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Abstract

Genomic imprinting is a phenomenon in which the same allele is expressed differently, depending on its parental origin.
Such a phenomenon, also called the parent-of-origin effect, has been recognized to play a pivotal role in embryological
development and pathogenesis in many species. Here we propose a statistical design for detecting imprinted loci that
control quantitative traits based on a random set of three-generation families from a natural population in humans. This
design provides a pathway for characterizing the effects of imprinted genes on a complex trait or disease at different
generations and testing transgenerational changes of imprinted effects. The design is integrated with population and
cytogenetic principles of gene segregation and transmission from a previous generation to next. The implementation of the
EM algorithm within the design framework leads to the estimation of genetic parameters that define imprinted effects. A
simulation study is used to investigate the statistical properties of the model and validate its utilization. This new design,
coupled with increasingly used genome-wide association studies, should have an immediate implication for studying the
genetic architecture of complex traits in humans.
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Introduction

Genomic imprinting arises from a gene when either the

maternally or paternally derived copy of it is expressed while the

other copy is silenced [1,2]. Caused by epigenetic modifications

such as DNA methylation established during gametogenesis and

maintained throughout somatic development in the offspring,

genetic imprinting has been shown to play a pivotal role in

regulating the formation, development, function, and evolution of

complex traits and diseases [3,4,5,6,7,8,9,10]. While most studies

of genetic imprinting focus on the epigenetic and molecular

mechanisms of this phenomenon [7,11], the number and

distribution of imprinted genes and their epistatic interactions

for quantitative traits are poorly understood, limiting the scope of

our inference about the effects of imprinting genes on the diversity

of biological traits or processes. Several authors have started to use

genome-wide association and linkage studies to identify the regions

of the genome that contain imprinted sequence variants and

further understand the epigenetic variation of complex traits

[12,13,14,15].

In a series of recent studies, Cheverud, Wolf, and colleagues

categorized genetic imprinting into different types based on the

pattern of its expression, i.e., maternal expression, paternal

expression, bipolar dominance, polar overdominance, and polar

underdominance [14,15]. With a three-generation F2 design, they

identified these types of imprinted quantitative trait loci (iQTL)

affecting body weight and growth in mice, displaying much more

complex and diverse effect patterns than previously assumed. A

different design based on reciprocal backcrosses was proposed to

test and estimate the distribution of iQTL responsible for

physiological traits related to endosperm development in maize

[16]. By modeling identical-by-descent relationships in multiple

related families of canines, Liu et al. [13] derived a random effect

model based on linkage analysis to genome-wide scan for the

existence of iQTL that affect canine hip dysplasia. In a recent

study, Wang et al. [9] used reciprocal F2 designs to identify the

additive and dominant effects of iQTLs and their interactions with

imprinting effects for hyperoxic acute lung injury survival time in

mice. These authors also explore the transgenerational inheritance

of iQTLs.

While epigenetic marks resulting in genomic imprinting can be

generally stable in an organism’s lifetime, they may undergo

reprogramming, i.e., a faithful clearing of the epigenetic state

established in the previous generation, in the new generation

during gametogenesis and early embryogenesis [17,18,19].

However, a growing body of evidence since the early 1980s

indicates that genes may escape such reprogramming and, thus,

inherit their imprinting effects into next generations

[20,21,22,23,24,25]. Two fundamental questions will naturally

arise from this discovery: how common are imprinted genes of this

type and how strong is the evidence for their existence in humans

and other organisms? If epigenetic changes through imprinted
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genes can be inherited across generations, this would significantly

alter the way we think about the inheritance of phenotype [26,27].

Such transgenerational epigenetic inheritance, i.e., modifications

of the chromosomes that pass to the next generation through

gametes, may be related with health and diseases with a

mechanism for transmitting environmental exposure information

that alters gene expression in the next generation(s) [28]. The

identification of imprinted loci displaying transgenerational

epigenetic inheritance will be greatly helpful for addressing the

two questions mentioned above, in a quest to elucidate the detailed

genetic architecture of complex traits and diseases.

