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Liver cancer is the fourth leading cause of cancer-related death worldwide. Hepatocellular
carcinoma (HCC) accounts for about 85%-90% of all primary liver malignancies. However,
only 20-30% of HCC patients are eligible for curative therapy mainly due to the lack of
early-detection strategies, highlighting the significance of reliable and accurate
biomarkers. The integration of multi-omics became an important tool for biomarker
screening and unique alterations in tumor-associated genes, transcripts, proteins, post-
translational modifications and metabolites have been observed. We here summarized the
novel biomarkers for HCC diagnosis based on multi-omics technology as well as the
clinical significance of these potential biomarkers in the early detection of HCC.
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INTRODUCTION

Liver cancer is one of the leading causes of cancer-related death worldwide (1). Hepatocellular
carcinoma (HCC) accounts for > 80% of liver cancer and is usually developed from advanced
chronic liver diseases (CLD) with hepatitis virus (mainly HBV and HCV) infection and alcoholic/
nonalcoholic liver diseases (2–4). a-fetoprotein (AFP) (5) and Lens culinaris agglutinin-reactive
fraction of AFP (AFP-L3) (6, 7), des-gamma-carboxy prothrombin (DCP) (6) and glypican-3
(GPC3) (8, 9) have been used for the clinical diagnosis of HCC. However, the complex pathology
and individual heterogeneity of HCC pose great challenges for its early detection (10). Most HCC
patients were found at late-stage and had a 5-year survival rate as low as 10.0% (11, 12). It was
reported that the 5-year survival rate would be over 86.2% if the patients were given intervention at
an early phase (13).

Multi-omics including genomics, epigenomics, transcriptomics, proteomics, glycomics/
glycoproteomics and metabolomics can provide novel insights for HCC detection. For genomics
and epigenomics, more evidence has shown that circulating tumor DNAs (ctDNAs) and their
epigenetic changes could be used as reliable biomarkers (14–16). For transcriptomics, significant
changes were observed in mRNAs and noncoding RNAs (miRNAs, lncRNAs, circRNAs) (17). For
proteomics, potential protein biomarkers such as Golgi protein-73 (GP73) (18) and heat shock
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protein 90a (Hsp90a) (19) were identified for HCC detection.
For post-translational modifications (PTMs), glycosylation,
phosphorylation, acetylation and ubiquitination can be
considered for discovering novel biomarkers. Mass spectrometry
(MS)-based glycomics/glycoproteomics technology enabled the
researchers to characterize aberrant glycoforms and site-specific
glycans (20). In addition, metabolomics has contributed to the
diagnosis of HCC (21). This review focused on potential
biomarkers for liver cancer diagnosis based on multi-omics
strategies. Potential HCC biomarkers including genetic
mutations, epigenetic changes, mRNAs, noncoding RNAs,
proteins, PTMs and metabolites have been summarized
in Table 1.
1 GENETIC ALTERATION OF HCC

Circulating cell-free DNAs (cfDNAs) are DNA fragments
released into the peripheral circulation after the degradation of
cell components. The increased proliferation and metabolism of
tumor cells would release abundant cfDNAs, which could be
used as biomarkers (92–96). The conventional genetic changes of
HCC, including point mutations, microsatellite changes and
chromosomal rearrangements are reflected in cfDNAs. It was
reported that about 50 somatic alterations had been detected and
then they could cause changes of their corresponding proteins in
HCC (97, 98). Among 48 patients, 56.3% of patients had at least
one mutation of the four sites in the following three genes (c.747
for TP53, c.121, c.133 for CTNNB1 and c.1-124 for TRET), which
could be further found in 22.2% of HCC patients’ tissues (22, 23).
Moreover, the R249S mutation in TP53 was proved to have a
potential diagnostic value in the test of 895 HCC patients (24).
Other mutation sites of TP53, such as 157 (25), 175 (26), 245
(27), 248 (28) and 273 (29) have been considered for HCC
detection. In addition, amino acid changes, such as S37 and S33,
could be used as available monitoring indicators for HCC (35–
37). The combination of cfDNA mutations and protein changes
can increase the diagnosis accuracy of HCC. For example, HCC
diagnosis using TP53, TERT, CTNNB1, AFP and DCP has
achieved satisfactory results (38).

