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Transfer entropy (TE) is a model-free effective connectivity measure based on information

theory. It has been increasingly used in neuroscience because of its ability to detect

unknown non-linear interactions, which makes it well suited for exploratory brain effective

connectivity analyses. Like all information theoretic quantities, TE is defined regarding

the probability distributions of the system under study, which in practice are unknown

and must be estimated from data. Commonly used methods for TE estimation rely on

a local approximation of the probability distributions from nearest neighbor distances,

or on symbolization schemes that then allow the probabilities to be estimated from the

symbols’ relative frequencies. However, probability estimation is a challenging problem,

and avoiding this intermediate step in TE computation is desirable. In this work,

we propose a novel TE estimator using functionals defined on positive definite and

infinitely divisible kernels matrices that approximate Renyi’s entropy measures of order

α. Our data-driven approach estimates TE directly from data, sidestepping the need

for probability distribution estimation. Also, the proposed estimator encompasses the

well-known definition of TE as a sum of Shannon entropies in the limiting case when

α → 1. We tested our proposal on a simulation framework consisting of two linear

models, based on autoregressive approaches and a linear coupling function, respectively,

and on the public electroencephalogram (EEG) database BCI Competition IV, obtained

under a motor imagery paradigm. For the synthetic data, the proposed kernel-based

TE estimation method satisfactorily identifies the causal interactions present in the data.

Also, it displays robustness to varying noise levels and data sizes, and to the presence

of multiple interaction delays in the same connected network. Obtained results for the

motor imagery task show that our approach codes discriminant spatiotemporal patterns

for the left and right-hand motor imagination tasks, with classification performances that

compare favorably to the state-of-the-art.
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1. INTRODUCTION

The functional interaction of neural assemblies distributed
across different brain regions underlies many cognitive and
perceptual processes (Bastos and Schoffelen, 2016). Therefore,
understanding such processes, and brain function at large,
requires identifying the flow of information within networks
of connected neural assemblies, instead of solely focusing on
the activity of specific brain regions in isolation (Sakkalis,
2011; Weber et al., 2017). The analysis of the interactions
mentioned above is carried out through brain connectivity
measures (Friston, 2011). These measures can be subdivided into
two categories based on whether they quantify the direction of
the neural interactions (Sakkalis, 2011; Bastos and Schoffelen,
2016). On the one hand, non-directed functional connectivity
aims to capture statistically significant interdependencies among
the signals registering the activity of different neural assemblies,
without determining their direction. On the other hand, directed
connectivity, commonly referred to as effective connectivity,
measures the influence that a neural assembly has over another
one, establishing statistical causation from their signals, and
hence a direction for their interaction. Effective connectivity is of
particular importance in neuroscience because a large part of the
brain activity is endogenous and establishing physical causality
among the neural systems supporting that activity is extremely
difficult (Vicente et al., 2011). So statistical causality, based on the
premise that a cause precedes its effect, becomes a valuable tool
to decipher multiple aspects of brain function (Seth et al., 2015;
Bastos and Schoffelen, 2016).

In general, effective connectivity is assessed through measures
that are either based on a model of the process generating the
data, or on approaches based on information theory (Vicente
et al., 2011). The former includes methods such as Granger
causality (GC) and its variants, and dynamic causal modeling
(DCM) (Friston, 2011; Seth et al., 2015); while the latter relies
on the concept of information transfer or transfer entropy (TE)
(Schreiber, 2000). While GC and DCM are widely used in
neuroscience, TE has gained increasing attention in the literature
(Timme and Lapish, 2018), because of the advantages it offers
as compared with other effective connectivity measures. Unlike
classic GC, TE can capture high order correlations, and it is well
suited to detect purely nonlinear interactions in the data, which
are believed to be part of brain activity on many spatial and
temporal scales (Weber et al., 2017). Although DCM can capture
nonlinear interactions too, it requires some a priori knowledge
on the input of the system and on the target connectivity
network, which is not always available (Vicente et al., 2011);
in this sense, TE is model free. As an information theoretic
quantity, TE does not need an initial hypothesize about the
interactions present in the data (Timme and Lapish, 2018), so it
is a particularly useful tool for exploratory analysis. However, like
all other information theoretic quantities, TE is defined in terms
of the probability distributions of the system under study, that in
practice need to be estimated from data. Probability estimation
is a challenging task, and it can significantly affect the outcome
of information theory analyses, including the computation of TE
(Giraldo et al., 2015; Cekic et al., 2018; Timme and Lapish, 2018).

Current methods that successfully estimate TE are based on a
local approximation of the probability distributions from nearest
neighbor distances (Kraskov et al., 2004; Lindner et al., 2011),
or on symbolization schemes that then allow the probabilities to
be estimated from the symbols’ relative frequencies (Dimitriadis
et al., 2016). Nonetheless, obtaining TE directly from data,
without the intermediate step of probability estimation, as has
been achieved for other information theoretic quantities (Giraldo
et al., 2015), is desirable.

In this work, we propose a data-driven TE estimator
that sidesteps the need to obtain the probability distribution
underlying the data. We begin by expressing TE as a linear
combination of Renyi’s entropy measures of order α (Rényi,
1961; Principe, 2010), instead of using the standard definition in
terms of Shannon entropies. Renyi’s entropy is a mathematical
generalization of the concept of Shannon entropy. It corresponds
to a family of entropies that, because of its functional dependence
on the parameter α, can emphasize either mean behavior
and slowly change features in the data, or rare, uncommon
events (Gao et al., 2011; Giraldo et al., 2015). This flexibility
gives Renyi’s entropy an advantage when it comes to analyzing
data from biomedical systems (Liang et al., 2015), and has
been exploited in neuroscience studies, for instance, to better
characterize the randomness of EEG signals in childhood absence
epilepsy (Mammone et al., 2015), and to track EEG changes
associated with different anesthesia states (Liang et al., 2015).
Renyi’s entropy has also been employed as an EEG feature
extraction strategy in automatic systems for the diagnosis of
epilepsy (Acharya et al., 2015), and for the assessment of cognitive
workload (Zarjam et al., 2013). Afterward, we approximate
Renyi’s entropy through a functional defined on positive definite
and infinitely divisible kernels matrices, introduced in Giraldo
et al. (2015). The obtained estimator computes TE directly from
the kernel matrices that, in turn, capture the similarity relations
among data. Also, because of the definition of Renyi’s entropy, the
proposed approach encompasses the conventional formulation
of TE as a sum of Shannon entropies in the limiting case
when α → 1.

In order to test our proposal, we use a simulation framework
consisting of two linear models, based on autoregressive
approaches and a linear coupling function, respectively, and
on a real-world task from the public EEG database BCI
Competition IV, obtained under motor imagery (MI) paradigm.
In particular, we aimed to test whether our method fulfills
the requirements established in Vicente et al. (2011) for a
TE estimator suited for neuroscience data. Namely, it must
be robust to moderate levels of noise, it must rely on a
limited number of data samples, and it must be reliable when
dealing with high dimensional spaces. For the synthetic data,
the proposed kernel-based TE estimation method successfully
detects the presence and direction of the causal interactions
defined in the models. Additionally, it displays robustness to
varying noise levels and data sizes, in terms of the available
data samples, and to the presence of multiple interaction delays
in the same connected network. Finally, the results for the MI
data show that our approach codes discriminant spatiotemporal
patterns for the left and right-hand motor imagination tasks,
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that are in accordance with the temporal structure of the
MI paradigm.

The remainder of the paper is organized as follows: section
2 reviews the theoretical foundations of TE, section 3 presents
the concept of information theoretic learning and introduces
our approach to TE estimation, section 4 describes the three
experiments carried out to evaluate the performance of our
method, section 5 shows our results and their accompanying
discussion, and finally, section 6 contains our conclusions.