The motivation of this study is to develop a novel strategy for

identifying imprinted genes for a quantitative trait and under-

standing the transgenerational changes of their effects with a three-

generation family design by sampling multiple unrelated nuclear

families, each composed of the grandfather, grandmother, father,

mother, and grandchildren, from a natural population. This

transgenerational design contains information about how alleles at

different loci co-transmit during meiosis from one generation to

next and, thus, has been widely used for genetic linkage analysis

[29,30]. By tracing the inheritance of alleles at a gene(s) from a

paternal or maternal parent, this design allows the characteriza-

tion of parent-of-origin of alleles and provides a powerful way to

estimate genetic imprinting effects. Because only genotypes can be

observed, we formulate a mixture model to specify allelic

configurations in terms of parental origins of the alleles. The

EM algorithm is implemented to estimate the effects of imprinted

genes and their changes across generations. A testing procedure is

proposed to study the pattern of transgenerational epigenetic

inheritance. The statistical behavior of the model is examined

through simulation studies.

Results

Simulation studies were performed to examine the statistical

behavior of the model. A three-generation design is simulated

which include a certain number of first-generation families sorted

into 9 mating types (as shown in Table S1) according to the

genotype frequencies. Assume that the allele frequencies of a gene

are 0.6 and 0.4 in a natural population at Hardy-Weinberg

equilibrium. Our simulation will focus on the investigation of the

impacts of different sampling strategies and heritabilities on

parameter estimation and model power. For a given sample size,

two sampling strategies are simulated, (1) a large family number

and small family size, and (2) a small family number and large

family size.

The first strategy samples 200 unrelated grandfathers and 200

unrelated grandmothers, who marry to form 200 the first-

generation families. Each first-generation family is assumed to

have one son who, as the father, form a second-generation family

with the mother from the natural population. There is one child

for each second-generation family. This allocation results in a total

of 1000 subjects. All members in the design are typed for the gene,

but only the fathers and offspring of the third generation are

phenotyped for a normally distributed trait. The second strategy

samples 50 unrelated grandfathers and 50 unrelated grandmoth-

ers. In each first-generation family, 3 sons are simulated, forming

150 second-generation families in which 4 children are assumed.

This strategy also results in 1000 subjects.

Different genetic effects of the gene, additive, dominant, and

imprinting, are simulated for the second- and third-generations

using the designed shown in Tables S2 and S3. Two different

heritability levels, 0.1 and 0.4, are simulated for each generation,

from which variances are determined. Table 1 tabulates the

estimates of population and quantitative genetic parameters from

the three-generation design. As expected, allele frequency can be

very well estimated. The model provides reasonable estimation

accuracy and precision for all genetic parameters under different

sampling strategies, even for a modest heritability level. Under

both strategies, the model has great power (0.85 or higher) to test

the significance of individual genetic effects, additive, dominant,

and imprinting, expressed in different generations. The model is

also powerful to detect differences of genetic effects between two

consecutive generations. More interesting, the difference of

imprinting effect between different generations, i.e., transgenera-

tional inheritance of genetic imprinting, can be discerned with

power 0.80 using our statistical design.

One major aim of this study is to estimate the change of genetic

effects over generation. Although our model has great power to

detect the transgenerational change of genetic effects, its false

positive rates should also be assessed. We conducted an additional

simulation study to address this issue by simulating a SNP that has

the same genetic effects between the two generations. The model

detects a small proportion of simulation replicates (v6%) which

displays transgenerational differences in all types of genetic effects

including additive, dominant, and imprinting. This suggests that

the model has a small type I error rate for detecting the

transgenerational difference of overall genetic effects. We

particularly tested the type I error rate for the transgenerational

difference of genetic imprinting, which is reasonably small (v8%).

The haplotype model is also examined through simulation

studies. We simulated two SNPs with a recombination fraction of

Table 1. The maximum likelihood estimates (MLEs) of additive (a), dominant (d), and imprinting effects (i) of a functional SNP on a
complex trait in parental (F ) and offspring (O) generations under two different strategies.

Genetic True Strategy 1 Strategy 2

Parameter Value H2~0:1 H2~0:4 H2~0:1 H2~0:4

aF 1:0 1:0198(0:0236) 1:0028(0:0112) 1:0387(0:0333) 0:9975(0:0125)

dF 0:6 0:5702(0:0340) 0:6184(0:0144) 0:6272(0:0392) 0:6046(0:0185)

iF 0:6 0:6024(0:0306) 0:5991(0:0093) 0:5897(0:0328) 0:6037(0:012)

aO 1:0 0:9779(0:0429) 0:9889(0:0167) 1:0136(0:0243) 1:0082(0:0108)

dO 1:5 1:5218(0:0462) 1:4397(0:0242) 1:5465(0:0389) 1:4962(0:0138)

iO 1:0 0:9853(0:0393) 0:9885(0:0138) 1:0272(0:0271) 1:0212(0:0119)

