolerance
that is observed as no proof of immunological activity in the
experimental model. After the Pittsburgh report, a total of 17
groups have reported their experience and trials (11 adult/4
pediatric/2 mix population) to pursue the ideal goal, transplant
tolerance, which may allow the return of natural immunity and
free them from the side effects of IS (Table 1) (54–75).

Two early trials at Pittsburgh by Dr. Starzl and King’s
college by Dr. Williams and their colleagues revealed that
attempting complete IS withdrawal could be successful in some
recipients (19 and 27.7%, respectively), and long-surviving
LT recipients were generally over-immunosuppressed (55–57).
Since several experimental models have shown that donor
chimerism can induce transplant tolerance (76–78), these
trials and a randomized control trial (RCT) in Miami by
Tryphonopoulos et al. (63) have assessed micro- and macro-
chimerism as mechanisms of operational tolerance. However,
donor-chimerism was not proven to be a mechanism of clinical
operational tolerance. Later, Eason et al. at the New Orleans
tried early induction of operational tolerance and showed that
it seemed difficult to succeed, but still feasible with regard to
reversal rejection events and subsequent graft survival (62). A
similar finding has been shown in a recent multicenter trial
with strict selection criteria and withdrawal protocol (75). As
another risk factor for failure of complete IS withdrawal, recent
episodes of rejection, autoimmune-related original disease were
reported in early studies, and these factors are recognized
as standard exclusion criteria for recent IS withdrawal trials
(57, 67). Operational tolerance in pediatric recipients presented
by Dr. Feng and her colleagues in San Francisco seems to
show a relatively higher success rate compared to adult cases.
This may be because of their immature immune system, but
one of the other reasons could be more living donor cases,
particularly parents who share the haplotype of HLA. Actually,
data from living donor-related recipients are limited in adults.
It may be a good candidate for investigating the mechanism of
operational tolerance.

Currently, two IS withdrawal trails supported by the Immune
Tolerance Network (ITN) leaded by Dr. Nepom are in operation.
Recent trials achieving relatively high success rates of withdrawal
by using strict selection criteria (69–72) showed that time after
transplantation and age of recipients are the most impactful
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TABLE 1 | Studies for spontaneous tolerance in liver transplantation.

Institution Published

year

Living/

Cadaver

Pediatric/

Adult

Study design n Patient with

S.E.

Baseline

biopsy

Time since LT

(criteria) yr

IS regimen Success rate Acute rejection

(Chronic

rejection)

Graft

loss

Remarks

Pittsburgh 1993 (54) – – Case series

reports

6 Yes No NA NA NA NA NA First series report from

Pittsburgh

1995 (55)

1997 (56)

NA Mix Prospective 59

95

No Yes Mean 8.4 (>5) 14% Aza, 12% Tac

74% CsA

18/95 (19%) 25.4% (NR) 0 Two of PBC developed

recurrence

King’s College 1998 (57) Cadaver Adults Prospective 18 Yes No Median 7 (–) CsA and Aza 5/18 (27.7%) 28% (5.6%) 1/18

(5.6%)

Fewer HLA mismatch was

associated with successful

withdrawal. Previous rejection

history and autoimmune

original disease are risk factor

Kyoto 2001 (58) Living Pediatric Partially

prospective

26 (63) Partially yes No NA (>2) Tac 24/63 (38.1%) 12% (NR) 0 Biopsy at 4 year after weaning

showed that 2 of 11 tolerant

recipients had substantial bile

duct atrophy and recovered

by tacrolimus reinduction

2002 (59) Living Mix Prospective +

retrospective

115 Partially yes No NA (>2) Tac 16/67 (23.9%) Non-protocol 25%

Protocol 11.9%

0 None of clinical characteristics

was identified as predictor of

successful weaning

Marcia 2003 (60) Cadaver Adult Prospective 9 No Yes Median 5.1 (>2) CyA 3/9 (33%) 22% (NR) 0 Endothelial cell chimerism

seems to have nothing to do

with the induction of clinical

tolerance in liver transplant

patients

Stanford 2004 (61) NA Pediatric Retrospective 38 Yes No NA Steroid+CNI

(Tac92%, CyA 8%)

8/38 (20.5%) 55.3% (5.3%) 2/38

(5.3%)

