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By headspace solid-phase microextraction/gas chromatography-mass spectrometry,
the effects of 1% (w/v) alcohol denatured soybean protein isolates (L-SPI), native
soybean protein isolates (N-SPI), as well as the thermal denaturation of soybean protein
isolates (H-SPI) on low concentration (24 wmol/L) of citral was studied in aqueous. The
results shows that the SPI could catalyze citral isomerization and yield methyl heptenone
and acetaldehyde by inverse aldol condensation degradation. 3-Hydroxycitronelloal was
formed as an intermediate in this reaction. The catalytic efficiency of the L-SPI was
higher than that of N-SPI, whereas the catalytic efficiency of H-SPI was the lowest.
Additionally, it shows that the catalytic efficiency increased as the pH increased. The
catalytic efficiency of 7S (Soybean B-Conglycinin) was greater than that of 11S (Soy
bean Proglycinin).

Keywords: soy protein isolate, citral, methyl heptenone, acetaldehyde, degradation

INTRODUCTION

Plant protein beverage made from soybean protein isolate is cholesterol-free and has high amino
acid content, resulting that plant protein beverage possess high nutritional value (1-3). However,
due to the structure and properties of SPI, the flavor of vegetable beverage containing SPI is
easily unbalanced (3-5). For example, when lemon juice is mixed with SPI, flavor changes occur.
According to the literature (6), it is speculated that the functional groups of protein may had
catalytic degradation of citral.

Citral was used in the preparation of strawberry, apple, apricot, sweet orange, and lemon flavors
(7). Commercial citral usually typically contains 60% geranial and 40% neral, which are isomers
(8). Geranial has a mild citrusy smell, whereas neral has a pungent grass smell (9). Lemongrass
oil, lemon oil, and white lemon oil contain 70-80% citral (10). Citral can also be obtained from
industrial geraniol (and nerol) by dehydrogenation using a copper catalyst. Moreover, it can be
synthesized from dehydrolinalool using vanadium as a catalyst. Citral is used to manufacture citrus-
based food flavors; However, as it is susceptible to oxidation, polymerization, and discoloration, it
is usually used in foods that have neutral pH (11, 12); Citral is also used to synthesize iso-menthol
and hydroxycitronella aldehyde and violanone, which is the raw material of vitamin A. Degradation
of citral will lead to loss of the lemon-like aroma and produce off-flavor (10, 11, 13).
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Citral is a terpenoid and the main flavor component of citrus
foods (4, 14). Citral is an unsaturated aldehyde containing an
isolated C = C double bond, C = O group, and C = C double
bond conjugated with the carbonyl group that is easily degraded
by other chemical components in food (15). For example, Wolken
et al. (6) found that glycine and bovine serum albumin could
catalyze the degradation of citral. The degradation of citral
results in the loss of its unique aroma and the formation of
other undesirable aroma components that lead to unpleasant
alterations in the flavor of food (8).

This study to further explore the effects of SPI structures
(Extracted from soybean meal) on the degradation of citral
by inverse hydroxyl aldehyde condensation, and provide a
theoretical reference for the flavor change in Lemon juice-
SPI beverages.

MATERIALS AND METHODS

Materials

Soybean (Suyun 626) was purchased from Fengyuan Seed Co.
(Lian Yungang City, China). Citral (98%), acetaldehyde (98%),
methyl Heptenone (98%) were provided by J&K Chemical Ltd.
(Shanghai, China). 3-hydroxycitronellal (95%) was prepared
as method of Fkyerat and Tabacchi (16). Neral (containing
10% geranial and 90% neral) and geranial (containing 95%
geranial and 5% neral) were prepared by separating commercial
citral by Wolken et al. (6). All other chemicals (analytical
grade) were purchased from Sinopharm Chemical Reagent
Company (Shanghai, China). Deionized water was used in all
the experiments.