Epigenetic alterations of ctDNAs were associated with HCC.
Methylation changes of ctDNAs often occur in the early stage of
tumorigenesis, particularly those alterations in the CpG islands
of anti-oncogenes, which may play critical roles in the initiation
and progression of HCC (99). The 5-hydroxymethylcytosines
(5hmC) are abundantly expressed epigenetic markers (100). A
32-gene diagnostic model was developed using the 5hmC-Seal
technique, which accurately distinguished early-stage HCC from
non-HCC (52). Accumulating studies have also reported the
aberrant methylation of glutathione S-transferase pi-1 (GSTP1)
promoter region and cyclin-dependent kinase inhibitor p15 and
p16 in HCC patients (101–103). Moreover, the combination of
several hot methylated genes was utilized for HCC diagnosis. For
example, p16, p15 and ras association domain family 1A
(RASSF1A) were assessed in 50 HCC patients and they
provided an overall predictive accuracy of 89% with a
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sensitivity of 84% and a specificity of 94% (56). A panel of four
genes (APC, GSTP1, RASSF1A and SFRP1) could make a
distinction between HCC and normal controls with a
sensitivity of 92.7% and a specificity of 81.9% (104). A
predictive model that consisted of three abnormally methylated
genes (APC, COX2 and RASSF1A) and one miRNA (miR-203)
could be considered to diagnose HCC (40, 105).
2 TRANSCRIPTOMICS OF HCC

Analysis of differential gene expression was important for HCC
detection. Three genes (FCN3, CLEC1B and PRC1) were
explored to be HCC biomarkers based on large-scale
transcriptome datasets (30). It was found that YWHAZ,
ENAH, HMGN4 and CAPIRN1 changed significantly in HCC
(48). Transcriptomics can be integrated into other omics for
biomarkers screening. A transcriptome-proteome assay was
performed to track the possible biomarkers from HCC-derived
gene expression to its protein product released into serum, and a
candidate biomarker, Hsp90a, was identified (106).

Long noncoding RNAs (lncRNAs), microRNAs (miRNAs)
and circular RNAs (circRNAs) play important roles in the
epigenetic regulation of gene expression (107–109). Especially,
lncRNAs can affect the expression and stability of miRNAs and
messenger RNAs (mRNAs) (110–112). It was reported that
lncRNAs HULC and CYTOR were used for joint diagnosis of
HCC (39). Moreover, a diagnostic panel including lncRNAs
CYTOR, UCA1 and AFP had satisfactory sensitivity and
specificity (31).

miRNAs are small noncoding RNAs composed of 20-24
nucleotides. Elevated miR-21 levels in HCC patients have been
widely reported (32). The high expression of miR-224 had a good
diagnostic value with an AUC of 0.888-0.899 for patients with
early HCC (45). It was reported that the overexpression of eight
miRNAs (miR-20a-5p, miR-25-3p, miR-30a-5p, miR-92a-3p,
miR-132-3p, miR-185-5p, miR-320a and miR-324-3p) had
diagnostic significance in HBV positive HCC patients. Besides,
the four miRNAs (miR-20a-5p, miR-320a, miR-324-3p and
miR-375) panel could contribute to the early screening of HCC
(49). Zhou et al. found plasma miR-122, miR-192, miR-21, miR-
223, miR-26a, miR-27a and miR-801 were potential circulating
biomarkers for HCC (75). This seven-miRNA panel showed high
accuracy in the diagnosis of HCC, even in patients with early
stages. The miRNA panel enabled a more detailed distinction
among HCC, healthy, chronic HBV and cirrhosis. It has been
evaluated by multi-center clinical detection and authorized by
National Medical Products Administration in China.

