ﬁ Sensors

Article

A Key Management Protocol Based on the Hash Chain Key
Generation for Securing LoORaWAN Networks

Shimaa A. Abdel Hakeem 12(2, Sherine M. Abd El-Kader 2

check for

updates
Citation: Hakeem, S.A.A.; El-Kader,
S.M.A,; Kim, H. A Key Management
Protocol Based on the Hash Chain
Key Generation for Securing
LoRaWAN Networks. Sensors 2021,
21,5838. https://doi.org/10.3390/
521175838

Academic Editor: Danda B. Rawat

Received: 14 June 2021
Accepted: 27 August 2021
Published: 30 August 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and HyungWon Kim 1-*

School of Electronics Engineering, Chungbuk National University, Cheongju 28644, Korea;
shimaakotb@cbnu.ac.kr

Electronics Research Institute (ERI), El Nozha, Cairo 12622, Egypt; sherine@eri.sci.eg

* Correspondence: hwkim@cbnu.ac.kr

Abstract: Recently, many Low Power Wide Area Network (LPWAN) protocols have been proposed
for securing resource-constrained Internet of Things (IoT) devices with negligible power consumption.
The Long Range Wide Area Network (LoRaWAN) is a low power communication protocol that
supports message authentication, integrity, and encryption using two-session preshared secret keys.
However, although the LoRaWAN supports some security functions, it suffers from session key
generation and key update problems. This motivates us to introduce a new key management protocol
that resolves the LoORaWAN problems and supports key updates. The proposed protocol is based on
hash chain generation using a one-way hash function. Network entities share a common hash chain
of n key elements to allow using a unique signing key per message. We also propose a salt hashing
algorithm that encrypts the original keys into a different form to avoid the physical attacks at the end
device side. We analyzed the proposed key generation performance in terms of the computation time,
the required storage, and the communication overhead. We implemented and tested the proposed
key generation protocol using the NS-3 network simulator. The proposed lightweight key generation
protocol significantly enhances the security of the original LoRaWAN at a negligible overhead. The
proposed protocol reduces the power consumption and transmission time by two times compared
with some previous protocols. In addition, the proposed key generation protocol can resist attacks,
such as key compromising attacks and replay attacks, and it supports the Perfect Forward Secrecy,
which was not supported by LoRaWAN.

Keywords: IoT communication; LoRaWAN security; hash chain generation; key updates issues; salt
encryption; authentication; encryption

1. Introduction

Currently, it is the Internet of Things (IoT) era, where billions of tiny IoT end devices
are maintained and deployed worldwide. According to an Ericsson report [1], the number
of connected IoT devices has so far reached 28 billion in 2021. These IoT devices generate an
incredible amount of data and transfer the collected information to different cloud servers,
processed and accessed anywhere and at anytime. Many communication protocols have
been proposed to support different types of IoT networks. Short-range communication
protocols, such as ZigBee, Bluetooth, and Z-Wave have been used for utilizing the limited
resources of IoT devices due to their low energy consumption [2].

However, these short-range protocols cannot be deployed for critical applications that
require a wide communication range, such as smart cities [3]. Although cellular radio
communication can provide long-range connectivity, IoT networks are not suitable due to
their complexity and lack of cost-effectiveness [4]. Recently, Low Power Wide Area Net-
works (LPWAN) technologies have been proposed to satisfy the IoT constrained devices’
requirements and outperform previous conventional technologies” shortcomings. They are
maintained to enable a wide range of communication with low power consumption. De-
ploying these low power technologies can allow the battery-powered constrained sensors

Sensors 2021, 21, 5838. https:/ /doi.org/10.3390/s21175838

https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8945-8664
https://orcid.org/0000-0001-5561-2424
https://orcid.org/0000-0003-2602-2075
https://doi.org/10.3390/s21175838
https://doi.org/10.3390/s21175838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175838
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175838?type=check_update&version=2

Sensors 2021, 21, 5838

2 of 35

to transmit messages up to many kilometers and last for years [5]. However, many LPWAN
exist, such as Lora, SigFox, Ingenu, Telensa, and Weightless, but only LoRa is considered the
most effective cost design and low power consumption [6]. LoRa is a protocol that works
at the physical layer to enable wide-range communication up to 15 km using chirp modu-
lation [4]. At the same time, the upper layer of the LoRaWAN protocol is based on LoRa to
define the operation of the system and the structure [7]. LoRaWAN is an asynchronous
protocol that extends the battery lifetime by reducing the synchronization overhead.

A lot of IoT security protocols have been published to satisfy the requirements of
tiny devices with limited storage and power. In [8], the authors provide an authentication
scheme for multi-group communication based on bilinear pairing. However, they prove
that this method consume more power and require extra storage which makes it not suit-
able for IoT networks. In [9,10], the authors proposed an authentication technique based
on a hash chain to support decentralized key generation and message authentication using
the Message Authentication Code for vehicular communication. In [10], they prove as well
how a hash chain is secure and the computation cost is negligible, which makes it suitable
for IoT devices. The authors of [11] present a Secure Sensor Cloud Architecture (SASC)
for IoT networks to support data efficiency and improve network security and scalability.
Another related work that presents a comprehensive investigation of different authenti-
cation schemes for mobile devices is presented in [12]. The authors of [13] proposed a
security analysis of access control and authentication for the IoT networks and applications.
However, although we analyzed many IoT authentication protocols, they still suffer from
high power consumption and complexity. Recently, some related authentication protocols
have been proposed mainly for low power, wide area networks.

Most of the existing LPWAN protocols mainly focus on power issues and communi-
cation range issues, while security was a secondary issue that did not have an excellent
investment. The security importance in the IoT networks becomes more critical than pre-
viously because many threats are related to peoples’ real lives. Moreover, the loss from
security events can be severe due to the effective connectivity and scale of the IoT networks.
Earlier research on IoT security [14,15] has discussed some significant factors; one is key
management. According to the studies, security keys can be sniffed by several attacks,
considering that IoT devices are usually deployed wherever the attacker can reach them.
Some security studies proposed a solution to prevent key sniffing and defend against
physical attacks. In [16], the authors proposed a lightweight solution for securing data
provenance in IoT networks using Fingerprints. They used physical unclonable functions
(PUFs) and wireless fingerprints that are defined from the wireless channel information
to achieve data anonymity, provenance, and mutual authentication. Leaking key material
from the end devices is considered a great issue in IoT networks.

LoRaWAN protocol specifications [17] indicate that the session keys and root keys
should be managed to reduce the key compromising damage. Whatever keys are leaked
from an end device, the other network devices continue the communication safely without
affecting their security. However, still, the LoRaWAN suffers from the session key updates
that are considered a critical issue, and at present, there has been no proper solution.
However, LoRaWAN utilizes security keys for various security mechanisms, such as
message authentication and message encryption; the current LoRaWAN protocol slightly
updates these keys. In some situations, an end device must keep using specific keys for its
lifetime. Thus, if the key is leaked in the future, all the data transferred between the end
devices may be compromised by the attacker. Therefore, keys must be renewed regularly
to prevent the key compromising attacks.

In LoRaWAN protocol v1.02 [17], it is pointed out that compromising the session
keys of one end device cannot impact the secure communication of the other end devices.
Though, in the Activation by Personalization mode, the session keys are generated using
the end device address, which results in vulnerability by reverse engineering.

Further, the original LoORaWAN protocol weakens the end-to-end security and cannot
resist replay attacks. The authors of [18] proposed some attacks that affect the data in-

Sensors 2021, 21, 5838

3 0f 35

tegrity, network availability and data confidentiality in the previous versions of LoRaWAN.
The authors highlighted the replay attacks and desynchronization attacks. These attacks
consider the network server or the end device as the target entity. The authors discuss
two techniques for the replay attack: (1) Join-Accept message replay attack and (2) Join
messages harvest.

Furthermore, the authors consider the end device or network server as the target for
the desynchronization attacks that can disconnect the end devices from the network. The
authors also recommended that the AppNonce support freshness provides the detection
against the replay attacks. In addition, they recommend verifying the received Join-
Accept message that matches the sent Join-Request message and checking if the session
keys have been shared or not. The authors of [19] attempted to implement end-to-end
security by allowing the AppSKey negotiations between the end device and the application
server without including the network server. However, this needs the changing of the
original LoRaWAN, making it challenging to apply it in the existing LoRaWAN standard.
Furthermore, this method cannot support the perfect forward secrecy.

In this paper, we propose a key management protocol that supports the generation of
the hashed key using one master secret key that is managed by the network server. The
hash chain generation is a lightweight solution to support unique keys per session and
support periodic updates for the session keys. We also propose salt encryption for the
generated keys to protect the original key from attackers. Physical attacks in the original
LoRaWAN can happen as the end devices can be reached easily, and the key material
can be accessed. The proposed protocol supports two cases, the first one for low power
applications with high security and the second one for extremely low power applications
with a medium security level. The proposed protocol enhances the key update mechanism
by using n keys for future communication. Storing these keys with salt encryption can hide
the original value and can prevent any physical attacks. Any compromising for a salted
key can expose any information about the original hidden key and cannot compromise the
original master secret key generated by the network server per each end device for future
communication between the end device and network server.

The proposed protocol uses the AES protocol in two modes for authentication and
encryption and can support a high-security level over the original LoRaWAN. The power
consumption in the proposed two cases is slightly different from the original LoORaWAN
that consumes lower power than the proposed protocol, due to its communication overhead.
The contributions of this paper are summarized as follows:

e Proposing a dynamic hash chain key generation that produces short-lived session
keys. The use of distinct hash-based random keys for authentication and integrity
check can increase the security level and avoid attacks that compromise the key;

e Proposing salt encryption for the hashed keys to prevent the physical attacks by the
self-generation of random values that can hide the original keys from the outside
attackers and inside attackers;

Preventing replay attacks by adding a timestamp to each transmitted message;
Supporting low-overhead key updates to further enhance the security level and
prevent the key compromising attacks;

e Supporting forward secrecy, which means that even if a past key was compromised, it
would not allow the attacker to predict future keys;

e Supporting secure key exchange between the network server and the end devices
(encrypting the server’s messages using the stored session keys).

This paper is organized as follows: Section 2 describes the previous LoRaWAN studies
that explain the key management problems of LoRaWAN. Section 3 presents the LoRaWAN
security background. Section 4 describes the proposed protocol architecture. The proposed
protocol security analysis is discussed in Section 5. The security verification using AVISPA is
provided in Section 6. The performance evaluation and communication overhead analysis
are presented in Section 7. In Section 8, the conclusions and future work are provided.

Sensors 2021, 21, 5838

4 0of 35

2. Related Work

In [20], a security report provides the potential vulnerabilities of LoRaWAN and the
fundamental classification of LoORaWAN security. According to this report, all entities
in LoRaWAN could be compromised during the key management process, the inter-
communications, and the Internet connection to the application and network servers.
In [21], the author analyzed the DevNonce generation of the LoRaWAN. The DevNonce
is included in messages as a random value generated by the end device to avoid replay
attacks. The author analyzed the method mathematically and concluded that the end device
could be unavailable with a confident probability using the system’s current DevNonce.

To mitigate this problem, the author suggested extending the size of the DevNonce
value to 32 bits. In [22], the authors propose a scheme for securing LoRaWAN networks;
their method uses the proxy node concept. In general, the proxy nodes estimate the
trustworthiness of each other to build a table and transmit it to the end node. Finally, the
end node communicates over the most trusted proxy node with the highest trust value.
The original LoRaWAN protocol has key generation and key update problems. The key
updates problem has not been discussed in any LoRaWAN security study. In [23], the
authors proposed a solution that solves the session key generation problem, but it has some
downsides. The authors suggest adding a trusted third-party entity to support session key
generation; however, the added third party makes the join procedures more complex and
increases the communication overhead.

Another problem with the LoRaWAN protocol is that the network server generates
both session keys. Thus, the network operators can decrypt and capture all the data passing
the network server. The authors of [23] also have analyzed this problem and recommended
deploying a secure third party to enhance the security of the LoRaWAN network.