Preparation of Protein Sample
Native-Soybean Protein Isolates

Native SPI was made from soybeans, by Jiang et al. (17)
description, according to the alkaline pH extraction-isoelectric
precipitation method. By the micro-Kjeldahl method, after
solution of neutralization to pH 7.0, the protein content
of SPI suspension was determined, by oven drying method
(105°C overnight) and the total solid was determined. By the
nitrogen conversion factor of 5.71 (18), the SPI extract was
92.1% by the calculated protein purity (dry weight basis). In
deionized water, the 8% (w/v) SPI suspension was centrifuged,
to remove particulates, at 10,000 x g, for 20 min. In the SPI
suspension, the ionic strength, was 0.03-0.04 M, expressed as the
concentration of NaCl which was determined using an S30 Seven
Easy conductivity meter (Mettler Toledo GmbH Analytical,
Sonnenberg strausse, Switzerland).

L-Soybean Protein Isolates

Native SPI usually has a beany smell, while use SPI as a food
ingredient, it need to use ethanol to wash the defatted soybean
meal, in order to remove the beany smell molecules of SPI.
Broken after the soybean meal skim, skim for alcohol after wash,
wash bad SPI flavor compounds in addition to further. followed
by alcohol washing with anhydrous ethanol with solid/liquid

ratio of 1:3 (w/v), stirring for 2 h, ethanol extraction and filtration
to remove the ethanol, and alcohol washing for 2 times.

H-Soybean Protein Isolates

Preparation of fully heat-denatured protein (H-SPI, 1%, w/v):
pre-heat denatured SPI at 100°C (preheat for 5 min first, and keep
it for 20 min after reaching the set temperature).

7S,11S

The soy 11S and 7S protein fractions were isolated from soy flour
by using the method of Sorgentini et al. (19).

Preparation of Solutions

A stock solution containing 1,000 mg/L of citral was made up
in methyl alcohol through gradient dilution, and made to give a
SPI of 1% (w/v) solution of 20 mmol/L sodium phosphate/NaOH
buffer, an aliquot of 24 pmol/L flavor of each 5 mL aliquots
in 15 mL glass vials (AiXin Ltd., BeiJing. China). A separate
solution containing a reference standard flavor was made up in
a similar way. Three replications were made. The Solutions of the
individual were used with small stirring bars at 37°C for 0.5 h to
mixing them with the aroma compound in triplicates.

Headspace Solid-Phase Microextraction
Gas Chromatography-Mass

Spectrometry (SPME-GC-MS) Analysis

The SPME holder for manual sampling and the SPME fibers,
50/30 pm polydimethylsiloxane (PDMS), were purchased from
AnPu (ShangHai, China). The fibers were conditioned in the
gas chromatograph injector port before use at the time and
temperature recommended by the manufacturer. During the
development of the headspace SPME method, the following
parameters were optimized: type and thickness of fiber coating;
headspace extraction time text; and sample agitation during
extraction. For the aroma standards and the protein-flavor
solutions, 5 mL aliquots were transferred into 15 mL glass vials
(AiXin Ltd., BeiJing. China). The standards and the samples
containing individual SPI were prepared in triplicates. KMO-
2 basic magnetic stir bar (KeYi Ltd., GuangZhou, China) was
placed in each sample vial. The samples were stirred at 250 min~!
and keeping the temperature constant at 37°C during the SPME
extraction using an RW 20 magnetic stirring plate (KeYi Ltd.,
GuangZhou, China) under the water bath. After equilibration,
the SPME fiber was exposed into the headspace of the sample
vial for 30 min and was subsequently introduced into the gas
chromatograph injector port for quantification.

Gas Chromatography. A Bluker SCION $Q456 GC/MS
(Bruker, Kyoto, Japan) was used throughout the study. The
column used was a Supelcowax 10 fused silica capillary column,
30 m, 0.25 mm inner diameter, 0.25 pm film thickness (Agilent
DB-WAX). The carrier gas was helium (linear velocity; 0.8
mL/min). The injector port (splitless mode) temperature and
the detector temperature were 250°C. The oven temperature
was held isothermally at 120°C. Once the SPME sampling was
completed, the fiber was immediately inserted into the gas
chromatograph injector for desorption. The fiber was left in the
port for 5 min for purging. There was no carry-over between

Frontiers in Nutrition | www.frontiersin.org

July 2022 | Volume 9 | Article 929023


https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles

Guo et al.

