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Simple Summary: Supplementation of high-fat meals with edible plants is the principal strategy to
control postprandial dysmetabolism and inflammation. This study demonstrated that consumption
of Clitoria ternatea flower extract (CTE) decreased postprandial serum triglyceride and serum free
fatty acids, and improved plasma antioxidant status and glutathione peroxidase activity responses
to a high-fat meal challenge in overweight and obese participants. However, CTE could not reduce
the effect of HF meal-induced increase in postprandial glycemia and the level of pro-inflammatory
cytokines. The findings of the present study suggest that CTE may be used as an effective ingredient
to suppress postprandial lipemia and improve the antioxidant status in overweight and obese
individuals that frequently consume HF diets.

Abstract: High-fat (HF) meal-induced postprandial lipemia, oxidative stress and low-grade in-
flammation is exacerbated in overweight and obese individuals. This postprandial dysmetabolism
contributes to an increased risk of cardiovascular disease and metabolic disorders. Clitoria ternatea
flower extract (CTE) possesses antioxidant potential and carbohydrate and fat digestive enzyme
inhibitory activity in vitro. However, no evidence supporting a favorable role of CTE in the modu-
lation of postprandial lipemia, antioxidant status and inflammation in humans presently exists. In
the present study, we determine the effect of CTE on changes in postprandial glycemic and lipemic
response, antioxidant status and pro-inflammatory markers in overweight and obese men after con-
sumption of an HF meal. Following a randomized design, sixteen participants (age, 23.5 ± 0.6 years,
and BMI, 25.7 ± 0.7 kg/m2) were assigned to three groups that consumed the HF meal, or HF meal
supplemented by 1 g and 2 g of CTE. Blood samples were collected at fasting state and then at
30, 60, 90, 120, 180, 240, 300 and 360 min after the meal consumption. No significant differences
were observed in the incremental area under the curve (iAUC) for postprandial glucose among the
three groups. Furthermore, 2 g of CTE decreased the iAUC for serum triglyceride and attenuated
postprandial serum free fatty acids at 360 min after consuming the HF meal. In addition, 2 g of
CTE significantly improved the iAUC for plasma antioxidant status, as characterized by increased
postprandial plasma FRAP and thiol levels. Postprandial plasma glutathione peroxidase activity was
significantly higher at 180 min after the consumption of HF meal with 2 g of CTE. No significant dif-
ferences in the level of pro-inflammatory cytokines (interleukin-6, interleukin-1β and tumor necrosis
factor-α) were observed at 360 min among the three groups. These findings suggest that CTE can be
used as a natural ingredient for reducing postprandial lipemia and improving the antioxidant status
in overweight and obese men after consuming HF meals.
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1. Introduction

A dramatic rise in the prevalence of overweight status and obesity has been reported
among all age groups in developed as well as low/middle-income countries [1]. Obesity, a
state of pathological increase in the amount of adipose tissue and accumulation of excessive
body fat mass, is recognized as a risk factor for developing non-communicable diseases
(NCDs), such as type 2 diabetes, hypertension, hyperlipidemia and cardiovascular diseases
(CVDs) [2]. Interestingly, not all people meeting the criteria for obesity demonstrate poor
metabolic complications; they are considered to present with a metabolically healthy
obesity that is in transition into developing into metabolically unhealthy obesity [3].

In obesity, excessive fat accumulation in adipose tissues promotes chronic low-grade
inflammation related to produce a variety of pro-inflammatory cytokines, such as interleukin-
6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) [4]. Many studies
suggest that chronic inflammation could have a serious role in insulin resistance, which
precedes the onset of type 2 diabetes in adults [5]. Chronic inflammatory processes could
induce the generation of free radicals which may further lead to insulin resistance by
impairing insulin signaling and sensitivity [6,7]. Interestingly, overexpression of oxidative
process damages biological molecules and decreases the activity of endogenous antioxidant
enzymes, such as glutathione peroxidase (Gpx), catalase and glutathione reductase [8].

Abnormalities in postprandial triglycerides are considered an independent CVD risk
factor [9]. It is well-known that macronutrients such as carbohydrates and fats are the
main modulators of abnormal postprandial lipemic responses [10]. In particular, the con-
sumption of high-fat (HF) meals markedly increases postprandial triglycerides and further
promotes the generation of free radicals [11,12]. Consequently, lipid peroxidation gener-
ated from polyunsaturated fatty acids proceeds by free radical chain reaction, resulting in
the formation of malondialdehyde (MDA), the most mutagenic by-product [13]. To this
end, decreasing the magnitude of postprandial lipemia, as well as increasing antioxidant
capacity, has been the target of food-based nutritional interventions.