The changes in circRNA expression were also observed in
HCC patients (113). For example, cSMARCA5 (41, 42), circ-
ZEB1.33 (33) and circ_0001445 (46) levels were notably
decreased in HCC patients. Two circRNAs (circ_000244 and
circ_104075) were upregulated in HCC tissues and sera. The
circ_104075 exhibited better sensitivity and specificity than some
traditional HCC biomarkers (53). The circ_000244 showed
better diagnostic performance than AFP (50).
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TABLE 1 | Potential biomarkers for HCC based on multi-omics strategy.

Genes mRNAs lncRNAs miRNAs circRNAs Proteins PTMs Metabolites

TP53
(22–29)

FCN3 (30) HULC (31) miR-21
(32)

circ_ZEB1.33
(33)

GP73 (18) AFP-L3 (Fuc) (6, 7) 1-methyladenosine (34)

CTNNB1
(c.121A > G, c.133T > C)
(22, 35–38)

CLEC1B
(30)

CYTOR
(31, 39)

miR-203
(40)

cSMARCA5
(41, 42)

DCP (5) A1AT (Fuc) (43) Xanthine (44)

TERT
(c.1-124C > T)
(22, 36–38)

PRC1
(30)

UCA1 (31) miR-224
(45)

circ_0001445
(46)

AFP (5) Apo-J (N-glycan)
(47)

Uric acid (44)

AXIN1 (gene mutation) (35, 38) YWHAZ
(48)

MALAT1
(31)

miR-20a-
5p (49)

circ_000244
(50)

Hsp90a (19) Fibronectin (Fuc)
(51)

Cholyglycine (44)

A 32-gene model (52) ENAH
(48)

PTTG3P
(31)

miR-25-3p
(49)

circ_104075
(53)

OPN (54) Hemopexin (Fuc)
(55)

D-leucic acid (44)

p16, p15, RASSF1A (hypermethylation)
(56)

HMGN4
(48)

SPRY4IT1
(31)

miR-30a-
5p (49)

MDK (57) Paraoxonase-1 (Fuc)
(58)

3-hydroxy caproic acid (44)

APC, GSTP1, RASSF1A, and SFRP1
(hypermethylation) (40)

CAPRIN1
(48)

UBE2CP3
(31)

miR-92a-
3p (49)

GPC3 (8, 9) AGP (Fuc) (59) Arachidonic lysolecithin (44)

PTENP1
(31)

miR-132-
3p (49)

ANXA2 (60) Hp (Fuc, Sialic acid)
(61, 62)

Dioleoylphosphatidylcholine
(44)

GHET1
(63)

miR-185-
5p (49)

ANXA3 (64) C3, CE, HRG, CD14
(Fuc) (65)

Acetylcarnitine (66)

miR-320a
(49)

DKK1 (67) 4E-BP1 (P) (68) Butyrylcarnitine (69)

miR-324-
3p (49)

TRX (70) ALDOA (P) (71) Hydantoin-5-propionic acid
(69)

miR-375
(49)

PARP1 (72) ERK1 (P) (73) Choline (74)

miR-122
(75)

AFP +
fibronectin 1
(76)

ERK2 (P) (73) Valine (74)

miR-192
(75)

7-AAb panel
(77)

LARP1 (P) (78) Creatinine (74)

miR-21
(75)

RNF6 (79) Smad2/3 (P) (80) Palmitic acid (81)

miR-223
(75)

SCCA (70) Plectin-1 (P) (73) Phenylalanyl-tryptophan
(82)

miR-26a
(75)

CK19 (83) a-HS-glycoprotein
(P) (84)

Glycocholate (82)

miR-27a
(75)

Ku80 (Ub) (85)

miR-801
(75)

KLK6 (Ub) (86)