The most critical security problems of the original LoRaWAN and previous methods
are summarized as follows:

e Single point of failure: The network server generates the session keys per session for
each end device that can affect network security if the network server is compromised;

e No perfect forward secrecy: The LoRaWAN system depends on the preloading of
two root keys used to generate the session keys. If the long-life root keys (AppKey,
NwkKey) are compromised, the previous session keys can be recovered. Therefore,
the original LoRaWAN cannot satisfy the perfect forward secrecy;

e Physical attacks: Long-term keys and session keys are accessible to the attackers since
they are stored in flash memory at the end device. The original LoRaWAN cannot
resist the physical attacks;

e Network operators vulnerabilities: Once the network server generates the application
key AppSKey for the application server, the network operators can decrypt the end
device data and modify it. Separation of the network server role and application
server role is required;

e No key update in the OTAA: Join procedure in the Over-The-Air Activation (OTAA)
mode using the long-term keys (NwkKey and AppKey) to derive the session keys.
The generated session keys can be updated by sending a new Join-Request message.
However, the long-term root keys cannot be updated. These keys are preloaded at
each end device by the manufacturer. The root key update is critical for the devices
that join the LoRaWAN network via OTAA;

e No key update in the ABP: The AppKey and NwkKey are not preloaded on the end
device in the Activation By Personalization (ABP) mode. Only session keys (AppSKey,
NwkSKey) are stored to allow immediate communication between the end device and
the network server. The end device uses the same session keys for a lifetime. If the
end device is physically attacked, the session keys are compromised, posing security
threats at the end device.

We summarize the differences between the proposed protocol and the other existing
methods in Table 1. Some defined security requirements must be satisfied to enhance
the security level of each protocol, such as mutual authentication, message integrity,

Sensors 2021, 21, 5838

5 of 35

message encryption, session key updates, and secure key exchange. Moreover, each
security method must have a defense against the well-known attacks (e.g., physical attacks,
replay attacks). All mentioned protocols in Table 1 support mutual authentication via
Over-The-Air Activation, message integrity using AES128-CMAC, and message encryption
using AES128-CTR. The key update is supported only for [23] and the proposed protocol,
while for the other protocol, only two longlife keys are used for different sessions. In the
proposed protocol, session key updates are supported, as each end device uses a unique
key per session. There is no defense against the key attacks for protocols [18-20,22], as the
root keys and session keys can be sniffed and derived. In contrast, the proposed protocol
is able to defend against the key attacks using a salted key-table that hides the original
keys in a different encrypted form. Hiding keys prevents attackers from sniffing them or
even compromise. There is no defense against the replay attacks for protocols [19,20,22],
as the end device does not register the received AppNonce in the Join-Accept message.
However, the proposed protocol can defend against replay attacks by attaching a fresh
timestamp with each message. Perfect forward secrecy is supported only for [19,22] and the
proposed protocol, in which the compromising of the initial root keys cannot compromise
the encrypted session keys. In the proposed protocol, using salt encryption hides the
original keys in a different form that prevents any type of key attacks. In this paper, we
propose a key management protocol based on a hash chain generation. The proposed
protocol supports key updates and solves the session key generation problems without
including other trusted third parties. To avoid compromising the end devices from the
radio operators, each end device can self-generate random numbers to encrypt each session
key and only send these random values for the authorized receivers to generate the new
session key that can be used to authenticate the received messages.

Table 1. Comparison between the existing LoRaWAN key management protocols and the proposed protocol.

Security Functions

LoRaWAN Youetal. Butunetal. Naouietal. Girard etal. The Proposed

[18] [19] [20] [22] [23] Protocol
Mutual Authentication Vv vV Vv Vv Vv Vv
Session Key Updates X X X X v Vi
Message Integrity Vv Vv Vv v Vv vV
Message Encryption Vv 4 Vv Vv Vv Vv
Perfect Forward Secrecy X Vv X Vv X Vv
Secure Key Exchange X X X X X v
Defense Against Physical Key Attacks X X X X X Vv
Defense Against Replay Attacks X X X X X Vv

3. Background of LoRaWAN Protocol
3.1. Architecture of LORAWAN

LoRaWAN protocol [24] is designed for limited battery applications where wide-range
communication with low power consumption is primary. LoRaWAN v1.02 specification
defines the network ranges to be (5-15) km; data rates range between 0.3 and 50 kbps,
and the network is operated over the 868-MHz and 900-MHz bands. LoRaWAN is one of
the essential technologies for IoT that has grown based on the network star topology. Its
structure tries to grant interoperability between IoT devices regardless of their properties.
The LoRaWAN architecture consists of the following entities: end device, gateway, network
server, and application server. As shown in Figure 1, each end device can be connected to
many gateways over a single network hop where the gateways are connected to the network
server over IP connections. LoRa radio connections are used to support communications
between the end devices and the gateways, while the network servers and gateways are
connected using IP communication. We briefly describe LoRaWAN elements:

Sensors 2021, 21, 5838

6 0of 35

1. End device: An IoT end device is used for wide-range communication to transfer
small data using low-frequency bands. These end devices can be deployed in different
fields, such as smart building, factory automation, smart cities, and farm automation;

2. Gateway: An IoT end device with high capabilities to receive data from the end
nodes via a LoRaWAN radio link. Then it forwards the collected packets to the
corresponding network server via standard IP communication;

3. Network server: It is a LoRaWAN server that controls and manages the whole
network. It receives many packets, removes redundancy between them, executes
authentication checks to accept or reject the packets, and finally decides which gate-
way is the most suitable to send an acknowledgment packet back to the end device.
In our paper, we consider the Network Server as a trusted third-party agent that
is authorized by a Certificate Authority (CA) organization to generate and execute
security tasks, manage key generation, and support revoking mechanisms for the
malicious nodes. To reduce the communication burden on the Certificate Authority
(CA) due to the frequent security message requests of the end devices gateways.

End Devices
ﬁ! LORA Gatewavs Application Servers Applications
ENE : o

(&
0’7/,@ Network Server
(&

’/(';0& 4 ©_‘

Application layer connections secured by application session key
Figure 1. Network architecture of LoRaWAN.

The network server authenticates the LoRa messages using the network session key
shared previously between the end device and the network server. The LoRaWAN protocol
stack consists of the MAC and application layers, while the physical layer uses the LoRa RF.
The application layer communication is secured with the application session key shared
previously between the application server and the end device. The message format of the
original LoRaWAN consists of the MAC payload, MHDR (MAC header), FHDR (frame
header), and MIC (Message Integrity Code). The MIC is calculated over the MAC payload
using the network session key for authentication purposes. The MAC payload can be
a Join-Request message or Join-Accept message, while the size varies between 51 and
222 bytes.

3.2. Security Aspects of LORaAWAN

New end devices must complete an activation process to join the LoRaWAN network.
Two session keys are shared between the end devices and the network server during
this activation process. LoRaWAN protocol has two types of activation. The first type is
Over-The-Air Activation (OTAA), and the second type is Activation by Personalization
(ABP) [25].

Sensors 2021, 21, 5838

7 of 35

3.2.1. Over-the-Air Activation

The end devices communicate with the network server to start the network joining
procedure. In [26], the activation mode is used when the end device is initially deployed.
Initially, each end device is configured with root keys (NwkKey, AppKey), which are
configured by the manufacturer. The network key (NwkKey) and the application key
(AppKey) allow the end device to derive the future communication session keys.

Figure 2 shows the operation of the Over-The-Air Activation of an end device in a
LoRaWAN network. We explain each step in detail as follows.

End Device Network

(D) Server (NS)

Securely-Stored . Securely-Stored
AppKey,NwkKey Join-Request AppKey,NwkKey

(AppEULDevEUILDevNonce)
>
Join-Accept
(AppNonce,NetID,Dev

Addr,DLSetting,
RXDelay,CFList)

Generating Session keys Generating Session keys
NwkSkey= aes128-encrypt (AppKey, 0x01 | Authentication Done | NwkSkey= aes128-encrypt (AppKey, 0x01 |
AppNonce | NetID | DeVNonce | padl6 AppNonce | NetID | DeVNonce | padl6
AppSkey = aes128-encrypt (AppKey, 0x02 | AppSkey = aes128-encrypt (AppKey, 0x02 |
AppNonce | NetID | DeVNonce | pad 4) AppNonce | NetID | DeVNonce | pad,4)

Figure 2. Over-The-Air Activation in LoRaWAN networks.

Join-Request message: The end device begins the network joining procedure by
transmitting a Join-Request message. Each end device includes the application identifier
(AppEUI), the global end device address (DevEUI), and the random value (DevNonce) in
the Join-Request message. The MIC value is calculated over the Join-Request message to
ensure message authenticity and integrity. The following formula calculates the MIC code
using the AES 128 protocol in the authentication mode:

AES128 CMAC (NwkKey, MHDR | | AppEUI I | DeVEUI | | DeVNonce) €))

The NwkKey is the network root key previously preshared between the end node
and the network server (configured by the manufacturers or at commissioning). The
Join-Request message format is shown in Figure 3.

MIC: AES128_CMAC (NwkKey, MHDR || AppEUI || DeVEUI || DeVNonce)

_l }

MHDR FHDR Join-Request MIC

(AppEUI || DeVEUI || DeVNonce) | (4bytes)

Figure 3. The Join-Request message structure.

Authentication at the network server: The network server performs the security
check over the received Join-Request message by checking the freshness of the attached
DevNonce to avoid the replay attack. If the DevNonce is not valid or previously used, the
network server rejects the joining request. Otherwise, the network server completes the
end device authentication process by calculating the MIC over the received Join-Request
message. Comparing the calculated MIC with the received MIC to authenticate the end

Sensors 2021, 21, 5838 8 of 35

device validity, if both are equal, the network server starts generating the session keys.
Both the Network Session Key (NwkSKey) and Application Session Key (App SKey) are
derived using Equations (2) and (3) as follows:

Nwk SKey = aes128 — encrypt (NwkKey, 0x01 | | AppNonce | | NetID | | DeVNonce | | pad16) 2
App SKey = aes128 — encrypt (AppKey, 0x02 | | AppNonce | | NetID | | DeVNonce | | pad16) (©)]

The network server generates an AppNonce random number. NetID refers to the
network ID and separates the geographically duplicated LoRaWAN networks.

Join-Accept message: it contains NetID, AppNonce, DevAddr, RxDelay, DLSettings,
and CFList. The Device Address DevAddr is a 32bits that is assigned for the end device
within the joined network. RxDelay represents the delay between the sending and receiving
process. DLSettings represents the configuration of the downlink. The optional field CFList
represents the channel frequencies. Once the end device receives the Join-Request message,
it encrypts the parameters using AES-128 to generate the network session key, the NwkSKey
and the application session key AppSKey. The Join-Accept message structure is shown

in Figure 4.
MIC: AES128 _CMAC (NwkKey, MHDR ||FHDR|| AppNonce
||NetID||DevAddr||DLSettings
||IRXDelay||CFList)
{ v
Join-Accept
MHDR | FHDR (AppNonce||NetID||DevAddr||DLSettings MIC
||RXDelay||CFList||MIC) (abytes)

Figure 4. The structure of Join-Accept messages.

3.2.2. Activation by Personalization

Each end device can join any LoRa network in ABP mode without the Over-The-Air
activation or any join procedures. Thus, the end device does not need AppEUI, DevEUI,
NwkKey, and AppKey, which are crucial components for Over-The-Air activation. In
contrast to the OTAA mode, the session keys (NwkSKey, AppSKey) and device address
(DevAddr) are pre-stored on the end device in the ABP mode. Therefore, each end device
can instantly start communication once it is powered.

4. The Proposed Protocol

Each end device node communicates with the network server for establishing session
keys for message authentication and encryption. The frequent communications between
nodes and network servers increase power consumption, increase communication costs,
and cause network congestion. The current security problems of the LoRaWAN systems
motivate us to propose an enhanced, lightweight key management protocol that allows
end devices to save power and reduce communication costs. This section describes the
proposed protocol with the following steps—Join procedures, securing the generated hash
chain against physical attacks, message authentication, message encryption, and hash chain
updates. Figure 5 summarizes the proposed protocol architecture that introduces the key
generation method. Table 2 summarizes the mentioned variables and system notations.

Sensors 2021, 21, 5838 9 of 35

Table 2. The system abbreviations and notations.