The esimates are the means of MLEs obtained from 200 simulation replicates, with standard errors given in parentheses.
doi:10.1371/journal.pone.0016858.t001
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r~0:05 that are segregating in a human population. Of the four

haplotypes, one is assumed to function as a risk haplotype. The

remaining is collectively called the non-risk haplotype. The genetic

values of composite diplotypes constituted by risk and non-risk

haplotypes include the additive (a), dominant (d), and imprinting

(i) genetic effects. We assume that some of these effects are

different, and the others are the same between the parental and

offspring generations. Combinations of different heritabilities

between the two generations are simulated.

Table 2 gives the results of simulation for different heritabilities

and sample sizes (all subjects used). Overall, all parameters can be

estimated reasonably well. As expected, the precision of parameter

estimation increases with heritability and sample size. The additive

genetic effects in both generations can well be estimated with a

modest sample size (say 400) for a small heritability (0.1). More

sample sizes (say 800) are needed to provide a good estimate for

genetic imprinting effects for a small heritability. To well estimate

dominant genetic effects, an even larger sample size (say 2000) is

required for the same level of heritability.

Discussion

The traditional view of quantitative trait expression analysis

assumes that the maternally and paternally derived alleles of each

gene are expressed simultaneously at a similar level. However, this

view is violated by a growing body of evidence that alleles are

expressed from only one of the two parental chromosomes [1,2].

This so-called genetic imprinting or parent-of-origin effect has

been thought to play a pivotal role in regulating the phenotypic

variation of a complex trait [3,4,6,8,9,12,13,14,15]. With the

discovery of more imprinting genes involved in trait control

through molecular and bioinformatics approaches, we will be in a

position to elucidate the genetic architecture of quantitative

variation for various organisms including humans.

Recent evidence shows that epigenetic inheritance in humans

may experience a transgenerational change. This would represent

a significant shift in our current understanding of inheritance and

disease aetiology. Despite the development of new technologies

that are reducing the time and cost of genotyping by several

orders of magnitude [31,32], the understanding of the underlying

genetic events will be challenging. In this article, we present a

computational model for identifying the genomic imprinting

effect of genes on quantitative phenotypes and transgenerational

change of genomic imprinting using a multigenerational sampling

design for human families. The model formulates a general

framework for testing the difference of genetic effects between

different generations. By including multiple SNPs, the model was

extended to estimate genomic imprinting and its transgenera-

tional change expressed at the haplotype level. Although several

models have been developed to estimate genomic imprinting for

binary disease traits [33,34], our model is among the first for

estimating genetic imprinting operational in regulating the

variation of quantitative traits and is certainly the first of its kind

that can discern the transgenerational change of genetic

imprinting.

Although no real data were analyzed for the moment, this

model presents a conceptual design by which new data can be

collected according to the sampling strategy proposed and then

analyzed by the computational algorithm derived. Based on

computer simulation, the model should display convincing

statistical properties in parameter estimation and test and can be

applied to a practical data set. However, several issues need to be

addressed when the model is attempted to solve broader genetic

questions. First, the maternal effects that cause parent-of-origin

effects of alleles may be confounded with imprinting effects [35],

which should be separated by developing a proper design in order

to better study the patterns of gene expression and evolutionary

dynamics.

Second, this study assumes the unisex (sons) produced from the

first-generation family. One can also assume daughters with no

change of the model, allowing the test of genomic imprinting

between mother and offspring. In fact, our model can involve both

sexes so that in the second generation sex-specific genetic effects

can be characterized. If the sexes in the third generation are

considered, the model can be extended to study the transgenera-

tional changes of gene-sex interactions. Third, it is possible that

part of parental genotypes are missing in practice. To infer

genomic imprinting using such data sets, a multi-hierachical

mixture model can be derived to estimate the missing parental

genotypes based on observed offspring genotypes. Fourth,

Table 2. Simulation results for transgeneration imprinting effects comparisons.