Recent findings indicate that the suppression of postprandial lipemic responses
and the improvement of oxidative stress could be achieved by consumption of edible
plants [14–16]. For example, the consumption of grape seed extract and strawberry with a
high-fat diet could attenuate the postprandial rise in blood triglyceride levels and increase
the postprandial antioxidant status in humans [14,15]. In addition, consumption of tart
cherry, an anthocyanin-rich foods, by healthy individuals on a high-fat diet significantly
reduces postprandial triglycerides and increases plasma antioxidant capacity [16]. Further-
more, ingestion of strawberry beverage together with a high-carbohydrate, moderate-fat
meal causes a reduction in postprandial inflammatory response such as high-sensitivity C-
reactive protein and interleukin-6 (IL-6) with a concomitant increase in antioxidant capacity
in overweight and obese participants [17]. Therefore, supplementing high-fat meals with
edible plants may be the principal strategy for improving postprandial hyperlipidemia,
oxidative stress and inflammation response.

Clitoria ternatea L. (butterfly pea) flower is an edible plant belonging to the Fabaceae
family that is widely grown in tropical and temperate regions worldwide. The blue color of
Clitoria ternatea (C. ternatea) flower is used as a natural colorant for the preparation of various
foods and beverages. This herbaceous plant has been used in traditional Ayurvedic medicine
for centuries as a memory enhancer, anti-stress, anti-depressant, anti-convulsant, anti-bacterial,
anti-inflammation and sedative agent [18]. The flower of C. ternatea contains a variety of
phytochemical compounds, such as phenolic acids and flavonoids. The major colorants of this
flower are anthocyanins, derived from delphinidin, namely, ternatin anthocyanins such as
A1–A3, B1–B4, C1 and D1–D3 [19]. Our group previously reported that the C. ternatea flower
extract (CTE) inhibits fructose- and methylglyoxal-induced protein glycation and oxidative
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damage to bovine serum albumin in vitro [20,21]. Recent studies have also demonstrated
the biological effect of C. ternatea related to carbohydrate and lipid metabolism [22–24]. For
example, CTE inhibits adipogenesis and reduces the accumulation of triglyceride in 3T3-L1
preadipocytes by downregulating adipogenic gene expression [22]. Furthermore, CTE inhibits
α-amylase and intestinal α-glucosidase activity in vitro [23,24]. In food application, replacing
wheat flour with CTE was shown to decrease the formation of thiobarbituric acid reactive
substances (TBARs) in sponge cake [25]. CTE could also reduce starch hydrolysis, thereby de-
creasing the release of glucose from various types of flour, including potato, cassava, rice, corn,
wheat and glutinous rice, in in vitro-simulated gastrointestinal digestion [26]. In the context
of glycemic response, acute consumption of CTE beverage containing disaccharides (sucrose)
was shown to decrease postprandial glucose concentration and improve the antioxidant status
in healthy participants [27].

Nevertheless, the effect of co-ingestion of CTE with a high-fat meal on postprandial
lipemic and pro-inflammatory marker responses in humans has never been investigated.
Therefore, we aimed to determine the effect of CTE on postprandial glycemia, triglyceride,
free fatty acids (FFA), antioxidant status and inflammatory markers following HF meal
intake by overweight and obese men.

2. Materials and Methods
2.1. Chemicals

Folin–Ciocalteu reagent, 2,4,6-tripyridy-S-Triazine (TPTZ), malondialdehyde (MDA),
butylated hydroxytoluene (BHT) and thiobabituric acid (TBA) were obtained from Sigma-
Aldrich (St. Louis, MO, USA), whereas 5, 5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and
trichloroacetic acid were purchased from Merck (Darmstadt, Germany).