Notations Descriptions

OTAA Over-The-Air Activation

NwkSKey Network session key

MIC Message integrity code

{Seig;lest Join-Request to attach the end device to the LoRa network
h(.) One-way hash function of length n

DevNonce Nonce value randomly generated by the device

DevEU 1 Device identifier

CMAC Cipher-based message authentication code

AppSKey Application session key

AppNonce Nonce value randomly generated by the network server

AppKey The long-term key shared between a device and a network server

AppEU I Application identifier

AES Advances Encryption Standard
ABP Activation By Personalization
Ty The current timestamp to avoid replay attacks
Skh The updated master secret seed of length n
The master secret key to that iteratively hashed n times to generate a keystream of
Skn
length n
SEj The randomly generated salted value is used to hide the encryption key

Salted kg; An encrypted Salted encryption key Salted kg; = (K;®Sg;)
Salted kp; An encrypted Salted authentication key Salted ka; = (Ki®Sai)

Sai The randomly generated salted value is used to hide the authentication key

MICgalted ky, The MIC value for message m using a salted authentication key of Salted ka;

mp; NS The transmitted message from the end device Di to the network server Ns

One of the generated hashed keys that generated by iteratively hashing the master

ki secret seed Skp

Kindex The pointer of the used key in authentication in the pre-shared common hash table

4.1. Join Procedures

As mentioned before, the LoRaWAN security systems are based on a pre-shared key
structure. The Application Key (AppKey) and the Network Key (NwkKey) are used to
generate two session keys (NwkSKey and AppSKey). In both join modes OTAA and ABP,
the session key updates are considered as a problem. Once the end devices in the ABP
mode cannot update the session key, it requires the AppKey and NwKwy to generate new
session keys. Only long-term session keys are preloaded at each end device for long life
in the ABP mode. In contrast, in the OTAA mode, the key session updates depend on
the long-term root keys that can be compromised at any time. Due to these problems,
we propose a lightweight key management protocol that enhances the security level and
reduces power consumption.

Sensors 2021, 21, 5838

10 of 35

— Join procedures

Hash chain key
generation

Securing hash chain
using salt

— Message authentication

The proposed protocol

— Message encryption

— Hash chain updates

Figure 5. The proposed protocol architecture.

Our proposed key generation method uses the initial communication OTAA mode to
join the LoRaWAN network and share the security parameters with the network server
for future session communication. Like the original LoRaWAN, each end device sends a
Join-Request message, while the server responds with a Join-Accept message; both entities
derive the session keys for the current session, as explained in Section 3. Finally, the
network server shares the application session key AppSKey with the application server, as
illustrated in Figure 2.

After the OTAA Authentication between the network server and the end device is
complete, both share a common one-way hash function h(.) of length n, a master secret
key Sk, that is generated by the network server. By iteratively hashing Sk, the end device
generates n keys using the cryptography function h(.) of length n. We allow each device to
generate n unique signing keys from the shared master secret key. The proposed solution
helps the end device avoid using the long-term root keys to update the session keys as the
original OTAA mode. Also, it prevents the use of preloaded, long-term session keys as ABP
mode. The following section explains the key generation method at the end device and
the network server. We also summarize the proposed hash chain generation in LoRaWAN
in Figure 6.

4.2. Hash Chain Key Generation

We assume the trustiness of the network server that makes it works as a Key Distri-
bution Center; the network server picks a random number to represent the seed (Sky) for
the hash function. After the end device passes the Over-The-Air Authentication phase, the
network server securely sends the master secret Sk, to the end device and the application
server (AS) to generate the typical hash chain. A one-hash function h(.) is defined as
z = h(y) for a given input y. It is challenging to predict the primary input y from the hashed
output z. Hash chains are first proposed by Lamport [27]. Recently, it is enhanced to
support the one-time password systems by utilizing the hash function h () to generate a
hash chain of length n starting with a seed (Skn). The output result of this iteratively hash
generation is a set of unique keys. The output hashed elements are considered session keys
to secure future communication between the end device and both servers (NS, AS).

Sensors 2021, 21, 5838

11 of 35

End-device generates hash chain of n signing

H(S)

Decrypt using NwkSkey

H(Sy)

keys

H(S»2)

H(Sn1)

End Device

Network Application

Server (AS)

)

Initial authentication done (OTAA)

Server (NS)

P

aes 1‘28—encrypthk5k€y (h(.),n, Sk:) aes128-encrypt gpskey (0(.),n, Sk;)

Decrypt
using
AppSkey

Fuorypiasing Nekkey NS and AS servers generate hash

Storing of a common hash chain chain of n signing keys
H(S,) [

[Tk J{ Ski Jot----{ Skoy Jot{ Skuy | Skus & Ska |
(

between device and both servers H(S)) H(S) HS,) HES,) HES,)

D stores keys in the hash table

S| o I s T TR BT
) e ey)
1

Hash-Table Hash-Table Hash-Table
Key Index | Value Key Index | Value Key Index | Value
0 Value 1 0 Value 1 0 Value 1
n Value n n Value n n Value n

Figure 6. The proposed hash chain generation in LoRaWAN networks.

We summarize the key generation as follows:

e Through the OTAA mode, the network server shares two session keys (NwkSKey,
AppSKey) with the end device and application server, respectively;

e The network server (NS) securely shares the key material message that consists of
(one-way hash function h(.), the length n of the chain, the master secret seed Sk, to
generate the chain);

e The NS transmits the encrypted key material message for both the end device and the
application server securely;

e Both the end device and application server decrypt the key material message using
the NwkSKey and AppSKey, respectively, previously shared with the network server;
All entities start generating a typical hash chain using the hash function h(.) and Sky;
The session keys can be regularly updated and changed based on a policy between
the end devices and the network server;

e The hash chain keys are indexed and securely stored in a key table using the Hardware
Security Module (HSM);

e The used hash function is sha256 that generates 256-bits; only 128-bits are used as AES
keys for authentication and encryption.

4.3. Securing the Hash Chain Using SALT

A critical problem in the original LoRaWAN is the physical attacks against the end
devices that compromise the long-term keys. The compromising of the long-term keys
affects the generated session keys and the whole network system. The prestored hash table
at the end devices is protected using the salt technique that prevents the exposure of the
session keys. Salts are random numbers self-generated by the end devices after the initial
authentication to the LoRaWAN network. The end device randomly generates salt values
to hide the actual original secret keys in an encrypted form.

Salts are used to preserve the passwords in storage. Salting a key is the XORing
operation of this key, and a random number results in a new key that can be stored safely
with the salt value without holding the actual key. Our proposed key generation prevents
any physical attacks using the salt technique for authentication keys and encryption keys.
The salted key table is shown in Figure 7. The end device erases the key table after the
key generation completes and keeps the salts values and the salted authentication and

Sensors 2021, 21, 5838

12 of 35

encryption keys. Salts numbers do not require to be separately stored from the hashed
passwords or to be encrypted. If the attacker accesses the hashed table of the salted keys
and salt values, the attacker cannot predict the original keys. Using self-generated salts at
the end devices protects them from the network operators’ attacks and protects the original
session keys from being compromised.

Salted Key Table
Key Key Salt value for | Salt value for | Salted authentication | Salted encryption key
index value | authentication encryption key
0 Ky Sa1 Se1 Salted ky1=(K1 @S41) | Salted kg=(Ky BSg1)
1 K, Saz Seo Salted ky,=(K, @S,,) | Salted kg,=(K, DSg;)
i K; Sai Ski Salted ky;= (K; @Sai) Salted kg;=(K; @Sgi)
n I San Sen Salted ky,=(K, @San) | Salted kgn,=(K,, BSgn)

Figure 7. The self-generation of authentication and encryption salted keys at the end device.

4.4. Message Authentication

The end device node randomly picks a secret key from the prestored hash chain
key table to calculate the Message Integrity Code (MIC) over the message. This MIC is
considered as a checksum to prevent the tampering of messages. LoRaWAN utilizes the
AES-CMAC algorithm to calculate the MIC value over a message to support authentication
and integrity. AES-CMAC uses the Advanced Encryption Standard [NIST-AES] as a
building block. AES-CMAC uses a secret key and a variable-length message as inputs
to return a fixed-length string as MIC. Our proposed protocol uses the key index only
to inform the receiver which key to calculate the MIC over the message. Sending the
index of the signing key and a random salt value allows the receiver to find the salted
authentication key value. By XORing, the received salt value with the original signing
key generates the salted authentication key. Sending only the key index and salt value
prevents key compromising attacks; even if the attacker sniffs the index, it cannot expose
any information about the originally key. Conventional MIC algorithms require sending
the signed key and the MIC value calculated over a message to allow the receiver to verify
the message. The proposed algorithm does not require sending the key to improve the
security level. Both the end device and server store the same hash chain table of n key
elements. Each sender randomly chooses one salted authentication key to sign the message
using AES128-CMAC and attaches the index of the key; the salt value is used to hide
the authentication key to the message as a pointer to the key. The proposed protocol can
significantly improve the computation speed, increase the security level, and reduce the
network overhead.

The message authentication procedures are as follows:

The end device picks a salted authentication key Salted k; from the salted key table to
generate a message integrity code over a data message m, where K is the original key, and
Sai is the salted value. The authentication procedure is described through Equations (4)—(6).

Salted kp; = (Kl D SAi) (4)
MICgaited Kai = AES128 — CMAC(Salted ka;, m) 5)

where
m = (Ts||Kindex|[Sai|/mpi,Ns) (6)

The parameters of Equation (6) are described as follows:

MICggjted k,;: The MIC value for message m using a salted authentication key Salted ka;.

Sensors 2021, 21, 5838

13 of 35

Ts: The current timestamp to avoid replay attacks.

Kindex: The pointer of the used key in authentication in the pre-shared common hash table
Sai: The random generated salted value is used to hide the authentication key.

mp; Ns: The transmitted message from the end device Di to the network server Ns.

The sender Di attaches the obtained MICggjteq k,;, Sai and the Kjngex of the signing key
and the timestamp, Ts, to the transmitted message as depicted in Figure 9. When the server
NS receives the message (Ts||Kindex||Sai|[mpins||MICsaited k ;) NS checks the freshness
of the timestamp, Ts. If Ts is invalid, NS rejects the message; otherwise, NS verifies the
MICs,jted k,; Value of the received message. NS queries the stored hash table using the
received key index, kingex. Then it XORings the key value with the received salt value
Ki®Sai. The XORing output represents the salted authentication key Salted ka; that is used
by the sender to sign the message.

Then, it calculates the message integrity code of the received message, MICg,jied k,; as
in Equation (7).

MICG,jed K, = AES128 — CMAC(Salted kaj, m) (7)

If the calculated MICZ ;.4 Ky 18 equal to the received one, MICg,jieq k,;, the network
server NS accepts the message.

4.5. Message Encryption

In the original LoRaWAN, the network server (NS) shares some parameters with
each end device to derive the AppSKey using these parameters and the prestored AppKey.
After the application session key generation, the NS securely transfers the AppSKey to the
application server (AS).

In our proposed protocol, the NS sends the h(.), n, and the Sk, to the application
server to start generating the same hash chain for the end device, as shown in Figure 6.
The application server securely saves the hash chain of n keys for future encryption of
the application layer messages. The encryption of messages between the end device and
application server is conducted using AES-128 encryption. The transferred messages
between the end device and application server are entirely secure, which prevents neither
the gateway nor the network server from reading it. We propose a salt random number
generator at the end device to hide the original key and encrypt it. Then it uses the salted
encryption key to encrypt the message and sends the index of the key and the salt value for
encryption to the AS. These parameters allow the AS to derive the salted encryption key
by XORing the received salt with the original hashed key value and decrypt the messages.
When the end device wants to send a message m to the application server, it randomly
picks an element from the hash chain table and XORings this key with the salt value for
encryption. The salt and salted encryption key values are stored at the end device side, as
shown in Figure 7.

The message encryption procedures are as follows:

At the end device side: Picks a salted encryption key Salted kg; from the salted key
table to encrypt a message m, where

Salted kg; = (K; @ Sg;) (8)

K|, represents the original key from the hash table and S g;, represents the salt number used
for the generation of the salted encryption key Salted kg;.

EmDi,Salted kg = AES128 — encrypt (Salted kg = (Ki D SEi)/ m) 9)

Emp; saited kg, represents the application encrypted message m using the salted kg;.

e After encryption, the end device sends the message, salt value, and key index to the
application server.

(Ts | ’kindex’ ’EmDi,Salted kEi |SEi) (10)

Sensors 2021, 21, 5838

14 of 35

e The application server checks the timestamp T; to ensures the message freshness and
using the key index as a pointer to the hash table to find the original key K;.

e It XORings the key value K; with the received salt value Sg;, K;®S4;, the result
represents the Salted kp; = (K; @ Sg;) that used to decrypt the received encrypted
message Emp; saited kg;-

Using salt increases the hashed key’s security, making it hard for an attacker to
compromise the used key and prevents the application server from tracking the end device
data. To prevent physical attacks on the end devices, we recommend that each end device
store only the salted hashed keys and the used salted values.