Two patients were

retransplanted for chronic

rejection

New Orleans 2005 (62) Cadaver Adult Prospective 18 No No (>0.5) Tac 1/18 (5.6%) 61% (NR) 0 Early induction of operational

tolerance seems to be difficult

Miami 2005 (63) Cadaver Adult RCT (donor

BM)

105 No No Mean 4 (>3) 85% Tac 14% CsA 0% 67% (1.9%) 1/105

(0.95%)

Donor bone marrow infusion

did not help successful

completion of withdrawal

Rome
2006 (64)

2008 (65)

2013 (66)

Cadaver Adult Prospective 34 No Yes Mean 5.3 (>1) CsA monotherapy 8/34 (23.4%) 76.4% (NR) 0 All HCV related recipients

Israel 2007 (67) NA Adult RCT 26 No No Mean 4.3 vs. 5.0

(>2)

CsA +/–Aza,

(Plednisone)

2/26 (7.7%) UDCA+ 43%

UDCA– 75%

0 3/4 AIH recipients had

recurrence

Korea 2009 (68) Mix Pediatric Retrospective 5 Yes No Median 3.8 NA – NR 0 Long term stable graft

function and no rejection >1

yr were favorable findings for

successful withdrawal

(Continued)
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TABLE 1 | Continued

Institution Published

year

Living/

Cadaver

Pediatric/

Adult

Study design n Patient with

S.E.

Baseline

biopsy

Time since LT

(criteria) yr

IS regimen Success rate Acute rejection

(Chronic

rejection)

Graft

loss

Remarks

UCSF 2012 (69) Living Pediatric Multi-center

prospective

20 No Yes Mean 7.7 (>3) CNI monotherapy 12/20 (60%) 36.8% (NR) 0 Later initiation of IS withdrawal

after transplantation and less

portal inflammation and total

C4d score on screening

biopsy were associated with

successful withdrawal

Pamplona 2013 (70) Cadaver Adult Prospective 24 Yes Yes Median 9.3 (>3) NA 15/24(62.5%) 4.1% (41%) 0 Tolerant patients had a longer

median interval between

transplantation and inclusion

in the study (156 vs. 71

months)

Barcelona 2013 (71) Cadaver Adult Multi-center

prospective

102 No Yes Median 8.6 (>3) CNI mTOR inhibitor

CSB

41/102 (40.2%) 56% (NR) 0 Time since transplantation,

recipient age, and male

gender were independent

factor for successful

withdrawal

2014 (72) Cadaver Adult Multi-center

prospective

32 No Yes Median 7.2 (>3) CNI +/–MMF or

CBS

17/34 (50%) 44.1% (NR) 0 Persistent viral infections exert

immunoregulatory effects that

could contribute to the

restraining of alloimmune

responses

Taipei 2015 (73) Mix Pediatric Single center

retrospective

16 No Yes (>1 for Tx < 1, >

2 for Tx > 1)

Tac monotherapy 5/15 (33%) 46.7% (NR) 0 Early recruitment was

favorable factor predicting

operational tolerance

Chicago 2019 (74) Cadaver Adult Prospective 15 No Yes Mean 6.7 (>3) Silorimus 8/15 (53.3%) 40% (NR) 0 mTOR inhibitor withdrawal

had similarly succeeded in

comparison with CNI

withdrawal

Pennsylvania 2019 (75) Cadaver Adult Multi-center

RCT

77 No Yes Median 18 (>3) Tac (91) CsA (2),

MMF(2)

10/77 (13%) 40.3% (NR) 0 Withdrawal showed likely less

eventful than maintenance

group

S.E., side effect; Aza, azathioprine; Tac, tacrolimus; CsA, cyclosporine A; NR, not reported; NA, not assessed; CNI, calcineurin inhibitor; RCT, randomized control study; CSB, costimulatory blockade; MMF, mycophenolate mofetil.
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and common clinical factors of operational tolerance. These
studies also suggested that exhausted T cells against hepatitis
C virus (HCV) in HCV-related recipients and hyporesponsive
T cells against polyclonal stimulation prior to withdrawal
could contribute to the establishment of tolerance (70, 72).
Based on these findings, multicenter IS withdrawal trial is
currently being conducted by Dr. Markmann and his colleagues
in Boston (NCT02533180, OPTIMAL) for evaluating donor-
specific immune senescence and exhaustion as biomarker of
operational tolerance in adults. Dr. Sanchez-Fueyo and his
colleagues in Spain is conducting another trial (NCT02498977,
LIFT) with a similar structure, but focused on exploring
biomarkers in transcriptional signatures to identify operational
tolerant recipients. The results of both trials could open a new
gate to understand the mechanism of operational tolerance.