2.2. Preparation of C. ternatea Extract (CTE)

Dried C. ternatea flowers were purchased in 2018 from a local herbal market, Bangkok,
Thailand. An exsiccate of C. ternatea flowers was authenticated at the Princess Sirindhorn
Plant Herbarium, Plant Varieties Protection Division, Department of Agriculture, Bangkok,
Thailand, and was deposited under Voucher specimen ID: BKU066793. The extraction process
was conducted according to a previous report by Chusak et al. [27]. Briefly, the powder of
dried flowers was extracted by distilled water at a 1:20 (w/v) ratio. After filtering the solution
with Whatman No. 1, the frozen solution was placed in a freeze-dryer GFD-30S and dried
at −30 ◦C, at a pressure of 0.15 mbar for 35 h (GRT, Grisrianthong. Co., Ltd., Ratchaburi,
Thailand). The powder of CTE was kept in a laminated aluminum foil vacuum bag and
stored at −20 ◦C until analysis. The total phenolic content (TPC) and total anthocyanins were
determined by the Folin–Ciocalteu method and pH-differential method, respectively [21].
TPC and total anthocyanins were 50.19 ± 0.86 mg gallic acid equivalent/g extract and
0.87 ± 0.13 mg delphinidin-3-glucoside equivalent/g extract, respectively.

2.3. Participants

This study was conducted according to the Declaration of Helsinki guidelines and
was approved by the office of Ethics Review Committee for Research Involving Human Re-
search Subjects, Human Science Group, Chulalongkorn University, and the office of Faculty
of Dentistry/Faculty of Pharmacy, Mahidol University Institutional Review Board (COA
No. 203/2562 and COA.NO.MU-DT/PY-IRB 2019/061.0309, respectively). This trial is
registered at the Thai Clinical Trials Registry (TCTR) under the identifier TCTR20200114006.
All participants provided written informed consent and their identities were kept con-
fidential. For inclusion criteria, only overweight or obese men aged 20−40 years with
a body mass index (BMI) between 23 and 30 kg/m2 (according to the WHO Asian BMI
classification [28]), fasting blood glucose <100 mg/dL, blood urea nitrogen (BUN) between
8 and 24 mg/dL, creatinine between 0.84 and 1.21 mg/dL, aspartate transaminase (AST)
between 8 and 48 U/L, alanine transaminase (ALT) between 7 and 55 U/L and blood pres-
sure <120/80 mmHg were eligible for participation. The exclusion criteria included having
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any chronic diseases, such as diabetes mellitus, hypercholesterolemia, liver or kidney
diseases, food allergies (cow’s milk, butter, wheat and gluten), taking any medications or
supplements and smoking or alcohol consumption. All eligible individuals also underwent
a screening procedure, as a part of which blood biochemistry was collected and analyzed
by the Health Sciences Service Unit, Faculty of Allied Health Sciences, Chulalongkorn
University. They also took part in a screening interview as a part of which medical and
dietary history was obtained by the researchers.

The sample size was calculated based on a previous study focusing on the change of
plasma antioxidant capacity presented by oxygen radical absorbance capacity (ORAC) after
the consumption of a high-fat meal with a freeze-dried blueberry powder [29]. A minimum
sample size of 15 participants per group was determined as sufficient for achieving a
confidence level of 95% (α = 5%) and a power of 80%. Anticipating 20% attrition, the
sample size was increased to 18 participants. Thus, 19 individuals were recruited for
screening and only 16 completed the study.

2.4. Study Design

This clinical trial was conducted at the Department of Nutrition and Dietetics, Faculty
of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. A randomized,
single-blind, crossover design with one week wash-out period was adopted. Prior to
commencing the study, participants underwent BMI, fasting plasma glucose, triglyceride,
total cholesterol, liver and kidney function tests. All participants were instructed to
maintain habitual dietary and physical activity patterns during the study period.

Before arrival on each testing day, participants were instructed to abstain from al-
cohol, high-fat food, antioxidant-rich food (such as berries and citrus fruits) and dietary
supplements consumption, as well as vigorous exercise, for at least 24 h. After overnight
fasting for 10 h, participants visited the study center and, after resting for 10 min, they had
a venous catheter inserted into the left arm by a registered nurse. A randomized table with
intervention for each individual was generated before the start of the experiment using
an online random number generator (https://www.random.org [accessed on 10 October
2019]). The experimental design involved three intervention groups, whereby assigned
participants consumed a high-fat (HF) meal, an HF meal plus 1 g of CTE, or an HF meal
plus 2 g of CTE, respectively. Participants were asked to consume the meal within 10 min.
Blood samples were collected at fasting state and at 30, 60, 90, 120, 180, 240, 300 and 360
min after the meal consumption by a clot activator tube and were subjected to triglyceride,
free fatty acid and inflammatory cytokine analysis. The plasma for antioxidant capacity
and blood glucose analysis was collected by a blood collecting tube with EDTA and sodium
fluoride, respectively. Blood samples were immediately centrifuged at 3000 rpm for 10 min
at 4 ◦C. The plasma and serum samples were separated and kept at −20 ◦C until required
for further analysis (Figure 1). During this 6 h period, participants were permitted to drink
up to 1 L of water.
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2.5. Intervention