First Generation Parameters Second Generation Parameters

N H2 r~0:05 aF~1 dF~0:5 iF~0:4 aO~1 dO~1:5 iO~0:6

400 0:1 0:1 0:0561(0:0049) 0:9936(0:0185) 0:5228(0:0263) 0:3824(0:0195) 1:0182(0:0266) 1:4761(0:0405) 0:6592(0:0269)

0:1 0:4 0:0450(0:0049) 0:9975(0:0162) 0:4690(0:0279) 0:4437(0:0184) 0:9860(0:0106) 1:4936(0:0174) 0:5937(0:0115)

0:4 0:1 0:0639(0:0055) 1:0011(0:0082) 0:5032(0:0107) 0:4013(0:0082) 1:0210(0:0277) 1:5275(0:0383) 0:5631(0:0285)

0:4 0:4 0:0681(0:0054) 1:0137(0:0075) 0:5072(0:0115) 0:3916(0:0083) 0:9939(0:0108) 0:4920(0:0144) 0:5975(0:0110)

800 0:1 0:1 0:0486(0:0044) 1:0003(0:0134) 0:4610(0:0183) 0:4162(0:0126) 1:0079(0:0194) 1:5219(0:0284) 0:6322(0:0175)

0:1 0:4 0:0461(0:0040) 0:9956(0:0135) 0:4933(0:0180) 0:3796(0:0114) 1:0049(0:0075) 1:4978(0:0112) 0:5874(0:0072)

0:4 0:1 0:0516(0:0041) 1:0047(0:0046) 0:5074(0:0077) 0:3915(0:0055) 0:9916(0:0083) 1:5027(0:0091) 0:6002(0:0073)

0:4 0:4 0:0567(0:0036) 1:0011(0:0056) 0:5023(0:0080) 0:3976(0:0061) 0:9773(0:0077) 1:5069(0:0104) 0:5926(0:0083)

2000 0:1 0:1 0:0516(0:0032) 1:0109(0:0079) 0:4951(0:0116) 0:4059(0:0089) 1:0053(0:0122) 1:5095(0:0150) 0:5878(0:0119)

0:1 0:4 0:0536(0:0029) 1:0078(0:0094) 0:5283(0:0107) 0:4038(0:0099) 1:0017(0:0042) 1:5011(0:0064) 0:5912(0:0053)

0:4 0:1 0:0488(0:0027) 0:9996(0:0034) 0:5076(0:0044) 0:4064(0:0036) 0:9830(0:0115) 1:4997(0:0152) 0:6001(0:0138)

0:4 0:4 0:0545(0:0028) 1:0009(0:0033) 0:5043(0:0047) 0:3986(0:0033) 0:9993(0:0050) 1:5012(0:0064) 0:5996(0:0048)

The genetic design scenarios are chosen as the combination of different heritabilities and sample sizes. They are: H2
1 ~0:1=0:4, H2

2 ~0:1=0:4, n~400,800,2000.
doi:10.1371/journal.pone.0016858.t002
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although a basic premise of epigenetic processes was that, once

established, these marks were maintained through rounds of

mitotic cell division and stable for the life of the organism, several

recent studies have shown that at some loci the epigenetic state can

be altered by the environment [36]. The questions are how

common are genes of this type and how strong is the evidence for

their existence in humans? The development of our design and

model will help to address these biological questions of

fundamental importance in elucidating the genetic architecture

of complex traits.

Methods

Sampling Strategies
Suppose there is a natural human population at Hardy–

Weinberg equilibrium (HWE) from which a panel of three-

generation families, each composed of the grandfather, grandmoth-

er, father, mother, and grandchildren, are sampled. Each member

in a family is typed for single nucleotide polymorphisms (SNPs) from

the human genome. Consider a quantitative trait affected by a SNP

with two alleles A in a frequency of p and a in a frequency of q,

leading to three genotypes AA, Aa, and aa with the frequencies of

p2, 2pq, and q2, respectively. In the grandparent generation, these

three genotypes are mating randomly to produce nine cross types

(Table S1). Given a cross type, the genotypes of sons or daughters

can be inferred. Here we first assume one sex (say son) in the second

generation, although both sexes can be considered. The sons from a

family serve as the father to mate with the females as the mother

derived from a natural population, with genotypes, AA, Aa, and aa,

characterized by frequencies p2, 2pq, and q2, respectively. Each of

such second-generation families produces a certain number of

grandchildren. The genotype frequencies in the third generation are

derived according to Mendel’s first law.