5. Security Properties

In this section, we discuss the proposed key management security properties and
objectives compared with the original LoRaWAN security protocol:

5.1. Session Key Distribution

The network server is considered a trusted third-party agent in our proposed solution
to generate the master key for the end devices. It securely shares a master secret seed value
with the end device and application server. All entities (end device, network server, and
application server) use a one-way hash function to generate n hashed keys that can be
used for message authentication and encryption. Instead of frequent communication with
the network server and application server for deriving new session keys or new session
key updates, as in the basic LoRaWAN solution, our proposed key management protocol
allows the end devices to securely store the hash chain of n elements using a Hardware
Security Module. This solution enhances the security level and prevents the use of two
long-life session keys as previous LoRaWAN. Our protocol needs only a one-time Over-
The-Air Activation to share a session key between the end device and the network and
application server. In the initialization phase, the end devices use the pre-shared session
keys (NwkSKey and AppSKey) to share a new master secret key Sk, The end device
iteratively hash the Sk, to generate n hashed keys used as future session keys instead of
using the NwkSKey and AppSKey for the long lifetime. In order to avoid the physical
attacks at the end devices side, we propose a salt solution to hide the original session keys,
so the end devices only store the salted keys and the salt numbers in the database. If an
attacker tries to compromise the stored salted keys, he is unable to expose any information
about the original session keys. Our proposed solution allows the end devices to send
the key index value as a pointer of the original key that is prestored at the network server
and end devices instead of sending the key over the open wireless medium as previous
authentication solutions for more security. We sacrifice the storage needed to keep an n
hash length of keys at the communicated parts to enhance the security level and optimize
the network bandwidth.

5.2. Session Key Updates

In the basic LoRaWAN security protocol, no key updates happened, which is con-
sidered a critical issue. The end devices are using two session keys for a long lifetime for
authentication and encryption. Our protocol solves the session key update problem by
providing different unique keys every session. The end devices store n keys securely; each
key is valid for a short time. Randomly choosing one key from the prestored keys and
sending only the key index allows the receiver system to authenticate the message. To
enhance the security level of the prestored hash chain, we recommend updating the master
secret key Sk, to generate a new hash chain based on an agreement between the network
server and the end device. The session key updates can be achieved as follows:

e The network server generates a new master secret Skj;;
e Securely send the Skj; for both the end device and application server using the pre-
stored root keys (NwkSKey and AppSKey);

Sensors 2021, 21, 5838

15 of 35

Decrypt using NwkSkey aes128-encryptywiskey (h(.),n, Sk:‘)
= aes128—encrypt appskey (h(.),n, Skl‘]‘)
» D generate new salt values for authentication NS encrypt using NwkSkey

and encryption.
* Store the salt numbers and updated generated

e All communicated entities generate a new hash chain of length n, then the network
server and application server storing the generated hash-chain;

e The end device salted the generated hashed chain with random numbers to store new
encrypted keys and only different salt numbers;

e The end device stores only the salted authentication keys and sated encryption keys in
addition to the updated salted values. The hash chain key updating process is shown
in Figure 8.

Trusted Third-Party Authority

End Device Network Application

(D) Server (NS) Server (AS)

" NS encrypt using AppSkey

AS Decrypt using AppSkey

keys to avoid key compromising NS, D and AS generate from Sk* a new updated hash chain
Updated salts for Updated salts Updated Updated | NS and AS store a .Common up dated hash
authentication for encryption authentication encryption Key Updated chain table Key Updated
keys keys index Key index Key

S Sp1" Salted k1" Salted kg " 0 Bl 0 lss
Sa" Sp2" Salted k" Salted kg, 1 il 1 k"
Sai* Sgi" Salted k ;" Salted kg;* i ki i ™
S SEam Salted k,,," Salted kg," n B n k"

Figure 8. The master secret key update and self-generation of new salted keys for authentication and encryption.

5.3. Mutual Authentication

The proposed protocol uses the OTAA join procedure of the original LoRaWAN to
authenticate the end device node to the network server. After the mutual authentication is
complete, the network server shares a secret key to allow the end device to generate the
keystream of the hashed elements for future session communication. Each end device stores
a length n of hashed keys, n key indices, n salted values for authentication, and n salted
values for encryption. The original LoRaWAN allows devices to use two lifetime keys to
derive the network session keys and application session keys. However, the proposed
protocol allows devices to use different salts for authentication and encryption, which
increases the security level of the session keys.

5.4. Secure Key Exchange

The proposed hash chain key generation includes transferring the master secret key
Sk; in an encrypted way using the NwkSKey that prevents any attacker from exposing the
initial master secret. In contrast to the original LoRaWAN, the key derivation depends on
the initial parameters that are transferred between the end device and network server in the
Join-Request message and the Join-Accept message. The generation of session keys requires
transmitting a new request message to the server, which results in significant overhead at
the network server and high power consumption at the end device side. The proposed key
generation method does not use the long-term keys for session key generation. However,
using the root keys to derive the session keys in the original LoRaWAN exposes the
generated session keys for being compromised once the root keys are compromised. Key
generation depends on the master secret key generated by the network server. Storing n

Sensors 2021, 21, 5838

16 of 35

keys for future communication provides updated session keys that are picked randomly to
sign and encrypt the messages.

5.5. Defense against Key-Compromising Attacks

In the original LoRaWAN, all session keys are generated using the root keys that make
them vulnerable to sniffing attacks. However, the end device generates a keystream from
the initial seed key that is preshared securely between the end device and network server
in the proposed key generation method. The end device randomly picks any key from the
stored salted hash table that hides the original keys in an encrypted form called salted keys.
If any attacker physically accesses the end device, the stored key information is unable to
reflect the original key parameters (initial seed used to generate the hash chain elements).

5.6. Perfect Forward Secrecy

Perfect forward secrecy is a security property where the compromise of long-term
(root) keys does not expose the past derived session keys [28]. The proposed key generation
depends on the master secret key Sk;, securely shared between the end device and network
server. This key generates n hashed keys by iteratively hashing it n times using one-way
hash functions (sha256). Once the proposed key generation method does not depend on
the long-term keys to generate the session keys, finding the past session keys is difficult
by compromising the root keys. The end devices store only the encrypted version of the
original hashed keys (salted keys) to avoid sniffing the original keys shared and stored at
both the network and application servers. Thus, the proposed key generation supports
perfect forward secrecy and backward secrecy.

Backward secrecy means that the compromise of the long-term keys cannot affect the
generation of the future session keys. The proposed protocol allows the end devices to pick
randomly one session key for authentication and then send only the key index to allow the
receiver to verify the message. Sniffing the key index does not disclose any information
about the key, which guarantees forward secrecy.

5.7. Defense against the Replay Attacks

For the original LoRaWAN, the network server registers the DevNonce included in
the uplink messages (Join-Request) to prevent replay attacks. However, the end device
for the downlink messages (Join-Accept) does not register the received AppNonce from
the network server. Therefore, an attacker may register a (Join-Accept) message, wait
for the end device to send another (Join-Request) to respond with the registered (Join-
Accept). In this case, the end device and the network server derive different session keys.
Our proposed key generation method includes a timestamp in each uplink and downlink
transmitted and received message to prove the freshness of the messages and prevent
any attacker from transmitting different faked messages. Therefore, we proposed to use
timestamps instead of nonces to protect the end device and the network server from replay
attacks. We summarize the security properties comparison between the proposed protocol
and the original LoRaWAN in Table 3.

Sensors 2021, 21, 5838

17 of 35

Table 3. The security comparison of the proposed key management protocol with the original LoRaWAN.

Security Functions and
Defense against Attacks

The Original LoRaWAN Protocol [17]

The Proposed Protocol

Session Key Distribution

° The end device shares two-lifetime
session keys with the network server;

) Network server suffers from high
frequent communication with the end
devices for deriving new session keys;

° The end devices suffer from high power
consumption and key compromising
attacks due to using two long-life keys.

° Network server considered as trusted
third-party authority;

. A network server, application server, and end
device share a common hash chain of n keys;

e No frequent communication with the
network server for key establishment;

e MAC layer messages and application layer
messages are protected with different hashed
keys;

° Enhances the security level and prevents the
use of two long-life session keys.

Mutual Authentication

e Only the initial join procedure
authentication to generate two session
keys NwkSKey and AppSKey.

e Using the initial join procedure to generate
NwkSKey and AppSKey;

e End devices securely share an encrypted
master secret key (Skn) with the network
server to generate a hash chain for future
session communications.

The key update is not supported; Support key update;
Session Key Updates Only two longlife keys are used for Using different session keys with each
different sessions. message.
Message Integrity Supported: Using AES128-CMAC Supported: Using AES128-CMAC
Message Encryption Supported: Using AES128-CTR Supported: Using AES128-CTR

Perfect Forward Secrecy

Not supported: Compromising the root keys
can compromise the session keys.

Supported: Compromising the root keys cannot
compromise the encrypted session keys. Salted
keys are stored at the end device side.

Secure Key Exchange

Not supported: An attacker can sniff the
transferred parameters in the initial join
procedure and derive the session keys.

Supported: The master secret key that is used to
generate the hash chain elements is shared in an
encrypted way.

Defense against
key-compromising Attacks

Not supported: No defense against the key
attacks. As the root keys and session keys
can be sniffed and derived.

Supported: Can defend against the key attacks
using a salted key table that hides the original keys
in a different encrypted form. Hiding keys prevent
attackers from sniffing it or even compromise.

Defense against replay
attacks

Not supported: No defense against the
replay attacks as the end device does not
register the received AppNonce in the
Join-Accept message.

Supported: Can defend against the replay attacks
by attaching a fresh timestamp with each message.

6. Security Verification

In this section, we provide formal security analysis and automatic security verification
for the proposed key management protocol and the authentication procedures using
AVISPA. Automated Validation of Internet Security Protocols and Applications (AVISPA)
is a formal security analysis tool that is used for modeling, design, and verification of
security protocols. The High-Level Protocol Specification Language (HLPSL) is used to
model the security protocol and then convert it to Intermediate Format (IF) using HLPSL2IF.
The converted Intermediate Format is analyzed via the other four sub-modules, and the
verification result is derived [29,30]. The four sub-modules are (1) On-the-Fly Model-
Checker (OFMC), (2) SAT-based Model-Checker (SATMC), (3) CL-based Attack Searcher
(CL-AtSe), (4) Tree-Automata-based Protocol Analyzer (TA4SP). For more information

Sensors 2021, 21, 5838

18 of 35

concerning the AVISPA modules, the reader can refer to [30]. SPAN is the security protocol
animator that is used to build the protocol’s message sequences, implementing active
intruders and different attacks.

The proposed key management protocol is designed in HLPSL and consists of three
different roles (basic, composed, environment). The basic role includes three roles cor-
responding to three network entities, the Device (D), the Network Server (NS), and the
Application Server (AS). We used AVISPA verification to model all network entities and
the messages between them. Moreover, the AVISPA checks the security features of the
proposed protocol and its ability to defend against some attacks. We define some security
goals and intruder knowledge, session parameters, and environment. The network entities’
roles are described in Figures 9-12, as defined in AVISPA.

HLPSL for the proposed key LoRaWAN protocol-based hash chain

generation :
role Device (init
Device (D), Network Server (NS), Application State:= 0
Server (AS) : agent,
transition

AppKey : symmetric key,
1. State = 0 /\ RCV NS_D (start) =|>
NwKey : symmetric key,

. State' := 2 /\ AppEUI' := new()
Ki: hashed symmetric key, % should be

determined by lookup the generated hash table /\ DevEUI' := new()
SA;, SEi: salted values (Nonce), /\ DevNonce' := new()

Salted kj; : text,
/\MIC1:= AES128 CMAC

Salted kg, : text, (AppKey.AppEUI.DevEUI.DevNonce)

n: hash chain length, /\ SND D_NS (AppEULDevEULDevNonce.MIC1)

F : hash_func, B))
/\ witness(Device, Network Server, Join request, AppKey)

Kindex : text,
3. State =2 /\RCV NS_D

AES128 CMAC, AES128 Encrypt, SHA 256 , XOR: ({AppNonce.NetID.DevAddr.MIC2}_AppKey) =|>
function,

. State' :=4 /\ Seq1' := new()
pad01, pad02,pad16 : padding,

SEND D_NS, RCV NS_D, SND D_AS, RCV AS_D: /\ AppSkey := {AppNonce.NetiD.DevNonce)_AppKey

h 1(d.
channel(dy)) /\ NwKSkey := {AppNonce.NetID.DevNonce} NwKey % initial
played_by Device mutual authentication is done (OTTA mode)
def= %% calculate AppSKey by encrypting the
local (pad01,AppNonce,DevNonce, NetiD, pad16) with the AppKey
State: nat, %% calculate NwkSKey by encrypting the

pad02,AppNonce,DevNonce, NetID, pad16) with the AppKe
AppNonce, AppEUI: text, l . J FESCE

DevNonce, DevEUL: text, 6. State = 4 /\ RCV NS_D ({Ska. F.n}_ NwKSkey)

State":= 6 /\ Ki:= F™(Ska) %% generating a hash chain of
length n, Ki represents one element key from the chain

NetID, DevAddr: text,

NwkSkey, AppSkey: message,
%% Device stores the generated hash chain
Join-request: message,
. /\ witness(Device, Network Server, Hash-chain generation,
Join-response: message, K9
i

Hash chain generation: message,

end role

Figure 9. End device role using HLPSL and AVISPA.