IMPACT OF DSA ON
IMMUNOSUPPRESSION WITHDRAWAL

The deleterious effect of donor-specific antibody (DSA) on
LT recipients is increasingly recognized, but has not been
well-defined. The DSA may cause two types of antibody-
mediated rejection (AMR): one is acute AMR resulting in
immunologically adverse consequence because of preformed
DSA usually accompanied by cellular rejection in the early
postoperative period, and the other is chronic AMR causing
progressive fibrosis in the late phase after liver transplantation. A
retrospective cohort study has shown that de novoDSA (dnDSA)
is associated with rejection, graft loss, and patient death after
liver transplantation, and one of the risk factors for developing
dnDSA is inadequate IS (79). However, a recent IS withdrawal
trial in adult primary LT patients (A-WISH trial, NCT00135694)
has shown that there was no difference in the prevalence of
dnDSA (especially HLA class II dnDSA) between IS maintenance
and IS minimization (44.4% vs. 51.7%, respectively), and the
prevalence was the highest after IS withdrawal was completed
(66.7%) (75, 80). Interesting findings in prevalence have been
reported that the majority (78.7%) of dnDSA was developed
against HLA-DQ Ags, which included DQB1 (57.4%) and DQA1
(21.3%) chains independent of IS status, and dnDSA against
HLA class I Ags increased only when patients were free of IS.
From the view of pathogenicity, dnDSA detected in patients
who failed IS withdrawal may be highly pathogenic compared
to that in patients under IS maintenance and IS-free according
to the prevalence of acute rejection rate (71.4, 25.0, and 16.7%,
respectively) (80).

It is well-recognized that different IgG subclasses have unique
characteristics, such as complement fixation potential or cellular
binding capacity through Fc receptors (FcRs), which may affect
their pathologic potential. IgG3 is known as the strongest
complement activating capacity, followed by IgG1 and IgG2,
while IgG4 is the only subclass that fail to fix complement. IgG3
and IgG1 bind to all three classes of FcRs (FcRI, FcRII, and
FcRIII), while IgG4 binds to FcRII and FcRIII, and IgG2 binds
only FcRII (81). These binding abilities have the potential to
trigger functions such as antibody-dependent cell cytotoxicity,

cytokine production, intracellular signaling, and initiation of cell
recruitment and degranulation with various immune mediators
(macrophages, NK cells, neutrophils, and B cells) (82). Jackson
et al. recently examined whether DSA IgG subclass characteristics
could identify subjects whose liver allografts exhibit subclinical
graft injury with samples from a multicenter IS withdrawal
study for pediatric LT recipients (iWITH, NCT01638559)
(83). They reported that the HLA-class II IgG4 DSA profile
was associated with a higher HLA mismatch, a subclinical
histopathological phenotype characterized by interface activity,
and a tissue transcriptional profile of rejection. Substantial IgG
subclass analysis for DSA in a prospective study is expected
for better understanding and management of the dynamic
evolution of DSA maturation, mechanisms of injury, and entry
points for intervention (84). DSA is produced against HLA
mismatches and HLA Ags has been reported to have structural
epitope that dominate the strength and specificity of binding
antibody (85). Recently, it has been reported that HLA class II
epitope mismatch, which was analyzed by HLA Matchmaker or
the predicted indirectly recognizable human leukocyte antigen
epitopes algorithm (PIRCHE-II), is correlated with a high risk
of dnDSA formation after liver transplantation (86, 87). By
using more detail data on HLA class II epitope mismatch
related to donor recipients, the eligibility criteria for patient
selection in early IS minimization or IS withdrawal trials may be
sophisticated (12).

IMMUNE MONITORING TO PERSONALIZE
IMMUNOSUPPRESSION TOWARD
TOLERANCE

Liver transplant recipients receive immunosuppressive therapy
according to empirical protocols. Immunemonitoring comprises
candidate biomarkers capable of reflecting the donor-specific and
non-specific net-activating state of the immune system, and can
be dissected into tissue, cell, protein, and gene profiles with graft
or systemic samples (Figure 2). Here, we summarize the potential
tool for immune monitoring to personalize immunosuppressive
therapy potentially toward operational tolerance.