2. RELATED WORK

2.1. Transfer Entropy
Transfer entropy (TE) is an information theoretic quantity that
estimates the directed interaction, or information flow, between
two dynamical systems (Zhu et al., 2015). It was introduced
by Schreiber (2000) as a Wiener-causal measure within the
framework of information theory. Therefore, TE is based on the
assumption that a time series A causes a time series B if the
information of the past of A, alongside the past of B, is better at
predicting the future of B than the past of B alone. It is also based
on the information theoretic concept of Shannon entropy:

HS(X) = E
{

−log(p(x))
}

≈ −
∑

x

p(x)log(p(x)), (1)

where X is a discrete random variable, p(·) is the probability mass
function of X, and E{·} stands for the expected value operator.
HS(X) quantifies the average reduction in uncertainty attained
after measuring the values of X. By associating the improvement
in prediction power of Wiener’s definition of causality with the
reduction of uncertainty measured by entropy, Schreiber arrived
at the concept of TE (Vicente et al., 2011). Formally, TEmeasures
the deviation from the following generalized Markov condition:

p(yt+1|y
m
t , x

n
t ) = p(yt+1|y

m
t ), (2)

where xnt ∈ R
n and ymt ∈ R

m are Markov processes, of
orders n and m, that approximate two time series x = {xt}

l
t=1

and y = {yt}
l
t=1, respectively, and t ∈ N is a discrete

time index. This deviation is quantified through the Kullback-
Leibler divergence

(

DKL(p||q) =
∑

x p(x)log(p(x)/q(x))
)

of the
probability functions p(yt+1|y

m
t , x

n
t ) and p(yt+1|y

m
t ):

TE(x→y) =
∑

yt+1 ,ymt ,x
n
t

p
(

yt+1, y
m
t , x

n
t

)

log

(

p
(

yt+1|y
m
t , x

n
t

)

p
(

yt+1|y
m
t

)

)

. (3)

Therefore, TE measures whether the probability of a future value
of y increases given the past values of x and y, as compared to the
probability of that same future value of y given only the past of y.

In an attempt to better capture the underlying dynamics of
the system that generates the observed data, i.e., the measured
values of the random variables contained in the time series,
TE is not usually defined directly on the raw data, but on its
space state (Vicente et al., 2011). We can reconstruct such state
space from the observations through time embedding. The most
commonly used embedding procedure in the literature is Takens

delay embedding (Takens, 1981). So that for a time series x its
space state is approximated as:

xdt = (x(t), x(t − τ ), x(t − 2τ ), . . . , x(t − (d − 1)τ )), (4)

where d, τ ∈ N are the embedding dimension and delay,
respectively. We can now express the TE in terms of the
embedded data as:

TE(x → y) =
∑

yt+1 ,y
dy
t ,xdxt

p
(

yt+1, y
dy
t , xdxt

)

log





p
(

yt+1|y
dy
t , xdxt

)

p
(

yt+1|y
dy
t

)



,

(5)

where dx, dy ∈ N. To generalize TE to interaction times other
than 1, we rewrite Equation (5) as:

TE(x → y) =
∑

yt ,y
dy
t−1 ,x

dx
t−u

p
(

yt , y
dy
t−1, x

dx
t−u

)

log





p
(

yt|y
dy
t−1, x

dx
t−u

)

p
(

yt|y
dy
t−1

)



,

(6)

where u ∈ N represents the interaction delay between the
driving and the driven systems. The changes in the time
indexing are necessary to guaranty that Wiener’s definition of
causality is respected (Wibral et al., 2013). Using the definition
in Equation (1), we can also express Equation (6) as a sum of
Shannon entropies:

TE(x → y) = HS

(

y
dy
t−1, x

dx
t−u

)

−HS

(

yt , y
dy
t−1, x

dx
t−u

)

+HS

(

yt , y
dy
t−1

)

−HS

(

y
dy
t−1

)

. (7)

In practice, we must estimate the sum of Shannon entropies
in Equation (7) from data. The most popular approach to do
so, in neuroscience studies, is an adaptation for TE of the
Kraskov-Stögbauer-Grassberger method for estimating mutual
information (Kraskov et al., 2004; Dimitriadis et al., 2016).
The method relies on a local approximation of the probability
distributions needed to estimate the entropies from the distances
of every data point to its neighbors, within a predefined
neighborhood diameter. Also, it deals with the dimensionality
differences in the data spaces in Equation (7) by fixing the
number of neighbors in the highest dimensional space, the one

spanned by (yt , y
dy
t−1, x

dx
t−u), and projecting the distances obtained

there to the marginal (and lower dimensional) spaces so that
they serve as neighborhood diameters in those. The Kraskov-
Stögbauer-Grassberger estimator for TE is expressed as:

TEKSG(x → y) = ψ(K)+ E

{

ψ

(

n
y
dy
t−1

+ 1

)

−ψ

(

n
yty

dy
t−1

+ 1

)

− ψ

(

n
y
dy
t−1x

dx
t−u

)}

t

, (8)

where ψ(·) stands for the digamma function, K ∈ N is the
selected number of neighbors in the highest dimensional space
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in Equation (7), E{·}t represents averaging over different time
points, and n ∈ N is the number of points in the marginal spaces
(Lindner et al., 2011).

An alternative approach for TE estimation relies on symbolic
dynamics, a powerful tool for studying complex dynamical
systems (Dimitriadis et al., 2012). The infinite number of values
that can be attained by a given time series is replaced by a
set of symbols through a symbolization scheme. We can then
use the relative frequency of the symbols to estimate the joint
and conditional probability distributions needed to compute TE
(Dimitriadis et al., 2016). Given the space state reconstruction of
a time series x (see Equation 4), we can arrange the elements in
xdt according to their amplitude, in ascending order, as follows:

x(t − r1τ ) ≤ x(t − r2τ ) ≤ · · · ≤ x(t − rdτ ), (9)

where r1, r2, . . . rd ∈ {0, 1, . . . , d − 1}, in order to obtain a
symbolic sequence sxt :

xdt → sxt ≡ (r1, r2, . . . , rd), (10)

in what is known as ordinal pattern symbolization. Finally, we
define the symbolic version of TE as:

TESym(x → y) =
∑

s
y
t+1 ,s

y
t ,s

x
t+1−u

p
(

s
y
t+1, s

y
t , s

x
t+1−u

)

log

(

p
(

s
y
t+1|s

y
t , s

x
t+1−u

)

p
(

s
y
t+1|s

y
t

)

)

.

(11)

We can rewrite Equation (11) in terms of Shannon
entropies, as in Equation (7), and estimate the probability
functions by counting the occurrences of the symbols
(Dimitriadis et al., 2016).

The two methods described above rely on the use of plug-
in estimators to approximate the probability distributions in the
joint and marginal entropies involved in the definition of TE.
Therefore, the so obtained TE depends on the quality of the
estimated distributions and, consequently, on the performance of
the plug-in estimator, be it based on a nearest neighbor distances
approximation or a frequentist approach. Since the estimation
of probability distributions can by itself be challenging, it would
be desirable to be able to compute TE directly from the data,
avoiding the intermediate stage of probability density estimation,
as has been proposed for other information theoretic quantities
(Giraldo et al., 2015).