Sensors 2021, 21, 5838

19 of 35

role Network Server (2.State=1 /\ RCVD_NS
(AppEUI'.DevEUI'.DevNonce'.
Device (D), Network Server (NS),
Application Server (AS) : agent, AES128 CMAC (AppKey.AppEUI'.
DevEUI'.DevNonce")) =|>
Sk, : symmetric master secret key,
State' := 3 /\ AppNonce' := new()
AppKey : symmetric key,
/\ NetID' := new()
NwKey : symmetric key,

. /\ AppSkey' :=
CMAC: function, {AppNonce".NetID'.DevNonce} AppK
F : hash_func, v

/\ MIC2 := AES128 CMAC

n: hash chain length, (AppKey.AppNonce'.NetID'.DevAddr’
)

AES128 CMAC, AES128 Encrypt, SHA
256, XOR: function,

/\ SND NS_D

pad01, pad02,pad16 : padding,, ({AppNonce'.NetID'.DevAddr'.MIC2}_
AppKey)

SND NS_D, RCV D_NS, SND NS_AS,: X

channel(dy))| /\ NwKSkey’ :=
{AppNonce'.NetID'.DevNonce} NwKe

played_by Network Server y

def= %% calculate AppSKey by
encrypting the

local (pad01,AppNonce,DevNonce, NetID,
pad16) with the AppKey

State: nat,
%% calculate NwkSKey by

AppEUI, App Nonce, DevEUI, Dev encrypting the

Nonce, Dev Addr, NetID: text, (pad02,AppNonce,DevNonce, NetID,
pad16) with the AppKey

AppSkey, MIC1, MIC2 : message

Join request: message, /\ SND NS_AS ({AppSkey'}_ AppKey)

Join reponse: message, /\ SND NS_AS ({Skn. F .n}_AppSkey)

init /\ request(Network Server, Device,

Join reponse, AppKey)

State:=1 . .
/\ witness(Network Server, Device,

transition Hash-chain generation, AppKey)

end role

Figure 10. Network server role using HLPSL and AVISPA.

role Application Server (

Device (D), Network Server (NS), Application Server (AS) : agent,
AES128 CMAC, AES128 Encrypt, SHA 256, XOR: function,

pado01, pad02,pad16 : padding,

RCV D_AS, RCV NS_AS: channel(dy))

played_by Application Server

def=

local

State: nat,

AppEUI, DevEUI: text,

AppSKkey: message

init

State:=1

transition

4. State = 1 /\ RCV NS_AS ({AppSkey'}_AppKey) =|>

State':= 3 /\ secret(AppSkey, {Application Server, Network Server})
/\ RCV AS_NS ({Skn. F .n}_AppSkey)

/\ request(Network Server, Application Server, , Hash chain generation, AppSkey)

end role

Figure 11. Application server role using HLPSL and AVISPA.

Sensors 2021, 21, 5838

20 of 35

role Environment() secrecy_of Ki,Salted ky; , Salted kg;
def= end goal
const Environment()

Device (D), Network Server (NS), Application

Server (AS) : agent, role Session(
Kiindex : text, Device (D), Network Server (NS), Application Server
(AS) : agent,

Salted ky; : text,
AppKey : symmetric key,
Salted kg; : text, ppRey: sy v
AES128 CMAC, AES128 Encrypt, SHA 256 , XOR:

AES128 CMAC, AES128 Encrypt, SHA 256, function)

XOR: function,

. def=
pad01, pad02,pad16 : padding,

)) local SND,RCV : channel (dy)
intruder knowledge = { Device (D), Network Server

(NS), Application Server (AS), AES128 CMAC, composition
IAES128 Encrypt, SHA 256 , XOR, K index , SAi, SEi }
Device(Device, Network Server, Application Server,
composition AppKey, AES128 CMAC, AES128 Encrypt, SHA 256,
XOR, SND Device_Network Server, RCV Network

Session(Device (D), Network Server (NS), Server_Device)

Application Server (AS), AES128 CMAC,
SHA256, XOR) /\ Network Server(Device, Network Server,

Application Server,
end role

I AppKey, AES128 CMAC, SND Network Server_Device,
goals

RCV Device_Network Server, SND Network

%79% mutual authentication between network Application)

entities
V\ Application Server(Device, Network Server,

%7Y% confidentiality of the secret material Application Server

%% authentication of master secret key AES128 CMAC, AES128 Encrypt, SHA 256, XOR, SND

%7Y% perfect secrecy of the original keys Ki Application Server_Device,

%9% replay protection RCV.De\{lce_Appllcatlon Server, RCV Network
Application)

authentication_on Join request, Join reponse
-on} q J 4 end role

authentication_on Ska, F, n, Ki

Figure 12. Environment and session roles using HLPSL and AVISPA.

The following security properties and attacks are verified and discussed: mutual
authentication, perfect forward secrecy, replay attack, unforgeability, and stolen verifier at-
tack. The verification results using AVISPA confirm that the proposed protocol can support
the previously mentioned security functions and resists the replay attack, unforgeability,
and the stolen verifier attack. The ATSE module confirms that the proposed protocol is
safe based on the defined security goals and the environment parameters. The security
verification and message sequence of the proposed protocol are illustrated in Figure 13.

Security Verification Discussion:

We introduced a common hash chain of n keys that are stored only at the authenticated
and authorized network entities (network server, end devices, application server). The
signing keys used are based on the previously shared master secret and one-way hash
function. These parameters are shared between the end device and the network server in
an encrypted way to prevent any unauthorized user from intercepting or sniffing them.
Any node that joined the network must start with the Over-The-Air Activation mode to do
the mutual authentication and share two session keys one key for authentication (network
session key), and a second key for encryption (application session key). If any end device
receiver passed the initial mutual authentication, it can sign messages, generate valid
signatures, and verify signatures. In our protocol, only registered and authorized devices
can send the authenticated messages. If the receiver (network server) receives an incorrect
signature, initially it calculates the signature over the message and starts comparing the
received signature with the calculated signature; if it is not equal, the network server will
discard the message. Therefore, the proposed protocol is secure concerning unforgeability.

Sensors 2021, 21, 5838

21 of 35

x SPAN 1.6 - Protocol Verification : LoORaWAN Proposed Key Management Protocol.hipsl

File

A

ISUMMARY
SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS
UNTYPED_MODEL

PROTOCOL
/home/span/spanftestsuite/results/LoRaWAN Proposed Key Management Protocol.if A
View CAS+ | ViewHlpsL A _Protocol Intruder Attack
simulation simulation simulation
Tools Options
HLPSL v Simplify
Wl Choose Tool option and v Untyped model
press execute
IF Execute Verbose mode
OFMC | ATSE SATMC | TA4SP Search Algorithm
pth first
Breadth first
role_device role_network role_application
device network application
Join-Request
Join-Response
Exchange of AppSkey

Authentication Request

Hash Chain Generation

Hash Chain Generation

Authenticated Message

Figure 13. The proposed protocol security verification and message sequence using SPAN.

According to the definition of the Stolen Verifier Attack, an attacker can steal the veri-
fication data from the server to generate communication data using the stolen verification
information and sending it to the server. If it succeeds, the attacker can impersonate the end
device information from the next authenticated session. However, in the proposed protocol,
each end device generates a unique random number called salt authentication value that
XORing it with the original secret key, then stores only the salted results and salted values
in the salt table. This proposed salt encryption prevents the key compromising attacks for
the end device side and also the server side. When the end device sends a message for the
server, it sends a key index value that pointed to the originally used key, the salted value,
timestamp, and device address. The end device never sends the actual key, it sends only
the index of the used key. Only the server and end devices have the common hash table, so
the server starts to search the table for the used key, picks up the key, and XORings it with
a received salt value; the result is the key used by the end device to generate the message

Sensors 2021, 21, 5838

22 0f 35

integrity code signature over the message. The server then compares the received signature
with the generated signature and decides to accept the message or reject it. Now, even the
network server is unable know the used key without the generated salt value by the end
device, which prevents the network server attacks and preserves the end device’s security.

Moreover, if any attacker passed to steal the verification data from the server side, it
can only control the current session. However, the future sessions are still secure as the end
device uses a unique key per session. Therefore, the proposed protocol defends against
the Stolen Verifier Attack. Each LoRaWAN end device is embedded with the tamper-proof
device (Hardware Security Module), which prevents an attacker from accessing the security
material and parameters. Moreover, the stored keys are stored in different forms using salt
encryption, which is recommended for hash table security.

If anyone gets access to the hardware module, which is impractical, the attacker cannot
return the salted keys to the originally used keys, which makes it very difficult for the
attacker to sniff the keys or sniff the master secret key that is used to generate the total hash
chain. Concerning forward secrecy, which is a security property where the compromise
of long-term (root) keys does not expose the past derived session keys, the proposed key
generation depends on the master secret key (Skn) that is securely shared between the end
device and the network server. This key generates n hashed keys by iteratively hashing
it n times using one-way hash functions (sha256). Once the proposed key generation
method does not depend on the long-term keys to generate the session keys, finding the
past session keys is difficult by compromising the root keys. The end devices store only the
encrypted version of the original hashed keys (salted keys) to avoid sniffing the original
keys shared and stored at both the network and application servers. Thus, the proposed
key generation supports perfect forward secrecy. Even the end devices did not send the
keys, so sniffing of the key index has no meaning and cannot disclose any information
about the future session keys or past session keys.

7. Performance Evaluation

After discussing the security analysis of the proposed key generation protocol, we
evaluated the proposed solution in terms of computation cost and communication cost.
We also compared it with the basic LoRa security solution and some other related work
that is proposed to enhance the security level of the Lora architecture. To evaluate the
performance of the proposed protocol, we implemented it in an NS3 simulator using a
cryptography library called MIRACL and a LoRaWAN module [31,32]. The simulations
were conducted in a hardware platform employing an IntelCore 17-4770 processor with a
3.40 GHz clock and the main memory of 4 GB. The average execution time of the essential
security functions is listed in Table 4.

Table 4. The definition and processing time of the primary cryptographic operations of NS3 Simulator

for the proposed method.
Cryptographic Operation Definition and Abbreviation Average Execution Time (ms)
. T} the time defined for one hash function
Message Hashing operation using SHA-256 algorithm 0.006
. Tenc: the time to perform one encryption
Message Encryption operation using AES-128 4.0274
. Tgec: the time to perform one decryption
Message Decryption operation using AES-128 41524
Random number Tg: the time required to generate one 0.001
generation random number '
Message integrity coding Twmic: the time defined for one MIC 0.0167

operation using AES128-CMAC algorithm

Sensors 2021, 21, 5838

23 of 35

7.1. Analysis of Computation Overhead

Instead of communicating with the network server every session to derive a new

session key, as mentioned in the basic LoRa protocol, our protocol allows every end device
to store n session keys to reduce the communication overhead and save the network
bandwidth. Each end device requires initially joining the LoRa network and sharing one
session key and one application key. Then it uses these keys to securely share a standard
master secret key and a one-way hash function. The end device uses the shared security
parameters to generate n hashed keys, n salt values for authentication, and n salt values for
encryption. The computation cost for each end device is calculated only one time at the
initialization phase or in the key-update process.

The hash chain generation: We assume that hash chain generation can be offline at the
initialization phase of joining a new end device to the LoRaWAN network. However,
during the runtime, the hash chain generation computation time can be calculated
as follows: One hash generation using the Sha-256 hash function requires 0.006 ms.
According to the LoRaWAN specification [33], in a 24 h interval, a node transmits
one packet every 14.4 min. In conclusion, a node sends approximately 11 packets per
day. Therefore, the total number of session keys required to secure every transmitted
message for 1 year is 3960 keys only. As well, the computation time of the hash chain
of a length 5000 key element is 30 ms. Any end device can generate the required
keystream during the runtime using the one-way hash function h(.) and the master
secret key Skp.