According to the Thai Dietary Recommendation of Intakes (Thai DRI) established
by the Department of Health, Ministry of Public Health of Thailand in 2020, the energy
requirement for males aged 19–30 years is 2260 kcal/day. The HF meal provided approx-
imately 720 kcal with 50:41:9 caloric distribution of fat, carbohydrate and protein. The
meal consisted of three slices of white bread with 5 g of condensed milk and 30 g of butter
and 240 mL of whole milk containing 10 g of a commercial medical food Ensure® (Abbott
Laboratories Limited, Abbott Park, IL, USA) as a beverage with or without CTE (1 g or 2 g).
The meals were freshly prepared by the researchers in the morning of each test day.

2.6. Plasma Glucose, Serum Triglyceride and Free Fatty Acid (FFA)

Plasma glucose and serum triglyceride concentration were measured using Glucose
and Triglycerides liquicolor reagent (Human® GmbH, Wiesbaden, Germany), respectively.
Serum free fatty acids (FFA) levels were determined using non-esterified fatty acid enzy-
matic cycling assay kit (BIOBASE, Shandong, China).

2.7. Plasma Ferric Reducing Antioxidant Power (FRAP)

The FRAP value representing antioxidant power was determined according to the
method described previously [30]. Plasma was diluted to 1:2 with 0.1 M phosphate buffer
saline (PBS, pH of 7.4). The FRAP reagent contained 0.3 M sodium acetate buffer (pH of
3.6), 10 mM TPTZ in 40 mM HCl and 20 mM FeCl3 at a 10:1:1 (v/v) ratio, respectively.
The working reagent was freshly prepared and warmed at 37 ◦C before use. Next, 10 µL
of diluted plasma was mixed with 90 µL of FRAP reagent and was incubated at room
temperature for 5 min in darkness. The absorbance was determined at 595 nm. FeSO4
was used as standard to generate the calibration curve for FRAP value calculation and the
results were expressed as mM FeSO4.

2.8. Plasma Thiol

The plasma thiol concentration was determined by Ellman’s assay with minor modifi-
cations [30]. The 1:10 diluted plasma (90 µL) was mixed with 130 µL of 2.5 mM DTNB in
PBS and was incubated at room temperature for 15 min. The absorbance was measured at
412 nm. The plasma thiol concentration was calculated using a standard L-cysteine curve
and was expressed as mM L-cysteine.

2.9. Plasma Lipid Peroxidation

Lipid peroxidation was determined by thiobarbituric acid-reactive-substances assay
(TBARS) [31], which measures MDA as a secondary product of lipid peroxidation. Briefly,
200 µL of plasma was mixed with an equal amount of 15% (w/v) trichloroacetic acid and
30 µL of 0.25 mM BHT in ethanol. The mixture was centrifuged at 13,000 rpm for 10 min
to precipitate protein and the supernatant (200 µL) was collected and mixed with 0.375%
(w/v) TBA (200 µL). The reaction was heated at 95 ◦C for 10 min. After cooling down, the
absorbance was measured at 532 nm and the plasma MDA concentration was calculated
using a standard curve of MDA.

2.10. Plasma Glutathione Peroxidase Activity

The glutathione peroxidase activity was determined using a glutathione peroxidase
assay kit (Cayman Chemical, Ann Arbor, MI, USA) according to the manufacturer’s
protocol. The plasma samples were obtained with a blood collecting tube with EDTA as
anticoagulant and were diluted by 1:2 with PBS before analysis.

2.11. Plasma Inflammatory Cytokines

The circulating pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) levels were de-
termined using an enzyme-linked immunosorbent assay (ELISA) kit according to the
manufacturer’s manual (BIOBASE, Jinan, China).