2.2. Granger Causality
Granger Causality (GC), like TE, is a mathematical formalization
of the concept of Wiener’s causality, one that is widely used in
neuroscience to asses effective connectivity (Seth et al., 2015).
However, unlike TE, GC is not based on a probabilistic approach.
The basic idea behind it is that for two stationary time series
x = {xi}

n
i=1 and y = {yi}

n
i=1, if x causes y, then the linear

autoregressive model:

yi =

o
∑

k=1

akyi−k + ei, (12)

where o ∈ N is the model’s order and ak ∈ R stands for the
model’s coefficients, will exhibit larger prediction errors ei than a
model that also includes past of observations of x; that is, a linear
bivariate autoregressive model of the form:

yi =

o
∑

k=1

a′kyi−k +

o
∑

k=1

bkxi−k + e′i. (13)

where the coefficients bk ∈ R. The magnitude of the causal
relation from x to y can then be quantified by the log ratio of
the variances of the residuals or prediction errors (Seth, 2010):

GC(x → y) = log

(

var(e)

var(e′)

)

, (14)

where e, e′ ∈ R
n−o are vectors holding the prediction errors, and

var{·} stands for the variance operator. If the past of x does not
improve the prediction of y then var(e) ≈ var(e′) and GC(x →

y) → 0, if it does, then var(e)≫ var(e′) and GC(x → y)≫ 0. As
defined above, GC is a linear bivariate parametric method that
depends on the order o of the autoregressive model. Nonetheless,
there are several variations of this basic formulation of GC that
aim to capture nonlinear and multivariate relations in the data
(Sameshima and Baccala, 2016). As a final remark, it is worth
noting that although by definition TE has an advantage over GC
by not assuming any a priori model for the interaction between
the systems under study, the two are linked. As demonstrated in
Barnett et al. (2009), they are entirely equivalent for Gaussian
variables (up to a factor of 2). Because of this relationship and
its widespread use we include a standard version of GC as a
comparison method in our experiments.

3. METHODS

3.1. Information Theoretic Learning From
Kernel Matrices
Information-Theoretic-Learning (ITL) is a data-driven learning
framework that employs information theoretic quantities as
objective functions for supervised and unsupervised learning
algorithms. However, instead of using the Shannon-based
definition of entropy, ITL exploits the properties of a
mathematical generalization of such a concept known as
Renyi’s α-order entropy. As explained before, Shannon entropy
is defined as the expected value of the amount of information of
the outcomes of a random variable. For a continuous random
variable X, and using the linear averaging operator, we have that
H(X) = E{I(X)} =

∫

p(x)I(x)dx, where I(x) = −log(p(x)).
Nonetheless, the linear mean is only a particular case of the
average operator. In general, the expected value associated
with a monotonic function g(x), with inverse g−1(x), is
E{x} = g−1

(∫

p(x)g(x)dx
)

. Furthermore, because of the
postulate for additivity of independent events, in our case the
possible choices for g(x) are restricted to only 2 classes: g(x) = cx
and g(x) = c2(1−α)x. The former gives rise to the linear mean and
therefore to the Shannon entropy, while the latter implies that:

Hα(X) =
1

1− α
log

(∫

p(x)αdx

)

, (15)
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with α 6= 1 and α ≥ 0, which corresponds to Renyi’s α entropy
(Rényi, 1961; Principe, 2010). This parametric family of entropies
encompasses the definition of Shannon entropy in the limiting
case when α → 1. Furthermore, such generalization of Shannon’s
entropy allows emphasizing different characteristics of the data
under analysis. In that sense, the parameter α can be tuned so that
Renyi’s entropy gives more weight to either mean behavior, by
making α larger (α > 2), or to uncommon events, by making α
smaller (α < 2) (Gao et al., 2011; Giraldo et al., 2015; Mammone
et al., 2015).

In practice one must estimate entropy from discrete data.
Given an i.i.d. sample of n realizations of a discrete random
variable X, {xi}ni=1 ⊂ R

d, the probability density function of X
can be approximated through the Parzen density estimator as
p̂(x) = 1

n

∑n
i=1 κ(x, xi), where κ(·, ·) ∈ R stands for a positive

definite kernel function. For the case of α = 2, and assuming a
Gaussian kernel function, the Parzen approximation yields:

Ĥ2(X) = −log





1

n2

n
∑

i,j=1

κ(xi, xj)



, (16)

where the integral in Equation (15) has been replaced by a
sum (Principe, 2010). The expression in Equation (16) can be
rewritten in terms of a Gram matrix K ∈ R

n×n as Ĥ2(X) =

−log
(

1
n2
tr(KK)

)

+ C, where K holds elements kij = κ(xi, xj),

C ∈ R
+ accounts for the normalization factor of the Parzen

window, and tr(·) stands for the matrix trace. From this result
we can see that the Frobenius norm of the Gram matrix K,
defined as ||K||2 = tr(KK), is related to an entropy estimator.
In Giraldo et al. (2015) the authors generalize this notion. They
extend it to other spectral norms, and introduce an entropy-
like quantity with properties that closely resemble those of
Renyi’s entropy, while avoiding the estimation of probability
distributions altogether. Given a Gram matrix A ∈ R

n×n with
elements aij = κ(xi, xj), a kernel-based formulation of Renyi’s
α-order entropy can be defined as:

Hα(A) =
1

1− α
log

(

tr(Aα)
)

, (17)

where it holds that tr(A) = 1, and 0 < Hα(A) ≤ Hα(
1
n I) with

I the identity matrix. The power α of A can be obtained using
the spectral theorem (Giraldo et al., 2015). Moreover, under this
formulation, the joint entropy is defined as:

Hα(A,B) = Hα

(

A ◦ B

tr(A ◦ B)

)

=
1

1− α
log

(

tr

((

A ◦ B

tr(A ◦ B)

)α))

,

(18)

where B ∈ R
n×n is a Gram matrix holding the pairwise

evaluation of the kernel function κ(·, ·) on an i.i.d. sample of
n realizations of a second discrete random variable, and the
operator ◦ stands for the Hadamard product. The joint entropy in
Equation (18) can be extended to more arguments by computing
the Hadamard product of all the corresponding kernel matrices.

The above described kernel-based estimator of Renyi’s entropy
also satisfies the following set of conditions:

(i) Hα(PAP∗) = Hα(A) for any orthonormalmatrixP ∈ R
n×n.

(ii) Hα(pA) is a continuous function for 0 < p ≤ 1.
(iii) Hα

( 1
n I
)

= log2n, where I is the identity matrix.
(iv) Hα(A⊗ B) = Hα(A)+Hα(B).
(v) If AB = BA = 0; then for the function g(x) = 2(α−1)x,

for α 6= 1 and α ≥ 0, we have that Hα(tA + (1 − t)B) =

g−1(tg(Hα(A))+ (1− t)g(Hα(B))).

Besides, the functional in Equation (17) allows for the definition
of conditional entropy and mutual information, provided the
additional constraint that the kernels be infinitely divisible.
Namely, the conditional entropy can be expressed as:

Hα(A|B) = Hα(A,B)−Hα(B), (19)

while the mutual information can be written as:

Iα(A;B) = Hα(A)+Hα(B)−Hα(A,B). (20)

3.2. Kernel-Based Renyi’s Transfer Entropy
In this section, we introduce a novel TE estimator. We first
generalize the concept of TE from Shannon entropies to Renyi’s
α-order entropies. Then, we propose a TE estimator using the
entropy-like functionals derived in section 3.1, thus avoiding the
intermediate step of probability distribution estimation in the
computation of TE from discrete data. Given the state space

reconstructions xdxt and y
dy
t , of two time series x and y, the flow

of information from x to y, for an interaction time u, corresponds

to the deviation from the following equality: p(yt|y
dy
t−1, x

dx
t−u) =

p(yt|y
dy
t−1). Now, instead of explicitly applying the definition of

Kullback-Leibler divergence, as in the standard derivation of TE,
we apply the expected value operator over the logarithm of the
probability distributions, yielding:

E
yt ,y

dy
t−1,x

dx
t−u

{

−log
(

p(yt|y
dy
t−1, x

dx
t−u)

)}

= E
yt ,y

dy
t−1

{

−log
(

p(yt|y
dy
t−1)

)}

. (21)

Using the relations between conditional, joint and marginal
probabilities, and rewriting the logarithms of the obtained
quotients, we arrive at:

E
yt ,y

dy
t−1,x

dx
t−u

{

−log
(

p(yt , y
dy
t−1, x

dx
t−u)

)}

−E
y
dy
t−1 ,x

dx
t−u

{

−log
(

p(y
dy
t−1, x

dx
t−u)

)}

= E
yt ,y

dy
t−1

{

−log
(

p(yt , y
dy
t−1)