Flavor Modification of Soybean Protein Isolate

samples using 7 min desorption time. Prior to the next SPME
extraction, the fiber was allowed to cool to room temperature.
The temperature was programmed, column temperature keeping
at 40°C for 3 min, by heating the sample at a rate of 5°C /min
to 90°C for the first phase and sample at a rate of 10°C /min to
230°C for the second phase, this temperature for 7 min (20).

A mass spectrometer was used to confirm the identity of
volatile flavor compounds and further determine the potential
volatile flavor byproducts that have been generated. The EI source
for the mass spectrometer described above was operated at 70 eV.

Qualitative and Quantitative Analysis
Method of the Volatile Compounds

An external standard calibration was used to calculate the extent
of binding. A stock solution containing 10 mmol/L of each flavor
compound was created, using propylene glycol through gradient
dilution and to an SPI of 1% (w/v) solution of 20 mmol/L
phosphate buffer in 18 mL hermetically closed flasks (Kebeter,
Beijing, China), stock solutions contained cital in each flask with
or without SPI (blanks). Four replicates were created and shaken
for 24 h at 37°C for equilibration.

_ [HS]p O
[HS]c

The values of [L] is the concentration of flavors in headspace,
O is the flavor concentration (jumol/L) of control, [HS]¢ is the
flavor compounds GC peak area of control, [HS]p is the flavor
compounds GC peak area of sample.

Measurement of Protein Fluorescence
Fluorescence intensity was measured using a Hitachi F-2700
Fluorescence Spectrophotometer (Hitachi Ltd., Tokyo, Japan).
EX WL: 280.0 nm, EX Slit: 5.0 nm, EM Slit: 5.0 nm. Stock
solutions of SPI (0.02% w/v) were prepared, 10 mmol/L citric
acid phosphate buffer at pH 5-10. Flavors were added to
solutions of SPI by diluting, respectively, propylene glycol at the
concentration of 0-0.8 mmol/L. All the samples were prepared in
plastic test tubes covered with aluminum foil. And the Solutions
of the individual were used with small stirring bars at 37°C for
2 h to mixing them with the Aroma Compounds, in triplicates.
stored at 4°C until use.

Determination of Surface Hydrophobicity
of Soybean Protein Isolates

By an 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescent
probe method, in the aqueous solution, SPI hydrophobicity
was determined with modifications (21). SPI was centrifuged
at 12,000 x g, times is 15 min, temperature is 37°C, the
supernatants were diluted in 20 mmol/L citric acid phosphate
buffer (pH 5.0-pH9.0), obtain SPI concentrations ranging from
0.1 to 0.002 mg/mL. Subsequently, 20 wL of ANS (8.0 mmol/L
in 0.1 M phosphate buffer, pH 7.2) was added to 2 mL of
the diluted SPI solutions. Fluorescence intensity was measured
using a Hitachi F-2700 Fluorescence Spectrophotometer (Hitachi
Ltd., Tokyo, Japan) at 365 nm (excitation wavelength) and
520 nm (emission wavelength). The slope of the fluorescence

intensity vs. protein concentration was used as an index of surface
hydrophobicity (S0).

Protein Solubility

The protein solubility of the SPI solutions was obtained by
the method of Sorgentini et al. (19). SPI solutions were
centrifuged at 12,000 x g for 15 min. The protein concentration
of the supernatant was determined by Lowry (22). The
protein solubility was calculated as the percentage of the
protein concentration in the supernatant over that of the
original SPI solution.

Statistical Analysis

Differences between treatments were determined by analysis of
variance (ANOVA) and Duncan’s Multiple Range test (p < 0.05)
using statistical package SPSS 17.0 (SPSS Inc., Chicago, IL). Data
were expressed as means =+ standard deviations (SD) of triplicate
determinations unless specifically mentioned.