According to this design, the grandfathers and grandmothers

are founders whose parents are unknown. Alleles of sons from a

first-generation family can be traced directly or indirectly, but the

females used to generate the second-generation family are the

founders with the unknown origin of alleles. For this reason, we

will measure the phenotype for sons from the first-generation

families and grandchildren from the second-generation families.

This design will allow us to characterize imprinting effects of a

gene in the second- and third-generations.

Genetic Models
There are three genotypes, AA, Aa, and aa, for a biallelic gene

according to Mendelian segregation pattern. Considering the

parent-of-origin of alleles, these genotypes are described by four

configurations, AjA (coded as 2), Aja (coded as 1), ajA (coded as

1
0
), and aja (coded as 0), where symbol j is used to separate the

maternally- (left) and paternally-derived alleles (right). The

genotypic values of the four configurations in two different

generations are defined as follows:

Configuration Paternal Offspring

A Aj mF
2 ~mF zaF mO

2 ~mOzaO,

A aj mF
1 ~mF zdF ziF mO

1 ~mOzdOziO,

a Aj mF

1
0~mF zdF {iF mO

1
0~mOzdO{iO,

a aj mF
0 ~mF {aF mO

0 ~mO{aO,

ð1Þ

where mF and mO are the overall means of the paternal and

offspring generations, aF , dF , and iF are the additive, dominant

and imprinting genetic effects of the gene in the parental

generation, and aO, dO, and iO are the additive, dominant and

imprinting genetic effects of the gene in the offspring generation.

The difference in the genetic architecture of a complex trait

between two different generations is described as

Da~aF {aO, ð2Þ

Dd~dF {dO, ð3Þ

Di~iF {iO: ð4Þ

By testing whether these differences are equal to zero jointly or

individually, we can determine the transgenerational changes of

the pattern of genetic control. If a significant imprinting effect is

detected, we can test the type of genetic imprinting, i.e., parental

or maternal dominance, by incorporating the imprinting models of

Cheverud et al. [14].

Estimation
The grandfather and grandmother in the first generation from a

natural population constitutes 3|3~9 mating types for three

genotypes. For the jth first-generation mating type listed in Table

S1 (j~1,:::,9), let Nj denote the family number of this mating type.

Each first-generation family may have one or multiple sons who

serve the father of the second generation. Those families in the

second generation with the father derived from the jth first-

generation mating type and the mother of a particular genotype

from the natural population are summed together, denoted by

NM
jl , for mother genotype l (l = 2 for AA, 1 for Aa, and 0 for aa).

Thus, we have a total of NM
l ~

P9
j~1 NM

jl second-generation

mothers who carry genotype l.
It is not difficult to derive the maximum likelihood estimate of

allele frequency from the three-generation family design as

p~
4N1z3(N2zN4)z2(N3zN5zN7)z(N6zN8)z2NM

2 zNM
1P9

j~1 4Njz2(NM
2 zNM

1 zNM
0 )

q~
4N8z3(N5zN7)z2(N2zN4zN6)z(N1zN3)z2NM

0 zNM
1P9

j~1 4Njz2(NM
2 zNM

1 zNM
0 )

:

The male individuals from the first generation are typed for the

marker, with four distinct configurations, AjA (2), Aja (1), ajA (19),

and aja (0). Let nF
jk denote the cumulative number of male

individuals (as the father for the second generation) bearing

configuration k (k~2,1,1
0
,0) from nj first-generation families. In

the third generation, only genotypes rather than configurations

can be observed. We use NO
jkls to denote the number of children

who carry genotype s (s~2,1,0) from a second-generation family

with father k (from the jth first-generation mating type) and

mother l from a natural population. The phenotypic values

measured are expressed as yF
jki (i~1,:::,nF

jk) for the second-

generation fathers and yO
jklsi (i~1,:::,NO

jkls) for the third-generation

children. Both yF
jki and yO

jklsi are assumed to follow a normal

distribution with mean depending on genotypes and residual

variances s2
F and s2

O, respectively.