As clinical information, histological findings regarding
inflammation and fibrosis are the gold standard for the diagnosis
of rejection. Intensive molecular analyses of biopsy specimens
have shown that immune regulatory markers, such as IL-10,
PD1, PDL1, BATF, TGFβ, and Foxp3 were significantly higher
in tolerant patients (72). Intra-graft iron metabolism has also
been identified in tolerant samples (88). Immunofluorescence
staining revealed transient accumulation of CD4+FOXP3+ cells
in tolerant recipients, along with the upregulation of immune
regulatory genes (89). Although biopsy-based assessments are a
valuable source of information on immunological status, it can
be harmful because of their potential risk of complications. As
candidates of safer biomarkers for successful withdrawal, the
immune phenotype of peripheral blood has also been diligently
investigated. Pittsburgh group reported that the increase in the
ratio of plasmacytoid DCs to monocytoid DCs in peripheral
blood was associated with successful withdrawal (90). Consistent
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FIGURE 2 | Potential immune monitoring application for tolerance in liver

transplantation. This figure summarizes the readouts being investigated for

their potential use for immune monitoring to understand what is happening in

the allograft and predict tolerance. Histological assessment is a direct readout

of allografts, but it is not enough to predict tolerance. Systemic information

from peripheral blood has been investigated as an alternative because of its

less invasive availability. The readouts were categorized into four groups based

on their level of information, tissue, cell, protein, and gene. MLR, mixed

lymphocyte reaction; GWAS, genome-wide association study; CGA, candidate

gene approach.

with this finding, a study with a mammalian target of rapamycin
(mTOR) inhibitor showed a higher proportion of tolerogenic
DCs in tolerant recipients (74). An increasing number of
regulatory T cell subsets (Tregs and gamma-delta T cells) and NK
cells in peripheral blood are associated with tolerant recipients,
which is consistent with their gene signatures (58, 65, 74, 91). A
recent report has shown the kinetics of increasing Tregs/Th17 cell
ratio over the clinical course as a predictor of the development
of tolerance (92). These have the potential to be monitoring
tools for tolerance, but further investigations are needed
to validate their capacities. Pioneering studies for transplant
tolerance has been conducted by “The One Study” consortium
leading by Dr. Geissler and his colleagues. This consortium
conducted harmonized cell therapy studies by multi-center to
induce tolerance with standard immunosuppressive regimen and
immune monitoring protocol, which allow to analyze different
trial data under same platform. These approach also would be
great helpful to build solid and universal foundation in clinical
tolerance, which is observed to a limited extent.

Along with the immune phenotype, functional assays have
been investigated mainly using mixed lymphocyte reaction
(MLR) assays with various readouts. One-way MLR with whole
peripheral blood mononuclear cells (PBMCs) has been often
attempted to use as clinical assay monitoring donor specific