SCOS1 (Ub) (87)
WDR76 (Ub) (88)
AFP (Ac) (89)
Core histone H3
(Ac) (90)
Core histone H2B
(Ac) (91)
Core histone H3.3
(Ac) (91)
Core histone H4
(Ac) (91)
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*Red represents up-regulation in HCC, blue represents down-regulation in HCC.
TP53, Tumor protein P53; CTNNB1, Catenin beta 1; TERT, Telomerase reverse transcriptase; AXIN1, Axin 1; RASSF1A, Ras association domain family 1 isoform A; APC, Adenomatous
polyposis coli; GSTP1, Glutathione S-transferase pi-1; SFRP1, Secreted frizzled-related protein 1; YWHAZ, Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein
zeta; ENAH, Enabled homolog; HMGN4, High mobility group nucleosomal binding domain 4; CAPRIN1, Cell cycle associated protein 1; HULC, Hepatocellular carcinoma upregulated long
noncoding RNA; CYTOR, Cytoskeleton regulator RNA; UCA1, Urothelial cancer associated 1; MALAT1, Metastasis associated lung adenocarcinoma transcript 1; PTTG3P, Pituitary tumor-
transforming 3 pseudogene; SPRY4-IT1, Sprouty receptor tyrosine kinase signaling antagonist 4 intronic transcript 1; UBE2CP3, Ubiquitin-conjugating enzyme E2C pseudogene 3; PTENP1,
Phosphatase and tensin homolog pseudogene 1; GHET1, Gastric carcinoma proliferation enhancing transcript 1; AFP, a-fetoprotein; Hsp90a, Heat shock protein 90a; GP73, Golgi protein
73; DCP, Des-gamma carboxy prothrombin; OPN, Osteopontin; MDK, Midkine; ANXA2, Annexin A2; ANXA3, Annexin A3; DKK1, Dickkopf-1; TRX, Thioredoxin; GPC3, Glypican-3; PARP1,
Polymerase 1; 7-AAb panel, CIAPIN1, EGFR, MAS1, SLC44A3, ASAH1, UBL7, and ZNF428; RNF6, Ring finger protein 6; SCCA, Squamous cell carcinoma antigen; CK19, Cytokeratin 19;
AFP-L3, Lens culinaris agglutinin-reactive fraction of AFP; A1AT, a-1-antitrypsin; Apo-J, Apolipoprotein J; AGP, a1-acid glycoprotein; Hp, Haptoglobin; C3, Complement C3; CE,
Ceruloplasmin; HRG, Histidine-rich glycoprotein; 4E-BP1, 4E-binding protein 1; ALDOA, Aldolase A; ERK1, Extracellular regulated protein kinases 1; ERK2, Extracellular regulated protein
kinases 2; LARP1, La-related protein 1; Smad2/3, Mothers against decapentaplegic homolog 2/3; a-HS-glycoprotein, a-Heremans-Schmid-glycoprotein; KLK6, Kallikrein-related peptidase
6; SCOS1, Suppressor of cytokine signaling 1; WDR76, WD40-repeat protein 76; Fuc, Fucosylation; P, Phosphorylation; Ub, Ubiquitination; Ac, Acetylation.
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3 PROTEOMICS OF HCC

Many classical proteins, which served as reliable biomarkers for
other cancers, have been posing new value in HCC diagnosis.
Squamous cell carcinoma antigen (SCCA) was previously
reported to be associated with cervical cancer (114). Recent
studies also indicated that it had a significant contribution to
the early diagnosis of HCC (70). Protein expression of
cytokeratin 19 (CK19) in HCC was low, however, it would
reflect the malignant progression of hepatoma cells (83). GP73
(18), osteopontin (OPN) (54), midkine (MDK) (57), annexin A2
(ANXA2) (60), annexin A3 (ANXA3) (64), dickkopf-1 (DKK1)
(67), thioredoxin (TRX) (70) and polymerase 1 (PARP1) (72)
have shown diagnostic value for the early diagnosis of liver
cancer. Ring finger protein 6 (RNF6) was upregulated and
promoted the tumorigenicity of HCC, which might be useful
for the detection of HCC at the initial stage (79). A combination
of protein markers was also considered for HCC detection, for
example, the joint diagnosis with AFP and fibronectin 1 (76). A
novel 7-autoantibody (AAb) panel containing CIAPIN1, EGFR,
MAS1, SLC44A3, ASAH1, UBL7 and ZNF428 was identified
using HCC-focused array (77). The artificial neural network
model was established for this panel and it was also able to detect
AFP-negative HCC with AUC values of 0.841-0.948. Further,
proteogenomics was used to address the complex biological
properties of cancer and it could incorporate proteomics into
genomic-level studies to obtain more accurate cancer
information (115).
4 POST-TRANSLATIONAL
MODIFICATIONS (PTMS) OF HCC