Since offspring genotypes depend on parental genotypes, the

log-likelihood of paternal and offspring parameters given marker

(M) and phenotypic (y) data from the three generations is

decomposed into two components, one related to the paternal

Testing Transgenerational Genomic Imprinting

PLoS ONE | www.plosone.org 4 February 2011 | Volume 6 | Issue 2 | e16858



parameters and the second related to the offspring parameters

given the paternal parameters, expressed as

L(VF ,VOjyF ,yO,M
f1g
F ,M

f1g
M ,M

f2g
F ,M

f2g
M ,M

f3g
O )

~L(VF jyF ,M
f1g
F ,M

f1g
M ,M

f2g
F )z

L(VOjyO,M
f1g
F ,M

f1g
M ,M

f2g
F ,M

f2g
M ,M

f3g
O ),

ð5Þ

where VF ~(mF ,aF ,dF ,iF ,s2
F ) are the paternal parameters and

VO~(mO,aO,dO,iO,s2
O) are the offspring parameters. Maximizing

joint likelihood (5) is equivalent to maximizing its two likelihood

components independently. The estimates of parameters VF that

maximize the first component can be obtained with the EM

algorithm. In the E step, the posterior probability with which the

double heterozygote father of the second generation from the 5th

first-generation mating type in Table S1 has a particular

configuration is calculated by

WF
51i~

1

2
f1(yF

51i)

1

2
f1(yF

51i)z
1

2
f
1
0 (yF

51
0
i
)

andWF

51
0
i
~

1

2
f
1
0 (yF

51
0
i
)

1

2
f1(yF

51i)z
1

2
f
1
0 (yF

51
0
i
)

:ð6Þ

In the M step, the genotypic values of configurations and variance

are calculated by

mF
2 ~

PNF
12

i~1 yF
12iz

PNF
22

i~1 yF
22iz

PNF
42

i~1 yF
42iz

PNF
52

i~1 yF
52i

NF
12zNF

22zNF
42zNF

52

,

mF
1 ~

PNF
21

i~1 yF
21iz

PNF
31

i~1 yF
31iz

PNF
51

i~1 W
F
51iy

F
51iz

PNF
61

i~1 yF
61i

NF
21zNF

31z
PNF

51
i~1 W

F
51izNF

61

,

mF

1
0~

PNF

41
0

i~1 yF
41piz

PNF

51
0

i~1 WF

51
0
i
yF

51
0
i
z
PNF

71
0

i~1 yF

71
0
i
z
PNF

81
0

i~1 yF

81
0
i

NF

41
0z
PNF

51
0

i~1 WF

51
0
i
zNF

71
0zNF

81
0

,

mF
0 ~

PNF
50

i~1 yF
50iz

PNF
60

i~1 yF
60iz

PNF
80

i~1 yF
80iz

PNF
90

i~1 yF
90i

NF
50zNF
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The EM algorithm can also be implemented to estimate genetic

parameters VO in the third generation that maximize the second

component in (5). In the E step, the posterior probability with

which the double heterozygote offspring of the third generation

derived from the combination of two double heterozygote parents

in the second generation has a particular configuration is

calculated by

WO
jkl1i~

1

4
f1(yO

jkli)

1

4
f1(yO

jkli)z
1

4
f
1
0 (yO

jkli)
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i
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1

4
f
1
0 (yO
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1

4
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1

4
f
1
0 (yO

jkli)

:ð8Þ

In the M step, the genotypic values of configurations and variance

are calculated by
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where jjkl2i, jjkl1i, and jjkl0i are the indicator variables that are

defined as 1 if offspring i in the third generation from the

combination of father k from the jth first-generation mating type

and mother l from the natural population has genotype AA, Aa,

and aa, respectively, and 0 otherwise. The EM steps are iterated

between equations (6) and (7) to obtain the MLEs of VF and

between equations (8) and (9) to obtain the MLEs of VO.
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Hypothesis Tests
It is imperative to know whether there exists a significant

association between a specific SNP and a complex trait and how a

significant SNP triggers an additive, dominant, or imprinting effect

on the trait. To test for the overall significant association of SNP

genotype and trait phenotype, we generate the following

hypotheses:

H0 :aF ~dF ~iF ~aO~dO~iO~0

H1 : At least one of these equalities above does not hold:

The log-likelihood ratio under the null and alternative hypotheses

is calculated. Since the null hypothesis contains a nuisance

parameter, allele frequency, this log-likelihood ratio test statistic

may have an unclear distribution. For this reason, the critical

threshold for claiming the existence of a significant SNP is

determined from permutation tests [37]. If our interest is in testing

whether there is an additive, dominant, or imprinting effect, the

null hypothesis should be H0 :aF ~aO~0, H0 :dF ~dO~0, and

H0 :iF ~iO~0, respectively. Because each of these null hypotheses

is nested within its alternative, the log-likelihood ratio test statistic

can be thought to asymptotically follow a x2-distribution for a

large sample size.