response. However, MLR readout with tritiated thymidine
incorporation shows little predictive value because of its
low level of reproducibility (93). ELISPOT and qPCR-based
detection of cytokines in MLR assay showed sensitive results,
but readout of limited cytokines from bulk cultured cells
may be difficult to interpret as representative of the entire
alloresponse (94–96). Non-toxic intracellular fluorescent dyes
such as carboxyfluorescein diacetate succinimidyl ester (CFSE)
stably stain intracellular proteins, and the fluorescence of each
stained cell segregates equally to daughter cells upon cell
division, resulting in sequential halving of cellular fluorescence
intensity with each successive generation (97). This sequential
halving of fluorescence can be analyzed to track cell division
in populations of proliferating cells using intensity based
analysis by flow cytometry (FACS) even in alloresponse which
is comparatively lower incidence. Additionally, FACS analysis
provides opportunity to assess detail phenotype of proliferating
cell along with number of cells originally proliferated, that
is halving of fluorescence is visualized as distinct peaks or
populations of cells and can be used to track cell division in
populations of proliferating cells. This allows phenotypic analysis
of proliferating cells in addition to determining the number of
cells produced in each generation by multicolor FACS analysis,
that is, the precursor frequency of each CD4+ and CD8, the
precursor frequency of each CD4+ and CD8+ T cell (and
others) can be quantified separately (Figure 3A). The lack of
proliferation in anti-donor MLR reflects the suppression of the
anti-donor response (99). We have previously reported that
optimization of immunosuppressive therapy based on the CFSE-
MLR assay provides a low incidence of acute rejection, reduction
of infectious complications, and helps in monitoring anti-self-
response of CD4+ T cells, which predicts the recurrence of
autoimmune liver diseases after LT (98, 100–102) (Figure 3B).
In addition, CFSE-MLR-based immune monitoring has been
proven to be a useful tool to personalize IS therapy, especially
for LT patients with impaired renal function and HBV-infected
LT patients requiring post-transplant HBV vaccination (103,
104). The benefit of CFSE-MLR immune-monitoring can be
applied to T cell receptor (TCR) repertoire analysis by high-
throughput sequencing. The Colombia group developed a TCR
sequencing-based analysis of responding T cells in CFSE-MLR
to identify and track a significant fraction of alloreactive T cell
repertoire in any donor-recipient pair (105, 106). They have
shown that liver-induced clonal deletion detected by tracking
alloreactive TCR clones in pre-transplant MLR may contribute
to achieving tolerance in LT recipients (107). Furthermore,
another potentially beneficial application of MLR is the detection
of activating induced markers and cytokines. CD154 (CD40L)
has been reported to rapidly upregulate Ag-specific activating
markers of T cells (108, 109). Upregulation of CD154 in T
cells in MLR with donor stimulator was reported as a risk
factor for rejection in pediatric liver transplant recipients (110).
Like CD154, CD137 (4-1BB) has been reported as a specific
activation-induced molecule on T cells (111). Interestingly,
their combination, CD154negCD137+, in CD4+ T cells have
been reported to be representative of activated Tregs under Ag
stimulation, including allo-stimulation, suggesting that it could
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be a candidate for monitoring alloreactive T cell responses in LT
recipients (112, 113).

IMMUNE TOLERANCE MEDIATED BY
TREGS

Applicability of Treg Cell Therapy in Liver
Transplantation
Since the discovery of suppressive T cells and markers, Tregs
(mostly defined as CD4+CD25+FOXP3+) have been shown to
be key mediators in the induction and maintenance of immune
tolerance through multiple mechanisms (114–116). Together
with these accumulating findings in basic science and clinically
reported footprints e.g., the number of Tregs are increasing in
tolerant recipients, Treg-based cell therapy has been attempted
for tolerance in the field of transplantation. Initial attempts have
been made in the field of bone marrow transplantation and
have shown the feasibility of transferring polyclonally expanded
Tregs for graft vs. host disease (GVHD) prophylaxis (117–
119). Together with promising rationale, several clinical trials
have been conducted in LT recipients. Key considerations of
this cell therapy are: (1) timing to infuse the cell product,
(2) induction therapy to make space for adoptive Tregs, (3)
cell component, whether Treg-enriched cell product or isolated
Tregs for culturing, and (4) Ag specificity during expansion,
polyclonal or donor specific (Table 2). In 2016, the Hokkaido
University group demonstrated the impact of Treg-enriched
cell therapy for inducing operational tolerance in 10 living
donor LT patients (120). Autologous Treg-enriched cells were
cultured in MLR in the presence of CD80/86 costimulatory
blockade, and the cell product was administered after pre-
conditioning with cyclophosphamide at early post-transplant
period. Although three recipients with autoimmune liver
disease developed cellular rejection during immunosuppressant
weaning, the other seven (70%) recipients were successfully
weaned off immunosuppressive drugs 18 months after liver
transplantation. In spite of a small cohort, the result that
all tolerant patients maintained normal graft function without
immunosuppressive drugs for over 5 years is promising for
Treg cell therapy for tolerance induction (121). Currently,
clinical studies with isolated Tregs, rather than bulk cultured
cells, are in operation. The King’s college group is running
a phase I/II clinical trial with a polyclonal expanded Treg
isolated by a magnetic isolation system in LT patients with anti-
thymocyte globulin (ATG) pre-conditioning (NCT02166177).
No serious adverse events have been observed to date (122).
The UCSF group conducted clinical trials using donor allo-
Ag reactive Tregs (darTregs) cultured with donor-derived
stimulators (NCT02188719). The protocol includes the use
of ATG before the infusion of donor allo-Ag reactive Tregs
(123). The Massachusetts General Hospital (MGH) group is
employing costimulatory blockade-induced allospecific Tregs
that are generated in short-term MLR with belatacept and
isolated by magnetic isolation before administration. These three
trials reduced the calcineurin inhibitor (CNI) regimen with the