)}

−E
yt ,y

dy
t−1

{

−log
(

p(y
dy
t−1)

)}

. (22)
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The deviation from the above equality corresponds to transfer
entropy, thus:

TE(x → y) = E
y
dy
t−1 ,x

dx
t−u

{

−log
(

p(y
dy
t−1, x

dx
t−u)

)}

−E
yt ,y

dy
t−1,x

dx
t−u

{

−log
(

p(yt , y
dy
t−1, x

dx
t−u)

)}

+E
yt ,y

dy
t−1

{

−log
(

p(yt , y
dy
t−1)

)}

−E
yt ,y

dy
t−1

{

−log
(

p(y
dy
t−1)

)}

(23)

From the general definition of entropy, H(x) = E
{

−log(p(x))
}

,
and assuming an expected value associated with the function
g(x) = c2(1−α)x, we can express TE as a sum of Renyi’s α-
order entropies:

TEα(x → y) = Hα

(

y
dy
t−1, x

dx
t−u

)

−Hα

(

yt , y
dy
t−1, x

dx
t−u

)

+Hα

(

yt , y
dy
t−1

)

−Hα

(

y
dy
t−1

)

. (24)

In the limiting case when α → 1, Equations (7) and (24)
are equivalent (TEα yields the well-known TE). Finally, using
the kernel-based formulation of Renyi’s α-order entropy for
marginal and joint probability distributions (Equations 17 and
18, respectively), we can estimate the TEα from x to y as:

TEκα(x → y) = Hα

(

K
y
dy
t−1

,Kxdxt−u

)

−Hα

(

Kyt ,Ky
dy
t−1

,Kxdxt−u

)

+Hα

(

Kyt ,Ky
dy
t−1

)

−Hα

(

K
y
dy
t−1

)

, (25)

where the kernel matrices Kyt , Ky
dy
t−1

, and Kxdxt−u
hold elements

kij = κ(ai, aj), with kij(·, ·) a positive definite, infinitely divisible
kernel function. For matrix Kyt , ai, aj ∈ R are the values of the
time series y at times i and j. In the case of matrix K

y
dy
t−1

, the

vectors ai, aj ∈ R
d contain the space state reconstruction y

dy
t of y

at times i and j, adjusted according to the time indexing of TE.
Likewise for Kxdxt−u

.

4. EXPERIMENTS

4.1. VAR Model
In order to test the ability of the TEκα functional in Equation
(25) to detect directed interactions under varying noise and
data size conditions, we perform two experiments on simulated
data. We generate synthetic data from a unidirectional bivariate
autoregressive (AR) model of order 3:

zt = c+

3
∑

i=1

Qizt−i + εt , (26)

where zt = (xt , yt)T is a vector with the values of the simulated
signals, x ∈ R

l and y ∈ R
l, at time t, εt ∈ R

2 is a vector of white
noise values at time t, c ∈ R

2 is vector of constants, and

Qi =

(

qi11 qi12
qi21 qi22

)

; i = {1, 2, 3}, (27)

holds the model parameters. The directionality of the causal
relation between the simulated time series is controlled by setting
to 0 either the parameters qi12, to obtain a causal relation from x

to y, or qi21 to obtain a causal relation in the opposite direction.
The remaining parameters of the model are randomly selected.
In order to assess the robustness of our method to different noise
conditions, we add noise to the synthetic data as follows:

Zη = (1− γ )
Z

||Z||F
+ γ

24

||24||F
, (28)

where Z ∈ R
2×l is a matrix containing the signals x and y, || · ||F

stands for the Frobenius norm, 2 ∈ R
2×3 is an instantaneous

mixing matrix with random elements, and 4 ∈ R
3×l is a matrix

containing 3 time series generated by 3 independent AR models
of order 3 with otherwise random parameters, that represent
multiple independent sources of noise and serve to simulate
the effects of volume conduction. The parameter γ controls the
relative strength of noise and signal (Dimitriadis et al., 2016).
If γ is assigned a scalar value then signals x and y will exhibit
symmetric noise, that is to say, they will have the same noise level.
Alternatively, if γ is assigned a two-dimensional vector value,
and the two elements of the vector are different, then the noise
levels in x and y will be asymmetric (in this case, to be able to
use Equation (28) we need to perform a column wise stacking of l
copies of γ , and replace the scalar multiplication by a Hadamard
product). In our first experiment we test both scenarios. First,
we assign γ a scalar value that varies in the range from 0 to 1,
in steps of 0.1, in order to simulate different symmetric levels of
noise for signals of 512 data points. Then, to test the behavior of
our TE estimator under asymmetric noise conditions, we assign
γ a vector value and vary its two elements so as to form a two-
dimensional grid, with each dimension ranging from 0 to 1, in
steps of 0.1, for signals with the same number of data points
as above. In the second experiment, we evaluate the impact of
signal length on our method. To that end, we vary the length
l of the noiseless simulated signals between 100 and 1,000 data
points, in steps of 100 data points. For both experiments, that is to
say, for each noise level (in the symmetric and asymmetric cases)
and signal length, we estimate the accuracy for 10 realizations of
100 trials each. For each realization, the direction of interaction
is chosen at random. The accuracy is defined in terms of a
directionality index:

1λ = λ(x → y)− λ(y → x), (29)

where λ(·) stands for any of the effective connectivity measures
under consideration. 1λ indicates the preferred direction of
information flow. It gets positive values for couplings from x to y,
and negative values when y drives x. We use it to assess whether
each effective connectivity measure correctly detects the chosen
direction of interaction.

4.2. Modified Linear Kus Model
A method to estimate effective connectivity from multiple
channel EEG data should be able to detect causal interactions
among multiple signals coming from a connected network. With

Frontiers in Neuroscience | www.frontiersin.org 6 November 2019 | Volume 13 | Article 1277

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


De La Pava Panche et al. Kernel-Based Renyi’s Transfer Entropy

the aim of testing whether the proposed TE estimator could
successfully reveal the presence, or absence, of such interactions
in a known network, we use the modified version of the linear
Kus model, introduced in Weber et al. (2017). It consists of 5
channels, connected through direct and indirect couplings (for a
graphical representation of the model see Figure 4A). The input
to the model is a time series containing real EEG data that is
then contaminated with white Gaussian noise to obtain channel
1. Then, channel 1 is scaled and time-shifted by an interaction
delay of 4 time units (δ = 4), and more white Gaussian noise is
added, to generate channel 2. Channels 3 and 4 are generated in
a similar fashion, while channel 5 consists only of white Gaussian
noise. The following set of equations describes all the network
interactions present in the model:

x1(t) = β(t)+ vη1(t)

x2(t) = 0.4x1(t − 4)+ vη2(t)

x3(t) = 0.4x2(t − 4)+ vη3(t)

x4(t) = 0.4x2(t − 8)+ vη4(t)

x5(t) = vη5(t) (30)

where xj, β , and ηj stand for the 5 network channels, the
input EEG data, and the added white Gaussian noise at time t,
respectively. The parameter v is a scaling factor equivalent to a
quarter of the variance of the time series. Additionally, external
white Gaussian noise with zero mean and variance equal to v is
added to all channels (Kus et al., 2004; Weber et al., 2017). It is
worth noting that the indirect couplings in the model arise in two
different ways. They can be the result of upstream dependences
between the network’s channels. For instance, channel 1 generates
channel 2, which in turn generates channel 3, giving rise to an
indirect coupling between channels 1 and 3. Indirect couplings
can also arise from different time shifts applied to one channel in
order to generate new channels. Such is the case of the indirect
coupling between channels 3 and 4, which are generated by
time-shifting channel 2 by 4 and 8 time units, respectively.