The transgenerational changes of different genetic effects can

also be tested. The null hypotheses used to test whether the

additive, dominant, and imprinting effects display significant

changes from one generation to next are expressed as H0 :Da~0,

H0 :Dd~0, and H0 :Di~0, respectively. These null hypotheses

can be considered singly or jointly, in order to better study the

transgenerational changes of the genetic architecture of a trait.

Haplotyping Model
Recent molecular surveys suggest that the human genome

contains many discrete haplotype blocks that are sites of closely

located SNPs [38,39,40]. Each block may have a few common

haplotypes which account for a large proportion of chromosomal

variation. Between adjacent blocks are there large regions, called

hotspots, in which recombination events occur with high

frequencies. Several algorithms have been developed to identify

a minimal subset of SNPs, i.e., tagging SNPs, that can characterize

the most common haplotypes [41]. The number and type of

tagging SNPs within each haplotype block can be determined

prior to association studies. In this section, we will derive a model

for detecting the association between haplotypes constructed by

alleles at a set of SNPs and complex traits.

For the simplicity of our description, consider two SNPs A (with

two alleles A and a) and B (with two alleles B and b). They form

four haplotypes AB, Ab, aB, and ab, of which one that is distinct

from the rest three is defined as a risk haplotype W and all the

others are defined as a non-risk haplotype w [42]. Risk and non-

risk haplotypes from the maternal and paternal parents generate

four composite diplotypes, W jW , W jw, wjW , and wjw, whose

genotypic values are described by the additive (a), dominant (d),

and imprinting genetic effects (i). Cheng et al. [43] and Wang et al.

[44] proposed a two- and three-SNP model for estimating and

testing genetic imprinting effects in a natural population,

respectively. Wu et al.’s procedure [45] allows the choice of an

optimal number and combination of risk haplotypes within a

multiallelic model framework. Here, we adopted Cheng et al.’s

two-SNP model to estimate haplotype imprinting genetic effects

and their transgenerational change.

In this example, four haplotypes AB, Ab, aB, and ab have

frequencies denoted as p11, p10, p01, and p00, respectively. The two

SNPs yield nine joint genotypes, AABB (coded as 1), AABb (coded

as 2), …, aabb (coded as 9), which are actually observed. Each

subject must bear one of these genotypes, and the parents in each

family will be one of 9 | 9 = 81 possible genotype by genotype

combinations. If each parent for a combination is homozygous for

both SNPs, their offspring will have one genotype. As long as one

parent is heterozygous for one SNP, the offspring will have two or

more genotypes. However, only when both SNPs are heterozygous

for at least one parent, the genotype frequencies of offspring will be

determined by the recombination fraction between the markers (r).

Tables S2 and S3 show the structure and frequencies of mother by

father genotype combinations under random mating and their

offspring genotype frequencies in the second and third generation,

respectively. For a double heterozygote AaBb, its observed

genotype may be derived from two possible diplotypes, ABjab

(with the relative proportion of w~
p11p00

p11p00zp10p01
) or AbjaB (with

the relative proportion of 1{w~
p10p01

p11p00zp10p01
). Each of these

two diplotypes produce four haplotypes AB, Ab, aB, and ab,

whose frequencies are expressed as

A similar likelihood (5) cane be formulated for haplotype

models. A complicated EM algorithm is derived to estimate

haplotype frequencies using the parental information. Let Nij

denote the observation of mating type between genotype i for one

parent and genotype j for the second parent. In the E step,

calculate the proportion of a diplotype for a heterozygous

genotype for a particular mating design by

y1~
(1{w)r

v1

y2~
wr

v2

y3~
(1{w)rzwr

v1zv2

y4~
(1{w)2r2zw(1{w)r(1{r)

v2
1

y5~
w2r2zw(1{w)r(1{r)

v2
2

y6~
w(1{w)r2z½w2z(1{w)2�r(1{r)

2y1v2

Haplotype

Diplotype Proportion AB Ab aB ab

ABjab w 1

2
(1{r)

1

2
r

1

2
r

1

2
(1{r)

AbjaB 1{w 1

2
r

1

2
(1{r)

1

2
(1{r)

1

2
r
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y7~
w2r2z2w(1{w)r(1{r)z(1{w)2r2