FIGURE 3 | CFSE-MLR for immune monitoring in transplantation. (A)

Intensity-based analysis of mixed lymphocyte reaction assay with CFSE dye

(CFSE-MLR) provide quantitative estimation of the alloresponse. In brief, the

plot and histogram show the gating strategy for CD4+ proliferating cells. Cell

division are gated by the rationale that the CFSE fluorescence intensity shows

the half-value from former generation. (A) Percentage of CD4+ T cell events in

each division, (B) T cell yield, (C) the number of daughter T cells that had

divided n times (A multiply B), (D) precursor extrapolation Using mathematical

relationship, the number of division precursors (E,G) is extrapolated from the

number of daughter cells of each division and from mitotic events (F). These

values are used to calculate precursor frequency and mitotic index (MI). As

normalized quantitative estimation, stimulation index are calculated by dividing

MIs of allogeneic combinations by MIs of autologous controls. (B) Algorithm to

estimate anti-donor alloreactivity in liver transplant recipients. The immune

reactivity of liver transplantation recipients is classified into four categories. By

analyzing the proliferation and CD25 expression of the CD4+ and CD8+ T-cell

subsets in response to anti-donor and anti-third party stimuli, the immune

status is categorized as hypo-, normo-, or hyper-responsive. In recipients with

hyper-response on either CD4+ or CD8+ T cells, immunosuppressants

consider to be increased. In patients with normo-response,

immunosuppressant tapering is abandoned. Only in patients with

hypo-response, immunosuppressant therapy can be tapered off (98). SI,

stimulation index.
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addition of an mTOR inhibitor before attempting complete IS
withdrawal. Since clinical-grade manufactured Tregs cells are
challenging, the King’s college group treated 3 recipients finally
out of the initial 23 and the USCF group’s trial was terminated
because of the manufacturing problem. USCF is conducting
another trial, the ARTEMIS trial (NCT02474199), which has a
different design, to aim at the reduction of CNI in patients with
stable liver graft function in 2–6 years after LT with darTregs
(123). It remains unclear when and what kind of Treg cell therapy
is beneficial for LT recipients. Ongoing trials may clarify some
points, but a systematic approach to investigate the best option
may be needed.

mTOR Inhibitor for Tolerance and Treg
Expansion
Currently, a CNI-based regimen is widely employed as standard
IS therapy for the management of liver transplantation. One
of the most problematic side effects is nephrotoxicity of CNIs
because LT candidates frequently have a variety of degrees of
renal dysfunction, and chronic renal failure has a negative impact
on long-term outcomes. The strategy of early CNI minimization
and mTOR inhibitor maintenance has been attempted to achieve
better renal function after liver transplantation. Meta-analysis
and recent RCTs have shown a protective effect on renal
function by converting CNIs into mTOR inhibitor, but also
high frequency of rejection compared to conventional CNI-based
therapy, suggesting that selected patients could receive the benefit
of mTOR inhibitor conversion (124–126). The mTOR signaling
pathway through PI3K/AKT is widely utilized in the regulation
of cellular activity in immune cells and cancer cells. mTOR
inhibitors have been reported to have therapeutic effects on
hepatocellular carcinoma (HCC) through multiple mechanisms,
including direct antitumor effects and immune regulation (127–
129). According to the antitumor effect, LT recipients with HCC
may be good candidates for mTOR inhibitor regimen (130).
Another topic in the transplantation field of mTOR signaling
is the impact on Treg stability and function, usually mTOR
inhibition recognized as favorable effects (131). One recent
IS withdrawal trial has been conducted expecting this “Treg
friendly effect” to induce operational tolerance (74). Further
investigation is required to elucidate the clinical application of
mTOR inhibitors for transplantation tolerance.

OUTLOOK ON EMPLOYING SNPs AND
miRNAs FOR TOLERANCE

Genetic factors have been reported to be involved in the
mechanisms of transplant tolerance and rejection (132). Here,
we summarize recent advances in genetics and genomics,
particularly single nucleotide polymorphisms (SNPs) and
microRNAs (miRNAs), and their roles intolerance after LT.

Genome-Wide Association Studies (GWAS)
Recent GWAS have established the genes and variants associated
with outcomes in transplantation patients. Multiple GWAS
have been conducted since 2016 on solid-organ transplantation,
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including acute rejection in renal transplantation, post-
transplant malignancy in heart or renal transplantation,
long-term allograft function, and new-onset diabetes mellitus
after renal transplantation; however, there are no GWASs on
liver transplantation (96, 132).