For our experimental set-up, we generate 1,000 trials of the
modified Kus model, divided into 10 realizations. As input
to the model, we use EEG data from the BCI Competition
IV dataset 2a (for details about this dataset see section 4.3).
Namely, we pool together the Fz channels from all subjects
and trials in the dataset, and for each realization randomly
select 100 of them (without repetition), to be used as inputs to
the system. Then, we generate 100 trials of the modified Kus
model, each consisting of a 5 channel network. Next, for all
pair-wise combinations of channels in each trial, we estimate
the directed interactions within the elements of the network
using our method, and the other effective connectivity measures
under consideration. Afterward, for each realization of 100
trials, we perform a permutation test, based on randomized trial
surrogates, to determine which couplings or directed connections
within the network are statistically significant at an alpha level
of 5% (Lindner et al., 2011; Weber et al., 2017). The number
of permutations in the test is set to 1,000. Finally, in order
to asses the overall performance of each method, regarding
the detection of the true connections in the modified Kus

model, we compare the statistically significant connections per
realization with the predefined connections in the network to
obtain accuracy, sensitivity, and specificity values.

4.3. Motor Imagery
Motor imagery (MI) is the process of imagining a motor action
without any motor execution. During an MI task, a subject
visualizes in his mind an instructed motor action, i.e., to move
the right hand, without actually carrying it out. In order to test
the performance of our TE estimator in the context of a BCI
problem, we estimate effective connectivity features from EEG
signals during twoMI tasks. Our aim is twofold, first, to elucidate
the directed interactions among EEG signals during the MI tasks;
and second, to set up a classification system, based on such
features, that allows discriminating between tasks. To those ends,
we employ the publicly available BCI Competition IV database
2a1. This database consists of EEG data from 9 healthy subjects
recordedwhile performingmultiple trials of anMI protocol. Each
trial starts with a fixed cross displayed on a computer screen,
along with a beep. At second 2, an arrow pointing left, right, down
or up (corresponding to the left hand, right hand, both feet, and
tongue MI tasks) is presented as a visual cue on the screen for a
period of 1.25 s. At second 3, the subjects perform the indicated
MI task until second 6, when the cross vanishes from the screen.
Then, the screen goes blank for 1 s indicating a short break. In
this work, we use only 2 of the 4 MI tasks of the experimental
paradigm, namely, left and right hand motor imagination. A
schematic representation of the task is depicted in Figure 1A. The
EEG signals are recorded from 22 Ag/AgCl electrodes positioned
according to the international 10/20 placement system, as shown
in Figure 1B, at a sampling rate of 250 Hz. Then, a 50 Hz Notch
filter and a bandpass-filter between 0.5 and 100 Hz are applied
to the recorded signals. The BCI Competition IV 2a database
contains, for every subject, two separate sets of data obtained
under the same experimental protocol: a Training dataset and a
Testing dataset. The former is intended to be used to train the MI
task classification system, while the latter should be used to test
the performance of the trained system (Tangermann et al., 2012;
Gómez et al., 2018).

For each subject, let 9 = {Xn ∈ R
C×M}Nn=1 be the EEG set

holding N trials of the MI tasks, with C = 22 channels, and M
= 1,750 samples. Besides, let {1, 2}N be a label set where the n-th
element corresponds to the motor imagery task indicated for trial
Xn (1 for right handmotor imagination, and 2 for left handmotor
imagination). First, we perform a windowing procedure in order
to both better capture the temporal dynamics of the MI task,
which has several distinct stages, and to favor the stationarity
of the EEG signals to be analyzed. We segment each EEG trial
into six-time windows of 2 seconds with 50% overlapping, using
a square window, obtaining six segments of equal length, as
schematized in Figure 1A. The windowing procedure yields a
set of matrices {Zw

n ∈ R
C×L}

Q
w=1, where Q = 6, and L =

500. Our goal is thus to estimate the class label from effective
connectivity features extracted from the segmented EEG trial Zw

n .
Afterward, we compute the surface Laplacian of each segmented

1http://www.bbci.de/competition/iv/desc_2a.pdf
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A B

FIGURE 1 | (A) Schematic representation of the MI protocol. (B) EEG channel montage used for the acquisition of the MI dataset.

trial using the spherical spline method for source current density
estimation (Perrin et al., 1989). The surface Laplacian reduces the
effects of volume conduction by attenuating low spatial frequency
activity, and therefore, it also reduces the presence of spurious
connections associated with it in connectivity analyses (Cohen,
2015; Rathee et al., 2017). Then, for each pairwise combination
of channels zc, zc′ ∈ R

L, belonging to the spatially filtered version
of Zw

n , we estimate the effective connectivity λ(zc → zc′ ) to build
a connectivity matrix 3 ∈ R

C×C. In the case when c = c′, we
set λ(zc → zc′ ) = 0. Next, for time window w and for the N
trials of the MI task, we obtain a set of connectivity matrices
{3w

n ∈ R
C×C}Nn=1. After that, we apply vector concatenation to

3w
n to yield a vector φw

n ∈ R
1×(C×C). Then, we stack together

the N vectors φw
n , corresponding to each trial, to form a matrix

8w ∈ R
N×(C×C). 8w holds all directed interactions, estimated

through the effective connectivity measure λ, for time window w,
for the entire EEG dataset9 .

After characterizing the EEG data, we set up our subject
dependent MI task classification system. As mentioned before,
the classification is carried out separately for each time interval
or time window w. First, we perform two-sample Kolmogorov-
Smirnov hypothesis tests over each of the C × C features of
8w, after separating the data in function of their associated
class labels. For each feature we obtain a p-value ρ, that we
concatenate with those of all other features to generate a vector
ρ ∈ (0, 1)1×(C×C). Then, we use ρ to rank 8w according to
the most discriminant features, that is, the directed interactions
between pairs of channels with the smallest p-values. Next, we
select the ranked features progressively and cumulatively, i.e.,
first only the most discriminant feature is selected, then the two
most discriminant features, and so on. Afterward, the selected
features are centralized, mapped to a new representation space
trough PCA analysis, and input to a classification algorithm.
After a performance evaluation, we choose s < C×C connectivity
features to discriminate between the MI tasks of interest.

In order to evaluate the performance of the proposed
classification system, we proceed in two different stages:
a training-validation stage and a testing stage. For the

training-validation stage, we first define a cross-validation
scheme of 10 repetitions. For each repetition, 70% of the trials
of the Training dataset are randomly assigned to a training set,
and the remaining 30% to a validation set. Then, we characterize
the training and validation sets and perform classification as
described above, using a regularized linear discriminant analysis
(LDA) classifier. All classification parameters are tuned at this
stage, including the number of discriminant features s, and the
percentages of retained variance of the PCA analyses. We adjust
the parameters according to the classification accuracy, looking
to improve the system’s performance. Then, for the testing stage,
we train an LDA classier using all trials from the Training dataset,
and the parameters found during the training-validation stage.
Next, we employ the trained classifier to predict the MI task class
labels of the Testing dataset from effective connectivity features
extracted from its EEG data. Finally, we compute accuracy values
to quantify the performance of our classification system.

4.4. Parameter Selection for the Effective
Connectivity Estimation Methods
We performed all the experiments mentioned above for two
connectivity measures, namely TE and GC. For TE, we tested
three different estimation strategies: the Kraskov-Stögbauer-
Grassberger method (TEKSG), the symbolic version of TE based
on ordinal pattern symbolization (TESym), and the proposed
kernel-based Renyi’s Transfer Entropy (TEκα). For the latter,
we explored two values of the α parameter, α = {1.01, 2},
using as kernel function the radial basis function or RBF kernel
(Liu et al., 2011):

κ(ai, aj) = exp

(

−
||ai − aj||

2

2σ 2

)

. (31)

We used in-house Matlab implementations of the algorithms
for GC, TESym, and TEκα2; while for TEKSG we used
the implementation provided by the open access toolbox

2Available at: https://github.com/ide2704/Kernel_Renyi_Transfer_Entropy
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A B

FIGURE 2 | Accuracies in the detection of the preferred direction of information flow for synthetic data generated from a unidirectional bivariate autoregressive model

of order 3: (A) for varying symmetric noise levels (as a function of the parameter γ ), (B) for a varying number of data points.