RESULTS AND DISCUSSION

Soybean Protein Isolates-Catalyzed

Isomerization of Geranial and Neral

As seen in Figure 1, proteins and amino acid can catalyze the
reverse hydroxyl aldehyde condensation reaction of citral to give
methyl heptenone and acetaldehyde, with 3-hydroxycitronelloal
as an intermediate (23-25). Moreover, as shown in Figure 2,
SPI can catalyze the isomerization of geranial and neral, the two
isomers of citral. Citral contains unsaturated conjugated double
bonds. In the presence of polar amino acids, it is easily degraded
by inverse hydroxyl aldehyde condensation to methyl heptenone
and acetaldehyde.

According to the report, by X-ray diffraction method, Adachi
et al. (26), Baud et al. (27), Maruyama et al. (28), and Maruyama
et al. (29) determined that 7S subunit was connected to trimer
through disulfide bond, and 118§ peptide chain (AlaB1b, A2Bla,
A1bB2, A3B4, and A5A4B3) was connected to trimer through
disulfide bond, hexamer of 118§ globulin is formed in face to face
form by trimers. These trimers are hollow tubular structures with
hydrophobic binding within or between trimers. Peptide chains
of SPI contain amino acid side chains.

It is speculated that soybean protein can also catalyze the
reverse hydroxyl aldehyde condensation degradation reaction of
citral to produce methyl heptenone and acetaldehyde.

Figure 2 shows that SPI can catalyze the isomerization of
geranial and neral. Figure 2A1 shows that L-SPI catalyze the
isomerization of geranial into neral, Figure 2A2 shows that L-
SPI catalyze the isomerization of neral into geranial. Figure 2B1
shows that N-SPI catalyze the isomerization of geranial into
neral, Figure 2B2 shows that N-SPI catalyze the isomerization
of neral into geranial. Figure 2C1 shows that H-SPI catalyze the
isomerization of geranial into neral, Figure 2C2 shows that H-SPI
catalyze the isomerization of neral into geranial.

It can be seen in Figures 2A1,2 that the use of L-SPI led to
the most rapid isomerization of citral. After 100 min, the L-SPI
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FIGURE 1 | Proposed pathway for the isomerization of geranial (1a) and neral (1b) and their conversion via 3-hydroxycitronellal (3) into methyl heptenone (6) and
acetaldehyde (5), catalyzed by Soy Protein Isolate (SPI), in alkaline aqueous solution.
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FIGURE 2 | protein-catalyzed isomerization of geranial and neral, SPI 1%, 20 mmol/L potassium phosphate buffer (pH 7.0), Geranial and neral are expressed as a

Time (min)

was found to isomerize 37% of pure geranial to neral, and 60%
of pure neral to geranial. It can be seen in Figures 2B1,B2 that
N-SPI has a lower efficiency in catalyzing citral isomerization,
as the reaction reaches equilibrium only after 200 min. H-SPI
catalyzed the isomerization of citral with the lowest efficiency
(Figures 2C1,C2).

It has been reported (6) that glycine and bovine serum
albumin can catalyze the isomerization of geranial or neral under
neutral reaction conditions. In addition, Kuwahara et al. (30)
have reported the enzyme-catalyzed isomerization of citral. They
found that the reaction was balanced with 40% of the mixture
being neral and 60% as geranial. Wolken et al. (6) have reported
the isomerization of geranyl and neral at room temperature

(25°C) using glycine or bovine serum albumin. Kimura et al. (31)
found that geranial can also be isomerized in acidic solutions
to form neral. Therefore, it can be concluded that while SPI
is mixed with citral, SPI maybe catalyze the isomerization of
geranial or neral.

Protein—Catalyzed Citral to Methyl

Heptenone

Citral, methyl heptanone, and 3-hydroxy-citronelloal can be
detected in the sample after citral and SPI exist in the aqueous
solution. Figure 3 shows the catalytic efficiency of alcohol-
washed SPI (L-SPI), native SPI (N-SPI), and high-temperature
denatured SPI (H-SPI) on citral degradation. Of these, L-SPI was
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FIGURE 3 | Effect of different treated protein on the SPI—catalyzed to citral (A,B), the concentration of protein is 1% (w/v), 20 mmol/L potassium phosphate buffer,
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FIGURE 4 | fluorescence of SPI in citral aqueous solution. (A) L-SPI, (B) N-SPI, (C) H-SPI, the concentration of protein is 0.02% (w/v), 20 mM potassium phosphate
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the most effective catalyst, followed by N-SPI and H-SPI. Methyl
heptenone was not formed when only the buffer was used.