PTMs such as glycosylation, phosphorylation, acetylation and
ubiquitination play vital roles in multiple physiological processes
and disease progression, including control of the cell cycle
progression, changes of chromatin structures and transduction
of cellular signals (116). We have summarized potential
biomarkers with different PTMs in Figure 1.

Glycosylation of HCC
Tremendous evidence illustrated that glycan structures were
altered in cancers (117, 118). Cancer-associated glycosylation
aberration provides novel biomarkers by utilizing glycomic/
glycoproteomic technologies (119–123). For example, the glycan
profile has been assessed to predict the development of HCC in
cirrhosis (124). Glycomics is to detect glycans attached to
macromolecules such as proteins (7, 119, 121, 125) and
glycoproteomics is a high-throughput technique that could
reveal glycosylation sites and site-specific glycoforms (126).

Different glycosylation patterns mainly occur in fucosylation,
glycan branching, sialylation and terminal N-acetylgalactosamine
(127–129). It was reported that increased fucosylated N-glycans
played crucial roles in cancer development, such as core-a-1,6-
fucosylated triantennary glycan (130–132). Fucosylation of a1-
Frontiers in Oncology | www.frontiersin.org
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acid glycoprotein (AGP) was increased in patients with liver
cirrhosis and HCC. Meanwhile, different degrees of fucosylation
could further distinguish HCC from liver cirrhosis. Thus,
determining the specific changes of AGP glycan structures could
be helpful for HCC detection (59). The combination of
trifucosylated N-glycan of AGP, AFP and AGP showed
superiority in discriminating HCC from liver cirrhosis. Zhu
et al. investigated the alterations in fucosylation degree of serum
haptoglobin (Hp) in a cohort, which included healthy controls,
liver cirrhosis and HCC patients, and also confirmed that the
fucosylation abnormalities of Hp were closely related to HCC (62).
The monofucosylated triantennary glycan at Asn184 and Asn241
of Hp had the diagnostic potential for HCC patients (133). In
addition, enhanced fucosylation of serum paraoxonase 1 (PON1)
(58), a-1-antitrypsin (A1AT) (43), hemopexin (Hpx) (55),
complement C3 (C3), ceruloplasmin (CE), histidine-rich
glycoprotein (HRG), CD14 (65) and fibrinogen (51) have been
reported to be potential glycobiomarkers for early-stage
HCC detection.

High-mannose levels were reported to be associated with
HCC (134, 135). Previous studies have shown that N-
glycosylation changes occurred in the progression of HCC
(136). A total of 83 N-glycans was identified in HCC, and
among them, 57 had alterations (137). Two glycopeptides of
IgA2 might be unique glycan signatures and provided diagnostic
clues in HBV-related liver cancer (138). Apolipoprotein J
(Apo-J) in HCC had decreased levels of triantennary glycan
and the level of glycosylation of Apo-J could differentiate HCC
from cirrhosis with an AUC of 0.852 (47). Besides, sialylation
played an important role in cell recognition, adhesion and signal
transduction. The high content of sialic acid has been observed in
HCC (139). Three glycans containing sialic acid have been
regarded as candidate markers for the detection of HCC and
they could differentiate HCC from CLD with the AUC of 0.89-
0.93 (140). The sialylated glycans of serum Hp were also elevated
in HCC (61, 141).