FIGURE 3 | Average accuracies in the detection of the preferred direction of information flow for synthetic data, generated from a unidirectional bivariate

autoregressive model of order 3 under asymmetric noise level conditions. The vertical axis displays the noise level for the driving time series, while the horizontal axis

does so for the driven time series.

TRENTOOL, a TE estimation and analysis toolbox for Matlab
(Lindner et al., 2011).

Regarding the selection of parameters involved in the different
effective connectivity estimation methods, we proceeded as
follows: For the TE methods, the embedding delay τ was set
to 1 autocorrelation time (ACT) (Vicente et al., 2011). The
embedding dimension d and the interaction delay u were set in
an experiment-dependent fashion, in most cases after a heuristic
search intended to maximize performance. For all experiments, d
was set to 3 after heuristic searches in the range d = {1, 2, . . . , 10}.
For for the VAR model experiment and the MI tasks experiment
u was set to 1, after heuristic searches in the ranges u = {1, 2, 3}
and u = {1, 2, . . . , 100}, respectively. While for the Kus model
experiment, uwas set to 4, because that is themost common delay
present in the model’s network. The number of neighbors K, and
the Theiler correction window in TRENTOOL’s implementation
of the TEKSG algorithm were left at their default values of 4 and 1
ACT, respectively (Lindner et al., 2011). The bandwidth σ in the
RBF kernel introduced in Equation (31), for the proposed TEκα
method, was set in each case as the median distance of the data
(Schölkopf and Smola, 2002). The order of the autoregressive
model o for GC was set to 3 for all experiments. In the case

of the VAR model experiment o = 3 was chosen to coincide
with the order of the data generation model, while for the
Kus model and the MI tasks experiments it was the result of
heuristic searches in the range o = {1, 3, 5, 7, 9}. Finally, the
two values of the parameter α explored in all experiments were
selected with the following rationale: as α → 1 Renyi’s entropy
tends to Shannon’s entropy, so a value of α = 1.01 should
allow for a better comparison with Shannon’s entropy-based
TE estimation strategies. Also, for Renyi’s entropy a value of
α = 2 is considered to be neutral to weighting (Giraldo et al.,
2015), i.e., it does not emphasize or penalize rare events, which
makes α = 2 a convenient choice when there is no previous
knowledge about the values of the α parameter better suited for a
particular application.

5. RESULTS AND DISCUSSION

5.1. VAR Model
The experiments described in section 4.1 test whether the
effective connectivity measures under consideration correctly
detect the direction of interaction between two time series, under
varying noise and data size conditions. Figures 2, 3 present
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the results of such experiments. Figure 2A shows the obtained
average accuracies regarding the detection of the preferred
direction of information flow as the scalar γ parameter in
Equation (28), and thus the amount of symmetric noise added
to the simulated signals, increases from 0 to 1. For all the
methods tested the performance peaks for low noise levels and
progressively falls as the noise level increases. At γ = 1 the
average accuracies reach values of around 50%, which reflects
the fact that for γ = 1 noise completely replaces the signals
generated by the VAR model, and therefore no causal interaction
is present. Figure 2B shows the average accuracies obtained with
the effective connectivity measures tested as the number of data
points of the VAR signals increases. In all cases, the performance
is lowest for the lowest number of data points considered (100),
and increases as the simulated signals become lengthier. This
behavior is explained by the fact that a larger number of data
points allows for a better estimation of the entropies (or their
associated probability distributions) needed to compute TE, and
for a better adjustment of the AR models in GC.

Figure 3 presents the average accuracies obtained with the
effective connectivity measures studied under asymmetric noise
conditions, in which the noise level varied independently for
the driving and driven time series. This case is particularly
interesting because asymmetries in the data, like different signal-
to-noise ratios, different overall power or spectral details, and
other asymmetries that can arise from volume conduction,
have the potential to affect causality estimates (Haufe et al.,
2013). In general, as the noise in any of the two time series
increases, the accuracy in the detection of the preferred direction
of information flow decreases. However, some of the methods
tested produced spurious results when the noise levels differed,
consistently estimating an incorrect interaction direction. This
issue is not present in the results presented in Figure 2A for
symmetric noise. Particularly, GC failed when the noise level was
moderate for the driving time series and high for driven time
series. Under those conditions GC estimates had an accuracy of
around 30%, which means that for 70% of the simulated time
series in that scenario GC estimated an incorrect direction of
interaction. TEκα for α = 1.01 also failed under the noise
asymmetry conditions described above. Additionally, it failed
when the noise level was high in the driving time series and low in
the driven time series. On the flip side, it was more robust when
the noise levels were reversed, that is, a low noise level in the
driving time series and a high noise level in the driven time series.
Our TE estimation method for α = 2 and the other approaches
for TE estimation tested were not as affected by asymmetric noise.

For both VAR model experiments, GC outperforms TE,
regardless of the TE estimation method. This result is not
surprising, since the simulated data were generated using an AR
model, and such models are at the core of the definition of GC.
Furthermore, since the interactions present in the simulated data
are purely linear a linear method, such as GC, is better suited to
capture them than TE (Vicente et al., 2011). However, despite
being outperformed by GC, within the proposed simulation
framework, TE does reveal the direction of interaction of
the data with high accuracy, albeit with marked estimation
method dependent differences. Specifically, TEκα exhibits the

best performance of the TE estimation methods under study.
In particular, for α = 1.01, it almost matches GC for the ideal
conditions tested (a noiseless scenario, and a large number of
data points). Interestingly, GC and TEκα , for α = 1.01, were
the two methods most affected by asymmetric noise. Overall,
within the tested simulation framework, our method fulfills
two of the necessary conditions for a TE estimator apt for
neuroscience applications (Vicente et al., 2011). Namely, it is
robust to moderate levels of noise, represented in this case by a
superposition of the signals of interest with those coming from
unknown sources. This factor is at play in most noninvasive
electrophysiological measurements such as EEG, which, to a
large extent, contain unknown superpositions of many sources
(Dimitriadis et al., 2016). Also, our estimator requires a smaller
number of data samples to successfully determine the direction
of interaction between a pair of signals, as compared with other
TE estimators. The former is relevant because neuronal dynamics
usually unfolds in periods of a few hundred milliseconds,
which restricts the number of samples available to uncover any
interaction of interest (Vicente et al., 2011). Additionally, the use
of windowing to offset the effects of the non-stationarity of EEG
signals further limits the number of data samples available to
estimate TE (Cekic et al., 2018).

5.2. Modified Linear Kus Model
Figure 4A shows a graphical representation of the 5 channel
network constituting the modified linear Kus model. The solid
and dashed lines represent the direct and indirect couplings
present in the network, respectively; while the arrowheads
indicate the direction of the causal relations introduced in the
network by the time shifts δ. Figure 4B translates the network in
Figure 4A to a binary class matrix representation. The positive
class groups the direct and indirect connections among the
network’s channels. It is represented by the yellow elements, and
their position, in the 5 × 5 connectivity matrix. On the other
hand, the negative class is depicted in blue and represents non-
existing interactions in the network. For instance, channel 1
drives channel 2; therefore element (1, 2) belongs to the positive
class; but since the opposite is not true, element (2, 1) belongs
to the negative class. Notice that all connections to and from
channel 5 belong to the negative class. That is because channel
5 consists only of white Gaussian noise and is not coupled to the
rest of the network.

In this work, the Kus model experiment is intended to
evaluate if our method can detect causal interactions among
multiple signals. Unlike the VAR-model experiment, in which
we were solely interested in determining the correct direction
of the model’s causal interactions, this experiment also requires
determining whether such interactions exist at all for any pair
of signals within the model. To that end, we performed a
permutation test, based on randomized surrogate trials, over the
connectivity estimations, obtained with the methods studied, for
each combination of channels (Lindner et al., 2011; Weber et al.,
2017).