The oil and water-soluble carbohydrate moieties of the
SPI were removed after alcohol treatment, and more binding
sites of SPI were exposed. From Figure 4A, Maximum
fluorescence quenching intensity was observed for L-SPI. Form
the Table 1, L-SPI has the best solubility and the lowest surface
hydrophobicity between L-SPI, N-SPI and H-SPI. It has been
reported that the process of alcohol washing to obtain L-SPI
results in a certain degree of SPI denaturation, thereby changing
the protein conformation and altering the nature of the flavor
compounds (32), The SPI structure becomes more orderly after
alcohol treatment. This finding conformed to the report by
Tanford, who reported the characteristic denaturation of the
protein structure by organic solvents (33).

Treatment with alcohol weakens the hydrophobic forces,
but strengthens the hydrogen bonding and electrostatic forces,
thereby ensuring that the hydrophobic core is not damaged.
Alcohol-washing treatment damages the outer structure of
the soy protein and its loose and disorderly hydrophilic
outer structure is transformed into the B-spiral structure. This
conformation is conducive to the formation of hydrogen bonds,

TABLE 1 | Surface hydrophobicity and protein solubility of N-SPI, H-SPI, L-SPI.

N-SPI H-SPI L-SPI
Solubility (%) 830 + 4 63° + 6 962 + 4
Surface hydrophobicity (Sp) 214° +8 365% + 12 198° £ 10

Values are means and standard deviations of three determinations, the different
lower case letters (a—c) in the same row indicate significant difference among the
values at the p < 0.05.

which results in a high degree of hydration and the protein
molecules assuming a highly spiral state. Denaturation after
the alcohol-washing treatment imparts more freedom to the
hydrophilic chain segments in the SPI molecules, increasing its
ability to move rapidly. Thus, this finding suggests that alcohol-
washed soybean protein can result in the flexibility of SPI,
effectively increasing its solubility (34).

According to the literature (35), It speculated that the
maximum binding force was observed for the interaction
of L-SPI and citral, and the most polar hydrophilic groups
between L-SPI, N-SPI and H-SPI. Therefore, L-SPI had a higher
probability of binding to citral and catalyzing its conversion to
methyl heptenone.
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N-SPI is a natural protein that exists in a metastable state.
The crosslinked network structure of the protein is flexible and
comprises a hydrophilic peptide chain (36). Citral molecules
could move into the internal spaces and bind to the polar
fragment of the protein, which led to its conversion into methyl
heptenone and acetaldehyde. From Figure 4B, Fluorescence
quenching was observed for the mixture of N-SPI and citral.
Form the Table 1, N-SPI has the more solubility and the more
surface hydrophobicity than H-SPI. According to the literature
(35, 37), the binding of N-SPI and citral is a possibility; thus,
N-SPI could bind citral and catalyze citral to methyl heptenone.
It maybe that SPI is an enzyme with conformational adaptability
and participates in the reorganization of the polypeptide
segments at the binding sites.