Biology 2021, 10, 975 6 of 16

2.12. Statistical Analysis

All values are expressed as mean ± SEM. Postprandial incremental areas under the
curve (iAUC) for glucose, triglyceride, FRAP, thiol and MDA were analyzed using the
Trapezoidal method. The Kolmogorov–Smirnov test was performed to determine whether
the data were normally distributed. Repeated measures one-way analysis of variance
(ANOVA) followed by Duncan’s multiple range post hoc test was conducted to compare
the effect of interventions (treatment, time and treatment × time interaction). All statistical
analysis were performed using SPSS version 22.0 (Chicago, IL, USA) and p-value < 0.05
was considered statistically significant.

3. Results
3.1. Participants

At the start of the study, 19 individuals were recruited for screening, but one partici-
pant was excluded due to high aspartate transaminase levels. The remaining 18 participants
were randomly assigned to the three intervention groups, but only 16 (9 overweight and
7 obese participants) completed the study. Two participants who did not receive interven-
tion were excluded from analysis. The enrollment and allocation information are shown
in Figure 2, while participant characteristics are reported in Table 1. The mean age of
the participants who completed the study was 23.5 ± 0.6 years and their average BMI
was 25.7 ± 0.7 kg/m2. The pre-screening blood biochemical parameters were checked to
ensure that the participants were eligible to take part in the study.
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Table 1. Characteristics of the participants.

Characteristics Mean ± SEM

Age (years) 23.5 ± 0.6
Weight (kg) 75.7 ± 1.9
Height (cm) 171.2 ± 1.7

Body mass index (BMI; kg/m2) 25.7 ± 0.7
Fasting plasma glucose (mg/dL) 88.7 ± 1.7

Total cholesterol (mg/dL) 190.1 ± 8.7
Serum triglyceride (mg/dL) 97.9 ± 12.6

Creatinine (mg/dL) 1.06 ± 0.04
Blood urea nitrogen (mg/dL) 14.7 ± 0.8
Aspartate transaminase (U/L) 23.9 ± 2.0
Alanine transaminase (U/L) 33.7 ± 6.3

All values are means ± SEM, n = 16.

3.2. Postprandial Plasma Glucose Concentration

The postprandial changes in plasma glucose concentration after consuming HF supple-
mented with CTE are shown in Figure 3A. There were significant incremental postprandial
plasma glucose changes in all three groups (p < 0.0001 for time effect) with no statistically
significant interaction of treatment and time × treatment effect (p > 0.05). The HF meal
challenge induced an increase in postprandial glucose concentration that peaked at 30 min.
There were no significant differences in the postprandial glucose changes between individ-
uals that consumed the HF meal plus CTE (1 g and 2 g) at any time point when compared
to those given HF meal only. In addition to the postprandial results, no significant effects
were observed in the iAUC of plasma glucose among the three groups (Figure 3B).
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Figure 4. Changes in (A) postprandial serum triglyceride (TG) concentration and (B) incremental area under the curve 
(iAUC) in overweight and obese adults after consuming the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE). The 
fasting serum triglyceride concentration was 106.2 ± 12.8 mg/dL for the HF meal, 108.8 ± 9.5 mg/dL for the HF meal + 1 g 
CTE and 101.5 ± 13.1 mg/dL for the HF meal + 2 g CTE. Values are means ± SEM, n = 16. Different letters are significantly 
different (p < 0.05). 

Compared to the values at fasting state, the serum FFA concentration decreased at 
180 min and then increased at 360 min following the HF meal. Interestingly, 2 g of CTE 
significantly decreased postprandial serum FFA concentration at 360 min compared to HF 
and HF + 1 g CTE meals (Figure 5). 

Figure 3. Changes in (A) postprandial plasma glucose concentration and (B) incremental area under the curve (iAUC) in
overweight and obese adults after consuming the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE). The fasting
plasma glucose concentration was 88.3 ± 2.8 mg/dL for the HF meal, 86.2 ± 2.5 mg/dL for the HF meal + 1 g CTE and
84.8 ± 2.8 mg/dL for the HF meal + 2 g CTE. Values are means ± SEM, n = 16. Different letters are significantly different.

3.3. Postprandial Serum Triglyceride and FFA Concentration

In all three groups, significant changes in incremental postprandial serum triglyceride
were observed (p < 0.0001 for time effect) with no statistically significant interaction of
treatment and time × treatment effect (Figure 4A). Postprandial triglyceride concentration
tended to be lower at 300 and 360 min after consuming the HF meal supplemented with
CTE (2 g). However, the decrease was statistically insignificant at those time points. The HF
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meal cooperated with 2 g of CTE resulted in a significant reduction in the serum triglyceride
iAUC when compared to the HF meal (Figure 4B).
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Figure 4. Changes in (A) postprandial serum triglyceride (TG) concentration and (B) incremental area under the curve 
(iAUC) in overweight and obese adults after consuming the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE). The 
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CTE and 101.5 ± 13.1 mg/dL for the HF meal + 2 g CTE. Values are means ± SEM, n = 16. Different letters are significantly 
different (p < 0.05). 
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significantly decreased postprandial serum FFA concentration at 360 min compared to HF 
and HF + 1 g CTE meals (Figure 5). 