Figure 4C shows, from left to right, the percentage of
statistically significant couplings in the 10 realizations of the
experiment, according to the permutation test, for GC, TESym,
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FIGURE 4 | (A) Modified Kus model network coupling scheme. (B) Binary class matrix representation of the direct and indirect couplings in the modified Kus model

network. (C) From left to right, statistically significant couplings according to a permutation test using trial randomized surrogates for GC, TESym, TEKSG, TEκα
(α = 1.01), and TEκα (α = 2). (D) Accuracy, sensitivity, and specificity values obtained after comparing the statistically significant couplings shown in (C) with the

matrix representation of the Kus model network presented in (A).

TEKSG, TEκα (α = 1), and TEκα (α = 2). A visual inspection of
Figure 4C reveals that the proposed TEκα method and the TEKSG
method display the best performances. Namely, on average, for
the 10 realizations of the experiment, the connectivity values
estimated through those methods allow to better determine the
actual connections present in the Kus model network. Therefore,
their map of statistically significant couplings more closely
resemble the actual Kus model connectivity matrix (Figure 4B).
Note that TE estimators tested correctly detect both the presence
and direction of the direct connections in the network for every
realization, given that the time shift δ of the connection in

question matches the chosen interaction delay u. That is the
interactions from channel 1 to channel 2, and from channel 2 to
channel 3, for which δ = 4, are successfully revealed. However,
the direct connection between channels 2 and 4, for which δ =

8, proves more elusive. The TEKSG method obtains statistically
significant results for that specific coupling in 70% of the 10
realizations, while the TEκα method does so for 60% of them.
Interestingly, our method always detects the indirect connection
from channel 1 to 3, despite an accumulated time shift of 8
time units. In addition, the proposed TEκα method (α = 1.01)
detects the indirect connection between channels 3 and 4 in more
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than 80% of the realizations. For the remaining connections,
performance degrades for all the TEmethods, probably as a result
of both larger accumulated time shifts and the increasing amount
of noise present in the network. It is also worth noting that our
method does not point to the presence of directed interactions
involving channel 5 for any realization.

Finally, by comparing the statistically significant couplings
per realization with the binary class matrix representation of
the Kus model network, we obtained accuracy, sensitivity,
and specificity values for each of the effective connectivity
estimation approaches tested. Figure 4D presents these results.
The highest accuracies are achieved by the TEκα and TEKSG
methods. Therefore, the proposed TEκα method matches the
performance of the TEKSG algorithm regarding the detection
of unknown causal interactions within a network from multi-
channel data. Furthermore, the shown specificity values reflect
the small number of false positives obtained with said methods.
Along with the results observed in Figure 4C, this indicates that
our approach seems to be suited to detect the couplings among
the signals of a connected network with several interaction delays,
while at the same time successfully identifying the pairs of non-
interacting signals.

5.3. Motor Imagery
The MI tasks performed during the acquisition of the BCI
IV database have a clear temporal structure, as depicted in
Figure 1A. It follows that any characterization of the ensuing
brain activity must reflect this structure. That is, since the visual
cue indicating the MI task to be executed during a particular trial
is presented to the subject at second 2, any information extracted
from the EEG signals before that moment should not exhibit
any discriminative power between tasks. Furthermore, since the
subjects performed the MI task from seconds 3 to 6, this is the
time period when the features extracted from the EEG signals of
different tasks are expected to diverge. Since we aimed to test
the ability of the proposed TE estimation method to elucidate
the directed interactions among EEG signals during the MI
tasks, and to determine whether those directed interactions allow
discriminating between tasks, we can establish the compliance
with the above-described temporal constraints as a necessary
condition to achieve those aims.

Figures 5A,C depict 10% of the directed connections
estimated with the TEκα method (α = 2), discriminated by
time window, that present statistically significant differences
between the left and right hand MI tasks for subjects 8 and 9,
respectively. Such differences were assessed for each connection
by applying a two-sample Kolmogorov-Smirnov hypothesis
test to the connectivity data for the training dataset, after
separating them in function of their associated class labels,
and imposing a significance level of 0.01. We found few or
no connections with statistically significant differences between
conditions for time windows 1 and 2, which span from seconds
0 to 2, and 1 to 3, respectively. Then, for windows 3, 4,
and 5 numerous connections to and from the centro-parietal
area exhibit statistically significant task-dependent differences.
Finally, the number of such connections decreases sharply
for window 6, which covers seconds 5 to 7, and includes

the break period after the MI task. Therefore, our method
reveals directed interactions between EEG signals that present
statistically significant differences between the right and left hand
MI tasks, according to the temporal evolution of the MI protocol.
Since the proposed classification system exploits the differences
in the directed connections of each MI task to discriminate
between them, its performance should also be conditioned by
the same temporal constraints. Figures 5B,D display the training
and testing classification accuracies, per time window for subjects
8 and 9, respectively. As expected, the classification system
achieved its highest performances for the time windows during
which the MI task was being executed by the subjects.

Tables 1, 2 present the highest accuracies achieved by the
proposed classification system, for all subjects, and each of the
effective connectivity methods studied. During the training-
validation stage, the classifiers based on GC features and features
extracted with TEκα , for α = 2, exhibited the highest average
performances. However, during the testing stage the average
performance of the GC-based classifier drops more than that of
the TEκα-based classifier, which means that the latter generalizes
better to new data. This points to a more stable identification of
discriminant directed interactions across trials by our method as
compared to other effective connectivity estimation approaches.
Also, note that, in general, the TEκα-based classifier attains its
best performances for the time windows corresponding to the
execution of the MI task. Here, we must highlight the fact
that the accuracies presented in Tables 1, 2 fall short of those
obtained with feature extraction strategies other than effective
connectivity analyses, such as common spatial patterns (Elasuty
and Eldawlatly, 2015; Gómez et al., 2018; Li et al., 2018). This
underperformance of connectivity-based analysis for MI tasks
discrimination has been linked to the difficulties of measuring
local or short-range connectivities, such as those expected to
appear among different zones of the motor areas during MI
tasks, due to volume conduction effects (Rathee et al., 2017).
Interestingly, the results obtained with the classifiers based on
features extracted with our method, and with the other effective
connectivity measures studied, tend to coincide with those of
classifiers based on alternative characterization strategies, in
terms of the ranking of the performances per subject; that is,
subjects 8, 9, or 3 present the highest performances, while subjects
2, 5, or 6 exhibit the lowest ones (Elasuty and Eldawlatly, 2015;
Liang et al., 2016; Gómez et al., 2018; Li et al., 2018).

In order to gain insight into the large differences in
classification performance observed for the different subjects, we
computed the average differences in the total information flow
coming into each channel, estimated through the proposed TEκα
method (α = 2), for all subjects and time windows. Namely, for
each trial, we obtained the total information flow coming into a
particular channel as the sum of all directed interactions targeting
that channel, then averaged that magnitude across all trials of the
same MI task, and finally subtracted the averages of the left and
right MI tasks. Figure 6 shows the obtained results. The subjects
are organized in descending order according to the classification
accuracies presented in Table 1. For the subjects at the top of
the plot, we observed a clear temporal evolution, with small
variations between the information flow of both tasks for time
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A

B

C

D

FIGURE 5 | (A) Connections with statistically significant differences between the MI tasks for time windows 1–6 for subject 8. (B) Training and testing classification

accuracies per time window for subject 8. (C) Connections with statistically significant differences between the MI tasks for time windows 1–6 for subject 9.