2(v2
1zw2

2)
,

where v1~(1{w)rzw(1{r),v2~wrz(1{w)(1{r):
In the M step, estimate the haplotype frequencies and

recombination fraction by

p11~f4N11z3(N12zN21zN14zN41)z2(N22zN44zN13zN31

zN16zN61zN17zN71zN18zN81zN19zN91zN24zN42)

zN23zN32zN26zN62zN27zN72zN28zN82zN29zN92

zN34zN43zN46zN64zN47zN74zN48zN84zN49zN94

zw½3(N15zN51)z2(N25zN52zN45zN54)zN35zN53zN56

zN65zN57zN75zN58zN85zN59zN95�

z(1{w)½2(N15zN51)zN25zN52zN45zN54�z2wN55g

=(4
X9,9

i~1,j~1

Nij),

p10~f4N33z3(N23zN32zN36zN63)z2(N22zN66zN13zN31

zN26zN62zN34zN43zN37zN73zN38zN83zN39zN93)

zN12zN21zN16zN61zN24zN42zN27zN72zN28zN82

zN29zN92zN46zN64zN67zN76zN68zN86zN69zN96

zw½2(N35zN53)zN25zN52zN56zN65�

z(1{w)½3(N35zN53)z2(N25zN52zN56zN65)zN15zN51

zN45zN54zN57zN75zN58zN85zN59zN95�z2(1{w)N55g

=(4
X9,9

i~1,j~1

Nij),

p01~f4N77z3(N47zN74zN78zN87)z2(N44zN88zN17zN71

zN27zN72zN37zN73zN67zN76zN48zN84zN79zN97)

zN41zN18zN81zN24zN42zN28zN82zN34zN43zN38

zN83zN46zN64zN49zN94zN68zN86zN89zN98

zw½2(N57zN75)zN45zN54zN58zN85�

z(1{w)½3(N57zN75)z2(N45zN54zN58zN85)zN15zN51

zN25zN52zN35zN53zN56zN65zN59zN95�z2(1{w)N55g

=(4
X9,9

i~1,j~1

Nij),

p00~f4N99z3(N69zN96zN89zN98)z2(N66zN88zN19zN91

zN29zN92zN39zN93zN49zN94zN68zN86zN79zN97)

zN16zN61zN18zN81zN26zN62zN28zN82zN36zN63

zN38zN83zN46zN64zN48zN84zN67zN76zN78zN87

zw½3(N59zN95)z2(N56zN65zN58zN85)zN15zN51zN25

zN52zN35zN53zN45zN54zN57zN75�

z(1{w)½2(N59zN95)zN56zN65zN58zN85�z2wN55g

=(4
X9,9

i~1,j~1

Nij):

r~fy1(N1
51zN5
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52zN6
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53zN6
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54zN8

54zN2
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56zN4
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52zN3
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54zN7

54zN3
56zN8

56zN5
57zN7

57zN6
58zN7

58zN6
59zN8

59

zN2
15zN4

15zN3
25zN4

25zN3
35zN5

35zN2
45zN7

45zN3
65zN8

65

zN5
75zN7

75zy3(N2
52zN5

52zN4
54zN5

54zN5
56zN6

56zN5
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zN8
58zN2

25zN5
25zN4

45zN5
45zN6

85zN7
85zN6

95zN8
95)zN6

65

zN5
85zN8

85)zy4(N1
55zN9

55)zN5
65zy5(N3

55zN7
55)

zy6(N2
55zN4

55zN4
55zN6

55zN8
55)zy7N5

55g

=(
X9

j~1

N5jz
X9

i~1

Ni5{N55)

In the M step, the equations for estimating additive, dominant,

imprinting effects expressed in paternal and offspring generations

are also derived. The E and M steps are iterated until the estimates

converge to a stable value. These stable values are the maximum

likelihood estimates (MLEs) of parameters. The estimated

haplotype frequencies and recombination fraction are embedded

into a mixture model for estimating genotypic values and variances

for different generations.
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Table S1 A three-generation family design used to study

transgenerational inheritance.

(PDF)

Table S2 A three-generation family design showing how to

produce the second generation by mating different genotypes

of grandfathers and grandmothers sampled from a natural
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Table S3 A three-generation family design showing how to

produce the second generation by mating different genotypes of

grandfathers and grandmothers sampled from a natural population.
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