The salt random number generation: Salts are in place to prevent someone from
cracking original keys and can be stored in cleartext in the database. We recommend
an offline salt generation for each original key to reduce the network overhead. In
some cases, such as key updating due to normal situations or under attacks, each
end device must generate the salt numbers during runtime. The calculation time of
salt numbers includes generating random numbers and XORing of the generated
salts and the original keys. End devices must store only the salts numbers, the key
indexes, and the salted keys in the hash chain table. Generating different salts results
in different keys for both authentication and encryption. For the star topology, which
is the dominant topology for LoRaWAN, each end device shares a different master
secret key to generate a different hash chain that allows the devices to communicate
with the network server and application server securely. In contrast, the end devices
in the mesh topology share a common hash chain to communicate with each other
and with the network servers. Sharing a single common hash chain can expose the
system for sniffing attacks and key compromising attacks. However, the proposed
key management scheme allows end devices to locally generate different salt values
to hide the original keys, resulting in different salted keys at each device. This salting
process makes the breaking of original keys very complex and hides the original keys
in a different version of keys, preventing any attacks that target the sniffing of the
original keys or the initial master seed key. The total time required for generating
n random salts of 8 bytes size required approximately (0.001 n) ms, where a single
random number consumes 0.001 ms. For n = 5000, the total computation time is
0.001 x 5000 = 5 ms. The computation time of the XOR operation of the random salt
number and the original hashed keys are neglected since their computation time is
negligibly short.

Key generation time:

Case 1: for n = 5000 (1 year)

Sensors 2021, 21, 5838 24 of 35

The total computation time of the proposed key generation method at each end device
using the crypto functions execution time in Table 3 for n = 5000 keys for 1 year battery
lifetime is:

Hash chain time generation 4 salt random generation time for the authentication keys
+ salt random generation time for the encryption keys
=Nx* Th+ N x Tg+ N * Tg = 5000(0.006 + 0.001 + 0.001)
= 40 ms.

Case 2: for n = 417 (1 month)

When the hash chain generation is updated every month, the required number of keys
is 417 to allow the end devices to communicate for 1 month. The total computation time
for 1 month is:

Hash chain time generation + salt random generation time for the authentication keys
+ salt random generation time for the encryption keys
=Nx*x Th+ N * Tg+ N x Tg = 417(0.006 + 0.001 + 0.001)
= 3.336 ms.

Authentication time:

The computation time required to sign one message is the consumed time to calculate
a Message Integrity Code MICggjteq i ,, OVer the message m using a salted authenticated key
Salted k 4;. One MIC operation using the AES128-CMAC algorithm according to Table 4 is
Twmic = 0.0167. The verification time at the receiver (network server) requires one search
operation for the key using the attached key index as a pointer and one XORing operation
to generate the authenticated salted key, then using the key to generate MICg,,; . = value
over the same message and comparing the result with the received MICgjseq £ ,, to accept
the message or reject it. Therefore, the total authentication time per message at the end
device side is Tyqc = 0.0167 ms.

Encryption time:

The computation time required to encrypt one message using AES-128 and a salted
encryption key Salted kr; requires Tenc = 4.0274ms. The decryption process at the applica-
tion server side requires one search operation to find the key and XORing the key with the
received encrypted salt value to generate the encrypted salt key Salted kg; that was used
to decrypt the received message. We neglect the search operation and XORing operation
due to their short computation time. Therefore, the total encryption time per message at
the end device is Tgec = 4.1524. We summarize the security computation overhead of the
proposed protocol in Table 5.

Table 5. The compution time calculation of the proposed key mangment protocol at the end device.

Compution Time (ms)

Case 1 (n = 5000 key) Case 2 (n = 417 key)
40 3.336

Required Key generation time

Required Authentication time per message 0.0167

Required Encryption time per message 4.0274

7.2. Analysis of Communication Overhead

This section analyzes the communication cost in terms of message size for the authen-
ticated messages between the end devices and the network server, the encrypted messages
between the end devices and application server, and the required storage at each end
device for storing the keystream of length n. The message format for the authenticated
messages and encrypted messages are shown in Figures 14 and 15, respectively.

Sensors 2021, 21, 5838

25 of 35

MICsqitea i, is calculated over the message using the authenticated
salted key ky;

I v
MHDR FHDR Proposed Message Message
(1byte) (7-22) Authentication | Payload | Integrity Code
bytes Security mp; ns | MICsqitedky,
Header
- ~
—”——" \\\\
—”’ \\
Time Key Index Authentication
Stamp T’ Kindex Salt Value S4;
(4bytes) (4bytes) (8bytes)

Figure 14. The proposed protocol authenicated message format.

Emp; saitedk,, is the application
encrypted message
using the salted key kg;
|

MHDR FHDR Proposed Encrypted
(1byte) (7-22) Encryption Message
bytes Security Payload
Header Mmpi Ns
—’——‘ A Y
- \
-_— AY
=" \
Time Key Index Encryption
Stamp T’ Kindex Salt Value Sg;
(4bytes) (4bytes) (8bytes)

Figure 15. The proposed protocol encrypted message format.

Case 1: High-security level for low power consumption
First: The initial storage overhead at the end devices is calculated as follows:

For hash chain length n = 5000, each hashed element represents an original key with
size 32 bytes, so the total hash chain storage is 5000 x 32 = 160,000 bytes. However, the
key size is 32 bytes; we use only 16 bytes key size to support AES-128 authentication
and encryption;

For n salt values used for generating the authentication keys, each salt size is 8 bytes,
and the total size is 5000 x 8 = 40,000 bytes;

For n salt values used for encryption, each salt size is 8 bytes; the total size is
5000 x 8 = 40,000 bytes;

For n key indices that are used as a pointer for each key in the hash table, each key
index is 4 bytes, so the total key indices size is 5000 x 4 = 20,000 bytes.

After generating the salted authentication keys and salted encryption keys, each end

device only stores the salted keys, salt values, and key indices. To avoid the physical attacks
and prevent any exposure to the original hashed keys, the end device removes all original
hashed keys and only keeps the salted authentication and encryption keys.

The total final storage is calculated for n = 5000 as follows:

nkey index + n salt value for authentication + n salt value for encryption
+ n salted authentication keys + n salted encryption keys
=n*x4+n*84+n*x8+n*x16+n=*16
=5000(4 + 8 +8 + 16 + 16) = 260, 000 bytes

Second: the security overhead of the authenticated message and encrypted message:

The security overhead in the case of authentication is calculated as follows: The
structure of the authentication message is shown in Figure 9 and consists of the

Sensors 2021, 21, 5838

26 of 35

following elements (MHDR||FHDR||Ts||kingex||S ail|mpi Ns]| |MIC5ulted k) We ex-
clude the MAC header (MHDR), Frame header (FHDR), and the message payload
mp; Ns during calculation. So the total communication overhead due to security
header and signature per message is 4 + 4 + 8 + 4 = 20 bytes;

e The security overhead in the case of the encrypted message is calculated as follows:
The message structure of the encrypted message is shown in Figure 10 and consists of
the following elements: (MHDR||FHDR||Ts||kingex||Sei||EMpi saited ks,)- We exclude
the MAC header (MHDR), Frame header (FHDR), and the encrypted message payload
Emp; saited k; during calculation, so the total communication overhead due to security
per message is 4 + 4 + 8 = 16 bytes.

Case 2: Medium security-level for extremely low power consumption

e By allowing the end devices to update the stored keys every month, once the required
keys per year for standard LoRaWAN networks are 5000 keys, each end device needs
to store only 417 keys for 1 month of communication.

e Due to the IoT devices’ memory and power limitation, the security overhead can be
decreased using salt values of size 2 bytes and the key index of size 2 bytes, so the required
storage is {n key index + n salt value for authentication + n salt value for encryption
+ n salted authentication key + n salted encryption key} = n#2 + n#2 4+ n*2 + nx16 +
nx16 = 417(38) = 15, 846 bytes.

e Using a timestamp of 2 bytes, the security overhead in the case of message authentica-
tionis 2 + 2 + 2 + 4 = 10 bytes. In the case of an encrypted message, the overhead is
2 +2 + 2 =6 bytes.

We summarize the security overhead of the proposed protocol in Table 6.

Table 6. The Security overhead of the proposed key mangment protocol at the end device.

Security Overhead (Bytes) Case 1 (n = 5000 Key) Case 2 (n = 417 Key)
Storage size 260,000 15,846
Authentication overhead size 20 10
Encryption overhead size 16 6

7.3. Power Consumption Analysis

In this section, we analyze the required power consumption of the end devices due to
the security overhead. We used the LoRa energy calculator [34] to calculate the end device’s
battery lifetime under defined assumptions and different packet sizes using real-world
measurements. The inputs to the LoRa energy calculator are packet size, transmission
period, and battery type. The measured outputs are the time on the air, the number of
transmitted packets, and the Time To Live (TTL) of the end device battery. To demonstrate
the differences between the proposed protocol and other related LoRaWAN protocols, we
choose also the enhanced LoRaWAN protocol proposed by You et al. [19]. In [19], the
authors proposed an enhanced protocol of LoRaWAN using Elliptic Curve Diffie Hellman
(ECDH) key generation, which is authenticated by Elliptic Curve Digital Signatures. Their
protocol supports end-to-end security and suggests the generation of DevNonce to avoid
replay attacks. In [19], the authors proposed two different cases for their method, the
first one is the Default Option (DO) and the second one is the Security-Enhanced Option
(SEO). Both options are to prevent the network server from generating any vulnerabilities
and breaking the security between the end node device and the application server. The
first case DO targets to defend against network server eavesdropping attacks that attempt
to break the communication security between the end device and its related application
server. The second SEO case prevents the data manipulating between the end device and
application server and also prevents the impersonation of both entities. The malicious
network server is blocked from manipulating packets between a device and its application
server, as well as impersonating these two parties. However, although this protocol

Sensors 2021, 21, 5838

27 of 35

supports the LoRaWAN end-to-end security, it suffers from high computation cost and
high communication cost due to using expensive elliptic curve operations. In this section,
we analyze the original LoRaWAN protocol, the proposed protocol, and both cases of
enhanced LoRaWAN mentioned in [19]. During the performance evaluation process, we
used a Li-ion(1000 mAh, 3.3 Volt) battery that consumes a processing power of 15 mW
for reading a sensor value within a 5 ms period, and the sleep consumption is 10uW.
The packet transmission is periodic every 14.4 min according to the LoRaWAN standard.
LoRaWAN communication supports multiple spread factors (SF) (between 6 and 12) to
compromise the data transfer rate and the communication range. Each node transmits
every 14.4 ms, approximately 11 packets are transmitted every day. We analyze the protocol
of [19] using the LoRa energy calculator under defined assumptions and different packet
sizes using real-world measurements. Table 1 shows the results for time on the air, the
number of transmitted packets, and the battery life during the communication. The original
LoRaWAN MAC payload size ranges between 51 and 222 bytes. We added the security
overhead in terms of bytes to the original payload size to study the security impact on the
battery lifetime. The total communication cost and computation cost for the Do case are 94
bytes and 11 ms, respectively.

Table 7 lists the main parameters of the LoRa communication protocol, such as the
spreading factor, channel bandwidth, and the transmitted power. The SF is the modulation
technique that represents the number of chips per symbol. It is an integer value between 6
and 12: the greater the SF value, the more capable the receiver is to move away from the
signal noise. Therefore, the greater the SF value, the more time is required to transmit a
packet. The channel bandwidth represents the range of transmission band frequencies [35].
The channel BW can be 125 kHz, 250 kHz, or 500 kHz. For a fast transmission, a 500 kHz BW
is recommended. We used a 125 kHz channel BW to support a long-wide communication.
We studied the power consumption using two cases (worst case and best case). The worst
case supports SF12, the channel BW 125 kHz, and the transmission power is 14 dBm. The
best case supports SF7, a channel BW of 125 kHz, and a transmission power of 2 dBm.The
original message format of the LoRaWAN for an authenticated message is as follows:
The LoRaWAN message format that consists of the MAC header (MHDR), Frame header
(FHDR), message payload from end device to the server (m), and the Message Integrity
Code (MIC), as shown in Figure 16. The power analysis for the original LoRaWAN is
calculated for message payload sizes mp; ns 51,136, and 222 bytes using the LoRaWAN
parameters in Table 7 and excluding the message headers. To study the impact of security
on power consumption, a 4 bytes MIC is included for authentication for each transmitted
packet. From Table 8, the measured parameters for the original LoRaWAN are time on the
air, the number of packets, and Time To Live (TTL). Time on the air represents the total
transmission time for this end device during the battery life.

Table 7. LoRaWAN paramaters.

Parameters Assumptions Worst Case Best Case
Spreading Factor (SF) 12 7
Channel Bandwidth (BW) 125 kHz 125 kHz
Transmission Power (dBm) 14 2

Calculated using NwkSKey

'

MHDR FHDR Message MIC
(1byte) (7-22) Payload (4bytes)
bytes Mmpi Ns

Figure 16. The original message format of LoRaWAN.

Sensors 2021, 21, 5838 28 of 35

Table 8. Battery lifetime in the case of the original LoRaWAN with authentication for different message sizes.