From Figure 4C, Minimum fluorescence quenching intensity
was observed for H-SPI. Form the Table 1, H-SPI have the
worst solubility and the highest surface hydrophobicity between
L-SPI, N-SPI, and H-SPI. Thermal denaturation resulted in
H-SPI losing its metastable state. The space formed within by
the three-dimensional reticular structure collapsed, leading to
the unfolding of the advanced structure (18). Subsequently, the
orderly and compact structure of SPI was converted into an
undefined peptide structure, resulting in a loss of biological
and catalytic activity (1). The molecular surface structure
also exhibited changes; the hydrophilic groups were relatively
reduced. Moreover, the groups that were originally hidden within
several groups of hydrophobic molecules were exposed to the
molecular surface, resulting in the protein particles not mixing
with water and losing their water film. Additionally, it was easy
for the entangled molecules to collide with each other, which
further resulted in the destruction of the binding sites that
were likely responsible for catalytic activity. The aggregation
phenomenon caused dissociation and heat accumulation in the
protein solution. Heat treatment of proteins in the folding state
results in a state of instability because the surface hydrophobicity
is enhanced when the protein hydrophobic core is exposed. Next,
the internal space of the inner hydrophilic chain participates in
the catalytic reaction. The interaction of citral molecules with SPI
shows that the catalytic reaction may be difficult owing to the

strong surface area hydrophobicity. Thus, as the citral molecule
is not within the binding pocket of the protein, the rate of the
catalytic reaction is very slow. It can be inferred from the SPI
catalytic reaction that citral molecules enter the sphere of the
soybean protein, the catalytic site may be located on the SPI
hydrophilic polar group.

Effect of pH on the Protein-Catalyzed
Conversion of Citral to Methyl

Heptenone

In this study, we found that SPI could catalyze the degradation
of citral by reverse condensation; the end product was methyl
heptenone and the intermediate was 3-hydroxycitronelloal
(Figure 5A). No products were formed at pH 5. As the pH was
increased from 5 to 7.5, the yield of 3-hydroxycitronelloal was
found to be greater than that of methyl heptenone. As the pH was
further increased from 7.5 to 10, the methyl heptanone yield was
found to be higher than that of 3-hydroxyl citronelloal.

The study of the degradation reactions of citral mainly include
those that are acid catalyzed. Kimura et al. (11) used NMR
and IR to study the deacetylation and degradation of citral into
terpenes in an acidic environment. In addition, it has been
reported that citral is easily oxidized and that compounds such
as BHT and BHA have a protective antioxidant effect on citral
(8, 12, 13), however, our findings were contradictory to those
reported in the literature. We found that the reverse hydroxyl
aldehyde condensation degradation reaction of citral is suitable
in an alkaline environment. Our findings were consistent with
the results of Wolken et al. (6) who reported that glycine and
bovine serum albumin catalyze the reverse hydroxyl aldehyde
condensation degradation reaction of citral in neutral or dilute
alkali solution to yield methyl heptenone and acetaldehyde.

7S and 11S—Catalyzed Citral to Methyl

Heptenone

The effects of 7S and 11S on the SPI-catalyzed conversion of
citral are shown in Figure 5B. The rate of conversion of citral
by 7S was higher than that achieved by 11S. The deacetylation
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of citral by SPI is likely attributed to the enzyme and substrate
combination, both of which can change the structure of mutual
induction, eventually forming a suitable complex and ensuring
the completion of the catalytic process (38).

Due to the large number of hydrophobic groups on the
surface of the basic subunit of 11S, spontaneous aggregation is
easy to occur in the solution, so the solubility is lower in the
range of pH 4.5~8.0 (39, 40). This phenomenon may cause
the 11S protein to mask part of the active site. 11S has a
compact globular structure, low solubility, and low molecular
flexibility when mixed with citral (41, 42). 7S is a trimer,
the dissociated trimer will have more flexible mobile regions
than the 11S hexamer, it maybe have more active site (26).
The levels of the hydrophilic and polar amino acids in 7S are
higher than in 115 (28). So 7S-catalyzed rate is also high. Based
on the above analysis, we found that 7S had higher catalytic
efficiency than 118.

CONCLUSION

The results shows that the SPI could catalyze citral isomerization
and yield methyl heptenone and acetaldehyde by reaction of
inverse aldol condensation degradation. 3-Hydroxycitronelloal
was formed as an intermediate in this reaction. The catalytic
efficiency of the L-SPI was higher than that of N-SPI, whereas
the catalytic efficiency of H-SPI was the lowest of L-SPI, N-SPI
and H-SPI. Additionally, we found that the catalytic efficiency
increased as the pH increased. The catalytic efficiency of 7S was
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