Phosphorylation of HCC
Aberrant protein phosphorylation is associated with HCC (142)
and more phosphorylation alterations have been elucidated with
the development of omics methods. Elevating phosphorylation
levels of 4E-binding protein 1 (4E-BP1) on Thr46 could be used
to predict the early recurrence and metastasis of HCC (68). The
level of Ser36 phosphorylation of aldolase A (ALDOA) was
increased and could be used as a potential biomarker for HCC
(71). Changes of some phosphorylation sites, such as the
remarkable downregulation of pT185 on extracellular regulated
protein kinases 2 (ERK2) and pY204 on extracellular regulated
protein kinases 1 (ERK1), have contributed to the progression of
HCC (73). Phosphorylation of plectin-1 (phospho-Ser-4253) and
a-HS-glycoprotein (phospho-Ser 138 and 312) were also found
to be potential HCC biomarkers (84). Furthermore,
phosphorylation of la-related protein 1 (LARP1)-T449 and
mothers against decapentaplegic homolog 2/3 (Smad2/3)-Thr8
could be useful for HCC detection (78, 80).
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Ubiquitination of HCC
Ubiquitination modification, mediating protein enzymatic
degradation by labeling proteins, plays a critical role in
tumorigenesis (143). The change of Lys48-linked ubiquitination
in heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1)
inhibited HNRNPA1-dependent pyruvate kinase isozyme
splicing, and subsequently promoted glucose metabolism
reprogramming and malignant behavior of cells in HCC (144).
Kallikrein-related peptidase 6 (KLK6) and its catalytic products
Ubi1-74 could identify cirrhotic patients at risk of developing
HCC (86). The ubiquitination levels of several proteins could serve
as HCC indicators, such as lupus Ku autoantigen protein p80
(Ku80) (85), suppressor of cytokine signaling 1 (SCOX1) (87) and
WD40-repeat protein 76 (WDR76) (88).

Acetylation of HCC
Acetylation modification, as a dynamic and particular component
of PTMs, has attracted more attention in recent years. Lysine
acetylation is regulated by the interaction between acetylase
Frontiers in Oncology | www.frontiersin.org 5
and deacetylase (145). Increasing evidence has shown that lysine
acetylation played a pivotal role in metabolic function and cellular
signaling transduction in the occurrence and development of HCC
(63, 146). The sites of lysine acetylation in non-histone proteins
and histone proteins have been studied in liver tissues (147, 148).
Using MS detection, the acetylation at K194, K211 and K242 of
AFP provided novel markers and therapeutic targets for HCC (89).
Additionally, the acetylation levels of lysine 120 in histone H2B,
lysine 18 in histone H3.3 and lysine 77 in histone H4 were found to
be increased in HCC (91). Core histone H3 is another highly
conserved protein in cell nucleus and its acetylation has indicated
diagnostic significance in HCC (90).
5 METABOLOMICS OF HCC