Parameters Payload Size = 51 Bytes Payload Size = 136 Bytes Payload Size = 222 Bytes
Worst Case Best Case Worst Case Best Case Worst Case Best Case
Time on the air (ms) 2465 102 5251 225 8036 353
Number of packets 32,339 267,664 16,245 218,202 10,847 182,980
TTL (Time To Live) (Years) 0.863014 7.30685 0.421918 5.94521 0.287671 4.9863

In LoRaWAN, for a Spreading Factor (SF) of 12 (worst case) and payload size of
51 bytes, the time on the air is 2465 ms, while for payload size, 222 is 8036 ms. The time
on the air for a maximum LoRaWAN payload size of 222 bytes is increased by 3 times
more than the minimum LoRaWAN payload size of 51. In contrast, the total transmitted
packets for an SF of 12 is 32,339 packets with a payload size of 51 bytes, while for a payload
size of 222, the number of transmitted packets is 10847. The total transmitted packets are
decreased by 3 times for the maximum payload size of 222 bytes. The Time To Live for an
SF 12 for the original LoRaWAN with a payload size of 51 bytes is 0.8 years, while for a
payload size of 222 bytes, the battery’s lifetime is dropped dramatically for 0.2 years. We
conclude that the worst-case scenario for the LoRaWAN with SF (12), the greater packet
size, and the shorter battery lifetime.

The results for the LoRaWAN in the best-case scenario with an SF of 7 for a payload
size 51, 136, and 222 bytes are also shown in Table 7. For a payload size of 51 bytes, the
time on the air is 102 ms, the transmitted packets are 267664, and the battery life is 7.3 years.
For a payload size of 222 bytes, the time on the air is 353 ms, the transmitted packets are
182,980 packets, and the battery lifetime is 4.9 years. We conclude the results of LoRaWAN
for the best case that the battery lifetime is dropped by 3 years for the maximum payload
size of 222.

The battery life analysis of the proposed protocol low power case and extremely
low power case are shown in Tables 9 and 10, respectively. From Table 9, the proposed
protocol low power authentication is analyzed with a security overhead of 20 bytes to each
transmitted payload. For an SF of 12 (worst case) and payload size of 51 bytes, the time on
the air is 2957 ms, the transmitted packets are 27,527, and the TTL is 0.7 years. In contrast
to the payload size of 222 bytes, the time on the air is 8527 ms, the transmitted packets are
10,246, and the TTL is 0.26 years. For the SF of 12, when the packet size increased by more
than 3 times, the battery life dropped by 3 times.

Table 9. Battery lifetime in the proposed protocol for low power authentication case 1 (16 bytes overhead due to secuirty).

Parameters Payload Size = 51 Bytes Payload Size = 136 Bytes Payload Size = 222 Bytes
Worst Case Best Case Worst Case Best Case Worst Case Best Case
Time on the air (ms) 2957 128 5742 251 8527 374
Number of packets 27,527 255,593 14,933 210,113 10,246 178,373
TTL (Time To Live) (Years) 0.747945 6.98082 0.383562 5.73425 0.268493 4.85205

Table 10. Battery lifetime in the case of the proposed protocol extremly low power authentication case 2 for different
message sizes (10 bytes overhead due to secuirty).

Parameters Payload Size = 51 Bytes Payload Size = 136 Bytes Payload Size = 222 Bytes
Worst Case Best Case Worst Case Best Case Worst Case Best Case
Time on the air (ms) 2793 118 5578 246 8364 368
Number of packets 28,963 260,289 15,346 211,683 10,439 179,503

TTL (Time To Live) (Years) 0.786301 7.11791 0.40274 5.82611 0.268493 4.89041

Sensors 2021, 21, 5838

29 of 35

For an SF of 7 (best case) and a payload size of 51 bytes, the time on the air is 128 ms,
the transmitted packets are 255,593, and the TTL is 6.9 years. For a maximum packet
size of 222 bytes, the proposed protocol can support a time on the air of 374 ms, the total
transmitted packets are 178,373, and the TTL is 4.8 years. For the SF of 7, when the packet
size increased by 3 times, the battery life dropped by one time.

In the same way, the proposed protocol for extremely low power authentication
with a security overhead of 10 bytes is illustrated in Table 10. From Table 10, we prove
that decreasing the security overhead from 20 bytes to 10 bytes enhances the overall
performance and extends the battery life.

Tables 11 and 12 show the battery analysis for [19] options (DO, SEO). In the same way,
we analyze the You et al. protocol cases in terms of Time on the air, Number of packets, and
the Time to Live in years. Table 11 shows the results for the DO option for security overhead
94 bytes using the elliptic Curve Diffie Hellman (ECDH) key exchange that introduces very
high computation cost and communication cost as explained previously. Under the same
environment and assumptions, we measured the options of [19] for different packet sizes
(561,136 and 222) bytes. For the SEO option when the security is enhanced with 126 bytes
overhead, the battery life is decreased, and time on the air is increased compared with the
DO option, in which the security overhead is only 94 bytes.

Table 11. Battery lifetime in the case of [19] Defualt Option (DO) case for different message sizes (94 bytes overhead due

to security).

Parameters Payload Size = 51 Bytes Payload Size = 136 Bytes Payload Size = 222 Bytes
Worst Case Best Case Worst Case Best Case Worst Case Best Case
Time on the air (ms) 5414 235 8200 358 10,985 486
Number of packets 15,787 215,588 10,640 182,304 8025 157,047
TTL (Time To Live) (Years) 0.416667 5.709589 0.249315 4.805479 0.191781 4.172603

Table 12. Battery lifetime in the case of [19] Security-Enhanced Option (SEO) for different message sizes (126 bytes overhead

due to secuirty).

Parameters Payload Size = 51 Bytes Payload Size = 136 Bytes Payload Size = 222 Bytes
Worst Case Best Case Worst Case Best Case Worst Case Best Case
Time on the air (ms) 6397 281 9183 11,968 532
Number of packets 13,485 201,774 9543 172,327 7384 149,587
TTL (Time To Live) (Years) 0.326027 5.364384 0.230137 4.556164 0.172603 4

We compare the proposed protocol (low power authentication and extremely low
power authentication) with the other related LoRaWAN mentioned protocols in terms of
time on the air and Time To Live (TTL) for different packet sizes (51,136,222) bytes, as
shown in Figures 17-20.

Sensors 2021, 21, 5838 30 of 35

14,000

12,000

10,000

8,000

YN

6,000

4,000

Time on the Air (ms)

2,000

51 136 222
Payload Size (Bytes)

=®-0riginal LoRaWAN [18]

=s#=Proposed Protocol (Extremly low power)
=¥=Proposed Protocol (Low power)

=4=Defualt Option (DO) Protocol[19]
=-Security-Enhanced Option (SEO) Protocol [19]

Figure 17. The time on the air comparison for the proposed protocol cases and the other mentioned
protocols using the worst-case environment parameters (SF 12).

600

500

400

300

200

Time on the Air (ms)

100

51 136 222
Payload Size (Bytes)

=@-0riginal LoRaWAN [18]

=#=Proposed Protocol (Extremly low power)
=¥=Proposed Protocol (Low power)

=4=Defualt Option (DO) Protocol[19]
=@-Security-Enhanced Option (SEO) Protocol [19]

Figure 18. The time on the air comparison for the proposed protocol cases and the other mentioned
LoRaWAN protocols using the best-case environment parameters (SF 7).

Sensors 2021, 21, 5838 31 of 35

0.9

°
®

°
N

°
o

Time To Live (Years)
o o
» wu

°
w

0.2

0.1

51 136 222
Payload Size (Bytes)
=@-Original LoRaWAN [18]
=#=~Proposed Protocol (Extremly low power)
Proposed Protocol (Low power)
Defualt Option (DO) Protocol[19]
«l=Security-Enhanced Option (SEO) Protocol [19]

Figure 19. Comparison of the battery lifetime in terms of years for the proposed protocol cases and
the other mentioned protocols using the worst-case environment parameters (SF 12).

w

w

Time To Live (Years)
H

51 136 222
Payload Size (Bytes)
=@-0riginal LoRaWAN [18]
=#~Proposed Protocol (Extremly low power)
Proposed Protocol (Low power)
Defualt Option (DO) Protocol[19]
«l=Security-Enhanced Option (SEO) Protocol [19]

Figure 20. Comparison of the battery lifetime in terms of years for the proposed protocol cases and
the other mentioned protocols using the best-case environment parameters (SF 7).

Figure 17 shows the time on the air comparison for the proposed two cases against
the original LoRaWAN and the two DO and SEO cases of [19] using an SF of 12. The time
on the air for the mentioned protocols is increased linearly with the payload size, while the

Sensors 2021, 21, 5838

32 0f35

LoRaWAN experiences the lowest time on the air compared with the proposed protocol
cases (low power, extremely low power) and [19] cases. Figure 17 also shows that Do and
SEO protocols introduce very high transmission time (time on the air) compared with the
proposed protocol and standard LoRaWAN. SEO introduces very high time on the air due
to high-security overhead that reaches approximately 126 bytes. The proposed protocol
extremely low power case reducing the time on the air by 36%, 26% compared with SEO
and DO, respectively, for a packet size of 222 bytes using an SF of 12.

However, reducing the security overhead in extremely low power cases reduces the
time on the air compared with the low power cases that extend the battery lifetime.

Figure 18 shows the time on the air comparison for the proposed security cases (low
power, extremely low power) and the other LoRaWAN protocols (original, Do, SEO) using
an SF of 7. The spread factor value of 7 allows the end devices to reduce the time on the
air and save the power consumption compared with spread factor 12. The LoRaWAN
original protocol experiences the lowest time on the air compared with the other protocols
since the total security overhead for the LoRaWAN is 4 bytes. The proposed extremely low
power case reduced the time on the air by two times compared with the SEO case. The end
devices in SEO use a complex and expensive elliptic curve to provide authentication that
introduces high power consumption and high time on the air.

Figure 19 compares the battery life in years of the proposed protocol in two cases
and the other mentioned protocols for different payload sizes (51,136,222) bytes using the
worst-case environment parameters (SF of 12). The battery life (Time To Live) is decreased
dramatically with the increase of the payload size; for the LoRaWAN protocol, the TTL of
an end device is 0.88 years for a payload size of 51 bytes, compared with 0.72 years and
0.78 years for the proposed protocol cases (low power, extremely low power), respectively.
In contrast, for a payload size of 222 bytes, the TTL for LoRaWAN is decreased from 0.88 to
0.29 years, and for the proposed protocol is decreased from 0.72, 0.78 to 0.27, 0.28 for the
low power case and extremely low power case, respectively. The proposed protocol for
the extremely low power case enhances the battery life of the end devices by two times
over the SEO protocol for a payload size of 222 bytes due to using a negligible hash chain
key generation compared with the digital certificate authentication that is used in the
SEO protocol.

Figure 20 shows the TTL comparison of the proposed protocol cases and other com-
pared protocols using a Spread Factor of 7 that extends the battery life to a couple of years,
compared with the worst-case scenario with SF 12. For the best-case scenario of SF 7, the
battery life is extended to 7 years in LoRaWAN for a payload size of 51 and decreased to 5
years for a payload size of 222 bytes. The extremely low power protocol case extends the
battery life by two times compared with the SEO protocol for a payload size of 222 bytes.
SEO introduces 126 bytes security overhead to establish end-to-end security between the
end device and network server that extends the time on the air and consumes the battery
power very quickly.

The advantages of the proposed protocol are summarized as follows:

e The proposed key management protocol introduces a little computation overhead
compared with the original LoORaWAN to enhance the security by generating salts
random values and n authentication keys;

e The two proposed cases outperform the SEO and DO protocols in terms of time on
the air and battery life;

e The proposed key management protocol uses a negligible hash chain generation that
supports security with low power consumption;

e The proposed protocol uses salt encryption that hides the originally generated keys in
different forms and prevents physical attacks;

e The proposed protocol protects the network from replay attacks by including a fresh
timestamp per each transmitted message;

Sensors 2021, 21, 5838

33 0f 35

References

e For various IoT applications, where high-security levels and battery lifetime are traded
off, our protocol can be configured as demanded. For example, test results for two
cases (low power, extremely low power) are presented;

e The proposed protocol can be implemented in extremely low power mode. For
example, case 2 can further reduce the power consumption over case 1 by reducing
the security overhead from 20 bytes to 10 bytes;

e The proposed protocol enhances the security level of the IoT networks at a little
sacrifice in power consumption.