Candidate Gene Approaches (CGA)
The candidate gene approach has been applied in liver
transplantation by conducting genetic association studies
focusing on associations between immune-associated genetic
variation and graft survival/rejection incidence. HLA-G, a
non-classical HLA-class, has been associated with increased graft
survival and decreased number of rejection cases (133–135). It is
also known that HLA-G is capable of inducing a new generation
of regulatory Tregs (136). A recent study has demonstrated
that 14-bp ins/ins and +3142GG genotypes of HLA-G, which
seem to be of serious importance for HLA-G expression, in
LT recipients are involved in a low risk of acute rejection
in liver transplantation, suggesting that LT recipients with a
lower for developing an acute rejection may be identified by
application of these genotypes as biomarkers (137). Another
report has shown that the donor liver tissue-derived CYP3A5
rs776746 and small ubiquitin-like modifier 4 (SUMO4) rs237025
SNPs are associated with tacrolimus pharmacokinetics in the
early period after LT, suggesting that combined evaluation of
these donor genotypes may help determine the withdrawal or
elimination of tacrolimus (138). We have also reported that the
FOXP3 gene rs3761548 A/C SNP in living donor LT recipients
is significantly concerned with susceptibility to steroid-resistant
acute rejection and dnDSA formation, suggesting that the IS
regime and/or anti-rejection treatment regimen should be
adjusted on an individual basis by identifying FOXP3 SNPs
(139). These genetic association studies may hopefully provide
immune-related SNPs that can be useful markers to reduce or
withdraw immunosuppressive drugs.

miRNAs as Biomarkers
miRNAs, which are ∼20–22 nucleotide single-stranded RNA
species, and play a central role in the regulation of protein-
coding genes, are also emerging as robust biomarkers for
assessing allograft status. Millán et al. have reported that
plasma miRNAs can serve as early non-invasive prognostic and
diagnostic biomarkers for T-cell mediated acute rejection in LT
recipients, that is, miR-155-5p regulates the differentiation of
CD4+ T cells into Th cells and IFN-γ production in human
T and NK cells, and miR-181a levels modulate T cell receptor
sensitivity and intensity of signaling (140). Hence, the plasma
levels of miR-155-5p and miR-181a-5p after LT potentially help
identify patients for IS minimization. Revilla-Nuin et al. have
reported a set of differentially expressed miRNAs in tolerant
recipients after liver transplantation that might promote and
control the activation of Tregs necessary to develop operational
tolerance (141). Their study showed that miR95, miR24, miR31,
miR146a, and miR155 were expressed more in tolerant than
in non-tolerant recipients, and were positively correlated with

activated Treg markers. These five miRNAs were upregulated
in the peripheral blood of LT recipients, and the transcription
factor Foxp3 was associated with the miRNA profiles. miR155 is
constitutively expressed in Tregs; Foxp3 binds to the promoter
of miR155 in the B cell integration cluster and maintains
the elevated levels of miR155 required for Treg proliferation.
Furthermore, Vitalone et al. reported increased expression of
miR-142-5p and miR-181a in tolerant livers in an allogeneic
rat LT model (142). Morita et al. have also identified miRNAs
involved in acute rejection and spontaneous tolerance in murine
hepatic allografts (143). They found that miR-146a, 15b, 223,
23a, 27a, 34a, and 451 were upregulated in the allogenic liver
grafts compared with the expression observed in the syngeneic
grafts, whereas miR-101a, 101b, and 148a were downregulated,
demonstrating the change of miRNAs in the allografts and may
suggest the role of miRNAs in the induction of tolerance after
liver transplantation.

CONCLUSION

Progresses in immunosuppressive therapy have efficiently
reduced the incidence of acute rejection of liver allograft.
However, life-long IS has inevitably led to substantial
morbidity and mortality. Thus far, trial and error
have been attempted to minimize or even withdraw
immunosuppressants in select patients. These attempts
would be more successful through the establishment of
reliable immune-monitoring methods and biomarkers. In
addition, deliberate immunomodulatory interventions would
further improve the outcome of these attempts. This review
has summarized our knowledge of mechanisms underlying
immune-tolerance induced after liver transplantation and
prospective strategies to intentionally complete withdrawal of
IS treatment.
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