Metabolites with low molecular weight such as < 1.5 kDa can be
defined as “metabolome”, and these small molecular metabolites
can dynamically change in liver diseases (149). Metabolomics is a
FIGURE 1 | Schematic representation for alterations of PTMs in HCC. GlcNAc, N-acetylglucosamine; Asn, Asparagine; Man, Mannose; Gal, Galactose; Fuc, Fucose; SA,
Sialic Acid; AGP, a1-acid glycoprotein; PON1, Paraoxonase 1; A1AT, a-1- antitrypsin; Hpx, Hemopexin; C3, Complement C3; CE, Ceruloplasmin; HRG, Histidine-rich
glycoprotein; Hp, Haptoglobin; AFP, a-fetoprotein; Apo-J, Apolipoprotein J; ALDOA, Aldolase A; 4E-BP1, 4E-binding protein 1; ERK1, Extracellular regulated protein
kinases 1; ERK2, Extracellular regulated protein kinases 2; LARP1, La-related protein 1; Smad2/3, Mothers against decapentaplegic homolog 2/3; a-HS-glycoprotein, a-
Heremans-Schmid-glycoprotein; KLK6, Kallikrein-related peptidase 6; Pr, Protein; SOCS1, Suppressor of cytokine signaling 1; WDR76, WD40-repeat protein 76; H2B,
Histone 2B; H3.3, Histone 3.3; H4, Histone 4; H3, Histone 3.
February 2022 | Volume 12 | Article 822449
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high-throughput method to identify and measure metabolites
and offers an opportunity to discover biomarkers (150). Many
metabolites were identified including xanthine, uric acid,
cholyglycine, D-leucic acid, 3-hydroxy caproic acid,
arachidonic acid lysolecithin and dioleoylphosphatidylcholine.
They could be effective for the discrimination of HCC from
HCV (44). Serum acetylcarnitine enabled clinicians to detect
HCC from liver cirrhosis (66). In addition, palmitic acid
made a distinction between liver cirrhosis and HBV. The 5-
methoxytryptamine, malic acid and phenylalanine were used to
discriminate HBV and normal controls. The b-glutamate and
asparagine were potential liver disease-specific biomarkers to
distinguish HCC from liver cirrhosis (74). Serum 1-
methyladenosine was identified as a characteristic metabolite
for HCC (34). Two metabolites, butyrylcarnitine and hydantoin-
5-propionic acid could be combined together to detect HCC (69).
A total of 169 genes and 28 metabolites was reported to be
associated with HCC (81). The product of stearoyl CoA
desaturase, monounsaturated palmitic acid, increased the
invasiveness of HCC, enhanced the migration ability of HCC
cells in vitro and might be helpful for HCC diagnosis.
DISCUSSION

Omics technologies and analytical software have been improved.
For glycosylation, pGlyco (151), StrucGP (152), GPQuest and
GlycoPAT (153) helped to obtain detailed and accurate data.
Multi-omics proposed more biomarkers and the specificity and
sensitivity of these biomarkers still need to be comprehensively
evaluated. Previous studies showed that the profile of DNA
methylation had high tissue specificity and helped to
determine the tissue origin of cfDNAs (154–157). The
combination of different omics biomarkers and the application
of computational models can increase diagnostic accuracy. For
example, monitoring the change of HCC-specific CpG island
methylator phenotype in company with AFP was proved to have
better diagnostic performance (158). Measuring both Mac-2
binding protein glycosylation isomer (M2BPGi) and AFP
improved the detection sensitivity (159). Metabolites such as
phenylalanyl-tryptophan and glycocholate could be added to
the traditional HCC diagnostic process to achieve early
detection (82).
Frontiers in Oncology | www.frontiersin.org 6
Different types of biomarkers and detection methods have
their advantages and applicable fields. The changes of some
proteins and ctDNAs can be detected in the early stages of cancer
and they may have high sensitivity for detecting high-risk
patients. Considering the affinity of lectin and glycan-specific
antibodies to their corresponding glycosylated structures may be
low, so its detection usually needs more complex methods (160,
161). Milliliters of plasma were often used for cfDNA extraction
(162); micrograms of proteins or microliters of serum seem to be
enough for PTM determination (163); for metabolites,
microliters of serum were often considered (164). Thus,
different methods need to be considered and improved to
promote clinic application of multi-omics biomarkers.
CONCLUSION

The combination of multi-omics, including genomics,
transcriptomics, proteomics, glycomics, glycoproteomics and
metabolomics would provide more sensitive and accurate
detection for HCC, especially in the early stage. Multi-omics
approaches also enable the researchers to gain deeper
insight into the molecular mechanism of HCC development.
With optimized technologies and clinical validation, multi-
omics biomarkers would become practical in clinic for
HCC diagnosis.
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