(D) Training and testing classification accuracies per time window for subject 9. For visualization purposes, only 10% of the statistically significant connections, those

with the smallest p-values, are depicted in (A,C).

windows 1 and 2, and large localized differences during the time
windows corresponding to MI execution. We can also observe
a trend regarding the spatial location of the information flow
differences. For the top 4 subjects, particularly for time window
3, they are centered around the centro-parietal region, specifically
channel CP4. For the subjects at the bottom of the plot, the same
temporal and spatial patterns are not present. Here, it is worth
noting that we have focused our analyses on the differences in the
obtained effective connectivities for the left and right MI tasks,
instead of analyzing the connectivities that arise for each task
as compared with the resting state (Gong et al., 2018). Bearing

this in mind, and considering the physiological interpretation of
MI which states that motor imagination mainly activates motor
representations in the premotor cortex and the parietal area
(Hétu et al., 2013), we can argue that it is the differences in the
information flow to and from the right parietal cortex, during the
activation associated with MI, which allowed us to discriminate
between tasks for a subset of the subjects.

The above results, and those of sections 5.1 and 5.2, show
that the proposed TEκα method is apt for TE estimation
from neuroscience data. Regarding the requirements outlined
in section 1, we have shown that our TE estimator is robust to
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TABLE 1 | Average training accuracy [%] for the window (w) with the best performance.

Subject
TEκα (α = 2) TEκα (α = 1.01) TEKSG TESym GC (order 3)

acc (w) acc (w) acc (w) acc (w) acc (w)

s 01 71.2± 6.4 (3) 76.9 ± 6.7 (3) 61.2± 7.3 (2) 61.0± 7.9 (4) 73.8± 7.1 (3)

s 02 56.4± 4.9 (2) 58.1± 7.1 (1) 58.6± 7.5 (2) 59.2± 8.6 (3) 65.7 ± 8.3 (6)

s 03 81.2± 3.5 (4) 77.9± 6.3 (4) 75.7± 6.8 (4) 83.6± 3.3 (4) 83.8 ± 7.2 (4)

s 04 63.8 ± 4.3 (2) 60.0 ± 7.0 (3) 63.5± 6.5 (1) 62.3± 6.7 (5) 60.0± 3.9 (4)

s 05 69.7 ± 3.8 (3) 64.9± 6.4 (4) 67.9± 8.8 (3) 60.0± 6.4 (4) 67.2± 7.5 (4)

s 06 65.4 ± 5.6 (3) 62.9± 7.6 (4) 62.6± 11.6 (4) 58.6± 7.6 (2) 65.4± 6.7 (3)

s 07 70.0± 8.3 (3) 73.7 ± 4.1 (3) 65.6± 6.9 (3) 64.4± 6.8 (5) 72.4± 8.0 (3)

s 08 89.5 ± 3.7 (3) 80.5± 4.4 (4) 66.0± 5.2 (5) 78.5± 5.9 (4) 87.8± 3.8 (4)

s 09 82.3± 6.6 (4) 73.4± 7.7 (3) 70.6± 6.2 (4) 82.6 ± 4.6 (3) 75.7± 5.8 (4)

AVG 72.2± 5.2 69.8± 6.4 65.7± 7.4 67.8± 6.4 72.4 ± 6.5

The bold values indicate the highest accuracies obtained for each subject.

TABLE 2 | Testing accuracy [%] for the window (w) with the best performance.

Subject
TEκα (α = 2) TEκα (α = 1.01) TEKSG TESym GC (order 3)

acc (w) acc (w) acc (w) acc (w) acc (w)

s 01 70.9 (3) 68.1 (3) 58.9 (5) 61.0 (2) 67.4 (4)

s 02 54.2 (6) 57.7 (6) 59.9 (1) 56.3 (6) 58.5 (6)

s 03 80.3 (4) 73.0 (4) 67.2 (3) 81.0 (4) 70.8 (4)

s 04 63.8 (3) 61.2 (4) 53.4 (5) 57.8 (5) 57.8 (3)

s 05 53.3 (3) 53.3 (4) 51.9 (2) 53.3 (3) 51.9 (6)

s 06 59.3 (3) 62.0 (4) 60.2 (2) 54.6 (3) 53.7 (2)

s 07 65.7 (3) 62.1 (3) 58.6 (6) 60.0 (1) 59.3 (6)

s 08 89.6 (4) 73.1 (3) 64.2 (4) 82.8 (4) 79.9 (4)

s 09 82.3 (3) 76.9 (3) 62.3 (4) 73.8 (4) 70.8 (4)

AVG 68.8 ± 12.9 65.3± 7.9 59.6± 4.8 64.5± 11.5 63.3± 9.3

The bold values indicate the highest accuracies obtained for each subject.

moderate levels of noise and performs satisfactorily under data
size constrains. The third requirement, concerning the reliability
of the estimator when dealing with high-dimensional spaces,
is readily taken care of by the intrinsic capacity of kernels to
deal with such spaces (Schölkopf and Smola, 2002). Nonetheless,
our approach also has shortcomings, which we will discuss in
the following.

First, we must note that the exponentiation operation in
Equation (17), central to the kernel-based approximation of
Renyi’s entropy, makes our TE estimator ill-suited for the analysis
of long time series (i.e., time series with several thousands of
data points) due to the increase in computational cost. This is
especially true for non-integer values of α. Furthermore, our
approach also exhibits limitations inherent to the concept of
TE (Vicente et al., 2011). Namely, the definition of causality
underlying TE is observational, so unobserved common causes
cannot be analyzed. This shortcoming encompasses the different
delay driving problem. Given three variables, this problem occurs
when the first variable drives the two remaining variables but
each with a different delay, giving rise to an indirect casualty

relation between the second and the third variables that cannot
be identified as spurious in bivariate connectivity analyses (Cekic
et al., 2018). Systems related by a deterministic map, such as those
that are completely synchronized, cannot be analyzed either.
Additionally, the fact that TE is model-free implies that while
TE provides information about the directed or causal interactions
among data, it does not give any further insight into the nature
of those interactions. Furthermore, TE assumes at most weak
non-stationarities in the data, so strong non-stationarities pose
a challenge for its estimation; although progress has been made
in that regard (Wollstadt et al., 2014). Finally, by using Renyi’s
entropy measures of order α to define TE, instead of Shanon’s
entropy, we gain flexibility regarding the characteristics of the
data we wish to highlight, by having at our disposal an entire
parametric family of entropies. As observed in our results, the
choice of the parameter α indeed influences the performance
of the TEκα estimator. It becomes more or less successful at
uncovering the interactions of interest as a function of α. The
flip side of this flexibility is that in practice α becomes one
more parameter to select. In general, the choice of α should be
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FIGURE 6 | Normalized average differences in the total information flow coming into each channel for the training set, for all subjects and time windows. Large

differences are coded in yellow, while small differences are presented in blue.

associated with the task goal (Principe, 2010). For Renyi’s entropy
a large α emphasizes slowly changing features (Giraldo et al.,
2015). Particularly, α > 2 characterizes mean behavior, while
α < 2 emphasizes rare events or multiple modalities, and α = 2
is neutral to weighting.

6. CONCLUSION

In this work, we proposed a new TE estimator based on Renyi’s
entropy of order α, which we approximate through positive
definite kernel matrices. Our data-driven method, termed TEκα ,
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sidesteps the probability distribution estimation stage involved
in the computation of TE from discrete data, thus avoiding
the challenges associated with it. We tested the performance
of our method on two different synthetic datasets, and on an
EEG-database obtained under an MI paradigm. We compared
it with that of state-of-the-art methods for TE estimation, as
well as with that of GC, another commonly used brain effective
connectivity measure. Our results show that the proposed TE
estimator successfully detects the presence and direction of
Wiener-causal interactions between a pair of signals, exhibiting
robustness to varying noise levels and number of available data
samples, and to the presence of multiple interaction delays
within a connected network. Furthermore, our method revealed
discriminant spatiotemporal patterns for the MI tasks, that
are consistent across the top performing subjects, and which
follow the temporal constraints imposed by the MI experimental
paradigm. For all the performance evaluation metrics employed,
the proposed kernel-based TE estimation method is competitive
with the state-of-the-art. As future work, we will look into
developing a data-driven approach to select α, as well as the
kernel bandwidth in the RBF function. Also, we will work toward
obtaining a spectral representation for TE using the proposed
kernel-based estimator.
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