Figure 4. Changes in (A) postprandial serum triglyceride (TG) concentration and (B) incremental area under the curve
(iAUC) in overweight and obese adults after consuming the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE).
The fasting serum triglyceride concentration was 106.2 ± 12.8 mg/dL for the HF meal, 108.8 ± 9.5 mg/dL for the
HF meal + 1 g CTE and 101.5 ± 13.1 mg/dL for the HF meal + 2 g CTE. Values are means ± SEM, n = 16. Different letters
are significantly different (p < 0.05).

Compared to the values at fasting state, the serum FFA concentration decreased at
180 min and then increased at 360 min following the HF meal. Interestingly, 2 g of CTE
significantly decreased postprandial serum FFA concentration at 360 min compared to HF
and HF + 1 g CTE meals (Figure 5).
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Figure 5. Changes in serum free fatty acid (FFA) concentration in overweight and obese adults
after consuming the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE). The fasting serum
free fatty acid (FFA) was 0.569 ± 0.079 mmol/L for the HF meal, 0.619 ± 0.066 mmol/L for the
HF meal + 1 g CTE and 0.586 ± 0.058 mmol/L for the HF meal + 2 g CTE, respectively. Values are
means ± SEM, n = 16. Different letters are significantly different (p < 0.05).

3.4. Postprandial Antioxidant Status

When compared to the values at fasting state, ingestion of the HF meal resulted in
a decrease in the postprandial plasma FRAP level at 90, 120 and 180 min (Figure 6A). At
the same time points, addition of CTE caused a significantly higher postprandial FRAP
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level when compared to the HF meal. The iAUC of FRAP also revealed significantly higher
values for HF + 2 g CTE vs. HF meal alone (p < 0.05; Figure 6B).
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Figure 6. Changes in postprandial (A) plasma ferric reducing antioxidant power (FRAP), (C) thiol 
and (E) malondialdehyde (MDA) concentration and the incremental area under the curve (iAUC) 
of (B) FRAP, (D) thiol and (F) MDA concentration in overweight and obese adults who consumed 
the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE). The fasting plasma FRAP values were 
0.60 ± 0.04 mM FeSO4 for the HF meal, 0.67 ± 0.04 mM FeSO4 for the HF meal + 1 g CTE and 0.63 ± 
0.06 mM FeSO4 for the HF meal + 2 g CTE. The fasting plasma protein thiol concentration was 496.3 
± 33.0 mM L-cysteine for the HF meal, 479.4 ± 28.5 mM L-cysteine for the HF meal + 1 g CTE and 
467.0 ± 21.5 mM L-cysteine for the HF meal + 2 g CTE. The fasting plasma MDA concentration was 
9.54 ± 0.83 µM for the HF meal, 10.01 ± 0.34 µM for the HF meal + 1 g CTE and 9.70 ± 0.41 µM for 
the HF meal + 2 g CTE. Values are means ± SEM, n = 16. Different letters are significantly different 
(p < 0.05). 
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pared to the fasting state (Figure 7). Moreover, addition of CTE (2 g) led to an increase in 
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Figure 6. Changes in postprandial (A) plasma ferric reducing antioxidant power (FRAP), (C) thiol and (E) malondialdehyde
(MDA) concentration and the incremental area under the curve (iAUC) of (B) FRAP, (D) thiol and (F) MDA concentration in
overweight and obese adults who consumed the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE). The fasting
plasma FRAP values were 0.60 ± 0.04 mM FeSO4 for the HF meal, 0.67 ± 0.04 mM FeSO4 for the HF meal + 1 g CTE and
0.63 ± 0.06 mM FeSO4 for the HF meal + 2 g CTE. The fasting plasma protein thiol concentration was 496.3 ± 33.0 mM
L-cysteine for the HF meal, 479.4 ± 28.5 mM L-cysteine for the HF meal + 1 g CTE and 467.0 ± 21.5 mM L-cysteine for the
HF meal + 2 g CTE. The fasting plasma MDA concentration was 9.54 ± 0.83 µM for the HF meal, 10.01 ± 0.34 µM for the
HF meal + 1 g CTE and 9.70 ± 0.41 µM for the HF meal + 2 g CTE. Values are means ± SEM, n = 16. Different letters are
significantly different (p < 0.05).
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The effects of the HF meal with CTE on postprandial plasma thiol concentration are
illustrated in Figure 6C. Compared to the values at fasting state, HF meal consumption
decreased postprandial plasma thiol concentration at 30, 60 and 90 min. Moreover, post-
prandial plasma thiol concentration after consumption of HF meal accompanied with
1 g and 2 g of CTE was significantly higher at 60 and 90 min than that of the HF meal
alone (p < 0.05). As shown in Figure 6D, the iAUC for postprandial plasma thiol in the of
HF + 2 g CTE group was higher than that of the HF group (p < 0.05).