8. Conclusions and Future Work

This paper proposed a key management protocol for LoRaWAN networks that can
support session key updates and defense against key attacks. One master secret key is used
to generate n secret keys using a one-way hash function h(.). Salt encryption is supported
for the generated hashed keys to protect them against the physical attacks in contrast to the
LoRaWAN vulnerable to key compromising attacks. This paper presented two case studies
for the key management protocol: one case supporting higher security with low power and
the other case supporting extremely low power. We compared the two cases against the
original LoRaWAN and other related protocols regarding power consumption and time
on the air. The proposed cases demonstrated significant security enhancement at the cost
of negligible overhead in the power consumption compared with the original LoRaWAN.
In addition, the proposed extremely low power case reduces the power consumption by
two times compared with SEO protocol [19] for a packet size of 222 bytes. The proposed
protocol extremely low power case reduced the time on the air by 36%, 26% compared with
SEO and DO, respectively, for a packet size of 222 bytes using an SF of 12. The proposed
protocol, therefore, is well suited to low power applications that require a higher security
level with reliable periodic key updates. We continue this work by defining new types of
attacks that target the LoRaWAN networks. We intend to verify the security level using
automatic verification analysis. We also extend the simulation environment to a real testbed
using real LoRaWAN devices to have accurate results concerning the power consumption
and transmission time. In addition, we plan to use machine learning techniques in training
IoT data and classify it against well-known attacks. We plane to propose a security solution
for LoRaWAN applications within 5G networks [36,37].

Author Contributions: S.A.A H. did the data collection, conceptualization, experiments, software
implementation, writing the draft, editing, and reviewing. S.M.A.E.-K. did the conceptualization,
editing and reviewing. H. K. did the conceptualization, editing, reviewing, and funding. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2020-0-01304,
Development of Self-learnable Mobile Recursive Neural Network Processor Technology) and also
supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Tech-
nology Research Center support program (IITP-2020-0-01462) supervised by the IITP(Institute for
Information & communications Technology Planning & Evaluation)”. It was supported by National
R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of
Science and ICT (No. 2020M3H2A1076786) and also financially supported by the Ministry of Small
and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea, under the “Regional Special-
ized Industry Development Plus Program (R&D, S3091644)” supervised by the Korea Institute for
Advancement of Technology (KIAT).

Conflicts of Interest: The authors declare no conflict of interest.

1. Ericsson Mobility Report: On the Pulse of the Networked Society. 2015. Available online: http:/ /www.ericsson.com/res/docs/
2015/mobility-report/ericsson-mobility-report-nov-2015.pdf (accessed on 28 January 2021).

2. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies,
protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347-2376. [CrossRef]

http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://doi.org/10.1109/COMST.2015.2444095

Sensors 2021, 21, 5838 34 of 35

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Lavric, A.; Popa, V. Internet of things and LoRa™ low-power wide-area networks: A survey. In Proceedings of the 2017
International Symposium on Signals, Circuits and Systems (ISSCS), Lasi, Romania, 13-14 July 2017; pp. 1-5.

Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. Ict Express 2017, 3, 14-21. [CrossRef]
Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN technologies: Emerging application characteristics, requirements, and design
considerations. Future Internet 2020, 12, 46. [CrossRef]

Foubert, B.; Mitton, N. Long-range wireless radio technologies: A survey. Future Internet 2020, 12, 13. [CrossRef]

Devalal, S.; Karthikeyan, A. LoRa technology-an overview. In Proceedings of the 2018 Second International Conference on
Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29-31 March 2018; pp. 284-290.

Hakeem, S.A.A.; Kim, H. Multi-Zone Authentication and Privacy-Preserving Protocol (MAPP) Based on the Bilinear Pairing
Cryptography for 5G-V2X. Sensors 2021, 21, 665. [CrossRef]

Hakeem SA, A.; Abd El-Gawad, M.A.; Kim, H. A decentralized lightweight authentication and privacy protocol for vehicular
networks. IEEE Access 2019, 7, 119689-119705. [CrossRef]

Hakeem SA, A.; El-Gawad MA, A.; Kim, H. Comparative Experiments of V2X Security Protocol Based on Hash Chain Cryptogra-
phy. Sensors 2020, 20, 5719. [CrossRef] [PubMed]

Haseeb, K.; Almogren, A.; Ud Din, I; Islam, N.; Altameem, A. SASC: Secure and authentication-based sensor cloud architecture
for intelligent Internet of Things. Sensors 2020, 20, 2468. [CrossRef] [PubMed]

Ferrag, M.A.; Maglaras, L.; Derhab, A.; Janicke, H. Authentication schemes for smart mobile devices: Threat models, countermea-
sures, and open research issues. Telecommun. Syst. 2020, 73, 317-348. [CrossRef]

Chuang, Y.H.; Lo, N.W,; Yang, C.Y.; Tang, S.W. A lightweight continuous authentication protocol for the Internet of Things.
Sensors 2018, 18, 1104. [CrossRef] [PubMed]

Ogonji, M.M.; Okeyo, G.; Wafula,] M. A survey on privacy and security of Internet of Things. Comput. Sci. Rev. 2020, 38, 100312.
[CrossRef]

Aras, E.; Ramachandran, G.S.; Lawrence, P.; Hughes, D. Exploring the security vulnerabilities of LoRa. In Proceedings of the 2017
3rd IEEE International Conference on Cybernetics (CYBCONF), Exeter, UK, 21-23 June 2017; pp. 1-6.

Aman, M.N.; Basheer, M.H.; Sikdar, B. A lightweight protocol for secure data provenance in the Internet of Things using wireless
fingerprints. IEEE Syst. J. 2020, 15, 2948-2958. [CrossRef]

Yegin, A.; Kramp, T.; Dufour, P; Gupta, R;; Soss, R.; Hersent, O.; Hunt, D.; Sornin, N. LoRaWAN protocol: Specifications, security,
and capabilities. In LPWAN Technologies for IoT and M2M Applications; Academic Press: Cambridge, MA, USA, 2020; pp. 37-63.
Yang, X.; Karampatzakis, E.; Doerr, C.; Kuipers, E. Security vulnerabilities in LoORaWAN. In Proceedings of the 2018 IEEE/ACM
Third International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, FL, USA, 17-20 April 2018;
pp. 129-140.

You, I; Kwon, S.; Choudhary, G.; Sharma, V.; Seo, J.T. An enhanced LoRaWAN security protocol for privacy preservation in IoT
with a case study on a smart factory-enabled parking system. Sensors 2018, 18, 1888. [CrossRef] [PubMed]

Butun, I; Pereira, N.; Gidlund, M. Analysis of LoRaWAN v1. 1 security. In Proceedings of the 4th ACM MobiHoc Workshop on
Experiences with the Design and Implementation of Smart Objects, Los Angeles, CA, USA, 25 June 2018; pp. 1-6.

Zulian, S. Security Threat Analysis and Countermeasures for Lorawan Join Procedure. 2016. Available online: http://tesi.cab.
unipd.it/53210/ (accessed on 28 June 2021).

Naoui, S.; Elhdhili, M.E.; Saidane, L.A. Enhancing the security of the IoT LoraWAN architecture. In Proceedings of the 2016
International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN), Paris, France,
22-25 November 2016; pp. 1-7.

Girard, P. Low Power Widw Area Networks Security. 2015. Available online: https://docbox.etsi.org/Workshop/2015/201512_
M2MWORKSHOP /504_WirelessTechnoforloTandSecurityChallenges/ GEMALTO_GIRARD.pdf (accessed on 28 July 2021).
Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. LoRaWAN Specification V1.0.2, LoRa Alliance. 2016. Available online:
https:/ /lora-alliance.org/resource_hub /lorawan-specification-v1-0-2/ (accessed on 20 May 2021).

Eldefrawy, M.; Butun, I.; Pereira, N.; Gidlund, M. Formal security analysis of LoRaWAN. Comput. Netw. 2019, 148, 328-339.
[CrossRef]

Kim, J.; Song, J. A dual key-based activation scheme for secure LoRaWAN. Wirel. Commun. Mob. Comput. 2017, 2017, 6590713.
[CrossRef]

Lamport, L. Password authentication with insecure communication. Commun. ACM 1981, 24, 770-772. [CrossRef]

Krawczyk, H. Perfect forward secrecy. In Encyclopedia of Cryptography and Security; Springer: Boston, MA, USA, 2011; pp. 921-922.
Von Oheimb, D. The high-level protocol specification language HLPSL developed in the EU project AVISPA. In Proceedings of
the APPSEM 2005 Workshop, Frauenchiemsee, Germany, 12-15 September 2005; pp. 1-17.

Vigano, L. Automated security protocol analysis with the AVISPA tool. Electron. Notes Theor. Comput. Sci. 2006, 155, 61-86.
[CrossRef]

miracl/MIRACL. June 2018. Available online: https:/ /github.com/miracl/MIRACL (accessed on 28 July 2021).

NS-3.29 NS-3: ns3::MinstrelHt WiFi Manager Class Reference. March 2019. Available online: https://www.nsnam.org/releases/
ns-3-29/ (accessed on 15 June 2021).

Lavric, A.; Popa, V. Performance evaluation of LoORaWAN communication scalability in large-scale wireless sensor networks.
Wirel. Commun. Mob. Comput. 2018, 2018, 6730719. [CrossRef]

http://doi.org/10.1016/j.icte.2017.03.004
http://doi.org/10.3390/fi12030046
http://doi.org/10.3390/fi12010013
http://doi.org/10.3390/s21020665
http://doi.org/10.1109/ACCESS.2019.2937182
http://doi.org/10.3390/s20195719
http://www.ncbi.nlm.nih.gov/pubmed/33050065
http://doi.org/10.3390/s20092468
http://www.ncbi.nlm.nih.gov/pubmed/32349237
http://doi.org/10.1007/s11235-019-00612-5
http://doi.org/10.3390/s18041104
http://www.ncbi.nlm.nih.gov/pubmed/29621168
http://doi.org/10.1016/j.cosrev.2020.100312
http://doi.org/10.1109/JSYST.2020.3000269
http://doi.org/10.3390/s18061888
http://www.ncbi.nlm.nih.gov/pubmed/29890704
http://tesi.cab.unipd.it/53210/
http://tesi.cab.unipd.it/53210/
https://docbox.etsi.org/Workshop/2015/201512_M2MWORKSHOP/S04_WirelessTechnoforIoTandSecurityChallenges/GEMALTO_GIRARD.pdf
https://docbox.etsi.org/Workshop/2015/201512_M2MWORKSHOP/S04_WirelessTechnoforIoTandSecurityChallenges/GEMALTO_GIRARD.pdf
https://lora-alliance.org/resource_hub/lorawan-specification-v1-0-2/
http://doi.org/10.1016/j.comnet.2018.11.017
http://doi.org/10.1155/2017/6590713
http://doi.org/10.1145/358790.358797
http://doi.org/10.1016/j.entcs.2005.11.052
https://github.com/miracl/MIRACL
https://www.nsnam.org/releases/ns-3-29/
https://www.nsnam.org/releases/ns-3-29/
http://doi.org/10.1155/2018/6730719

Sensors 2021, 21, 5838 35 of 35

34.

35.

36.

37.

LoRaEnergy Calculator. Lora Energy Calculator. Available online: https://dramco.be/tools/lora-calculator/ (accessed on
17 May 2021).

Vangelista, L.; Cattapan, A. A new lora-compatible modulation improving the lorawan network level performance. In Proceedings
of the 2019 IEEE Latin-American Conference on Communications (LATINCOM), Salvador, Brazil, 11-13 November 2019; pp. 1-6.
Hakeem, S.A.A.; Hady, A.A.; Kim, H.-W. Current and future developments to improve 5G-NewRadio performance in vehicle-to
everything communications. Telecommun. Syst. 2020, 75, 1-23.

Hakeem, S.A.A.; Hady, A.A.; Kim, H.-W. 5G-V2X: Standardization, architecture, use cases, network-slicing, and edge-computing.
Wirel. Netw. 2020, 26, 6015-6041. [CrossRef]

https://dramco.be/tools/lora-calculator/
http://doi.org/10.1007/s11276-020-02419-8

	Introduction
	Related Work
	Background of LoRaWAN Protocol
	Architecture of LoRaWAN
	Security Aspects of LoRaWAN
	Over-the-Air Activation
	Activation by Personalization

	The Proposed Protocol
	Join Procedures
	Hash Chain Key Generation
	Securing the Hash Chain Using SALT
	Message Authentication
	Message Encryption

	Security Properties
	Session Key Distribution
	Session Key Updates
	Mutual Authentication
	Secure Key Exchange
	Defense against Key-Compromising Attacks
	Perfect Forward Secrecy
	Defense against the Replay Attacks

	Security Verification
	Performance Evaluation
	Analysis of Computation Overhead
	Analysis of Communication Overhead
	Power Consumption Analysis

	Conclusions and Future Work
	References