The effects of CTE on postprandial plasma MDA concentration after consumption
of the HF meal are presented in Figure 6E. As can be seen from the graph, HF meal
intake induced a slight increase in postprandial plasma MDA at 60 min. However, this
postprandial effect was attenuated by adding 1 g and 2 g of CTE to the HF meal (p < 0.05).
On the other hand, there were no significant differences in the iAUC for postprandial
plasma MDA concentration among all three groups (Figure 6F).

3.5. Postprandial Plasma Glutathione Peroxidase (Gpx) Activity

HF meal ingestion caused a reduction in plasma Gpx activity at 180 min when com-
pared to the fasting state (Figure 7). Moreover, addition of CTE (2 g) led to an increase in
postprandial plasma Gpx activity at 180 min relative to HF meal alone (p < 0.05).

Biology 2021, 10, x FOR PEER REVIEW 11 of 17 
 

 

30 min 180 min

C
ha

ng
e 

in
 p

la
sm

a 
G

px
 a

ct
iv

ity
 (n

m
ol

/m
in

/m
L)

-10

0

10

20

30
HF 
HF + 1 g CTE
HF + 2 g CTE 

a

a,b

b

b

a,b

a

 
Figure 7. Changes in the activity of plasma glutathione peroxidase (Gpx) in overweight and obese 
adults who consumed the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE) at 30 and 180 
min. The fasting plasma Gpx activity was 142.0 ± 8.8 nmol/min/mL for the HF meal, 142.0 ± 9.7 
nmol/min/mL for the HF meal + 1 g CTE and 154.8 ± 5.5 nmol/min/mL for the HF meal + 2 g CTE. 
Values are means ± SEM, n = 16. Different letters are significantly different (p < 0.05). 

3.6. Postprandial Serum Pro-Inflammatory Cytokines 
The postprandial serum pro-inflammatory cytokine levels, including interleukin 

(IL)-6, IL-1β and tumor necrosis factor (TNF)-α, after consuming the test meals are pre-
sented in Figure 8A–C, respectively. When compared to the values at fasting state, post-
prandial IL-6 and IL-1β concentrations increased at 360 min after consuming the HF meal, 
whereas the concentration of TNF-α remained unchanged. Although a slight reduction in 
the level of serum IL-6 and TNF-α was noted for HF + 1 g CTE and HF + 2 g CTE, and 
serum IL-1β was decreased only in the HF + 2 g CTE group, none of the differences among 
groups were statistically significant. 

HF HF + 1 g CTE HF + 2 g CTE

In
cr

em
en

ta
l s

er
um

 IL
-6

 le
ve

l (
pg

/m
L)

-3

-2

-1

0

1

2

3

a

a
a

 
HF HF + 1 g CTE HF + 2 g CTE

In
cr

em
en

ta
l s

er
um

 IL
-1

β
 le

ve
l (

pg
/m

L)

0.0

0.2

0.4

0.6

0.8

1.0

a

a

a

 

(A) (B) 

Figure 7. Changes in the activity of plasma glutathione peroxidase (Gpx) in overweight and
obese adults who consumed the HF meal with 1 g and 2 g of Clitoria ternatea extract (CTE) at
30 and 180 min. The fasting plasma Gpx activity was 142.0 ± 8.8 nmol/min/mL for the HF meal,
142.0 ± 9.7 nmol/min/mL for the HF meal + 1 g CTE and 154.8 ± 5.5 nmol/min/mL for the HF
meal + 2 g CTE. Values are means ± SEM, n = 16. Different letters are significantly different (p < 0.05).

3.6. Postprandial Serum Pro-Inflammatory Cytokines

The postprandial serum pro-inflammatory cytokine levels, including interleukin (IL)-
6, IL-1β and tumor necrosis factor (TNF)-α, after consuming the test meals are presented in
Figure 8A–C, respectively. When compared to the values at fasting state, postprandial IL-6
and IL-1β concentrations increased at 360 min after consuming the HF meal, whereas the
concentration of TNF-α remained unchanged. Although a slight reduction in the level of
serum IL-6 and TNF-α was noted for HF + 1 g CTE and HF + 2 g CTE, and serum IL-1β
was decreased only in the HF + 2 g CTE group, none of the differences among groups were
statistically significant.
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HF meal + 1 g CTE and 35.70 ± 0.79 pg/mL for the HF meal + 2 g CTE, respectively. The fasting serum IL-1β concentration
was 29.51 ± 1.75 pg/mL for the HF meal, 25.82± 1.76 pg/mL for the HF meal + 1 g CTE and 29.05± 4.77 pg/mL for the HF
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4. Discussion

Globally, there have been considerable changes in behavior and lifestyle character-
ized by an increased intake of energy-dense and high-fat foods. Recent epidemiological
studies clearly demonstrated the link between overconsumption of HF foods and the
risk of overweight- and obesity-associated chronic metabolic diseases, such as CVD and
diabetes [32]. Specifically, an intake of HF meal causes postprandial lipemia leading to
increased inflammatory and oxidative stress markers [6,33]. These responses have gained
interest due to the association of postprandial triglyceride levels and the risk of CVD that
have been demonstrated by recent reports. An increase in postprandial triglyceride levels
are possibly even greater independent predictors of CVD than fasting triglyceride [34]. Our
results showed that postprandial plasma glucose and serum triglyceride concentration were
increased in overweight and obese men after consuming HF meal and postprandial lipemia
was observed at 3 h after fat loading. This finding is consistent with the results reported by
Clemente-Postigo et al., indicating that fat overload induces an increase in postprandial
hypertriglyceridemia and chylomicron fraction in morbidly obese patients [35].
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Several clinical studies have been conducted on the effects of plants containing
polyphenols on postprandial lipemia. Their findings indicate that postprandial serum
triglyceride exhibit a decreasing trend at 4–6 h following ingestion of raspberries or freeze-
dried strawberry powder containing polyphenols and anthocyanins alongside a high-fat
meal in adults [36,37]. In accordance with other reports, in the present study, CTE (2 g) sup-
pressed the postprandial plasma triglycerides and FFA magnitude and peak time response
to the HF meal. We attribute the inhibitory effects of phenolic acids, polyphenols and
anthocyanins against pancreatic lipase to the ability of CTE to reduce postprandial triglyc-
eride levels. It has been shown that delphinidin-3,5-glucoside, delphinidin-3-glucoside,
malvidin-3β-glucoside, kaempferol, p-coumaric acid and six major ternatins (A1, A2, B1,
B2, D1 and D2) are the main phytochemical compounds in CTE [18,21]. These compounds
have been reported to inhibit pancreatic lipase activity that further blocks the hydrolysis of
triglycerides into glycerol and free fatty acids [38]. The reduction in fat absorption through
pancreatic lipase inhibition is known to assist with controlling postprandial hypertriglyc-
eridemia as an independent predictor of CVD [39,40]. Therefore, CTE may help to prevent
obesity and CVD through the suppression of postprandial hypertriglyceridemia. However,
the relationship between the ingestion of CTE and CVDs remains unclear and this aspect
should be further investigated.

Available evidence demonstrates that postprandial hyperglycemia/insulinemia and
hyperlipidemia positively correlates with oxidative stress and inflammation [12]. A high-fat
diet induces postprandial lipemia, leading to oxidative stress and inflammatory response
through various mechanisms [11]. The previous study found that acute consumption of
high-fat diets contributes to a significant increase in postprandial triglycerides accompanied
with reduced postprandial plasma antioxidant activity [41]. In this study, consumption of a
high-fat diet resulted in a decline in postprandial plasma antioxidant activity, as indicated
by the reduction in plasma FRAP and protein thiol levels. An increase in postprandial
plasma MDA (as an oxidative stress marker of lipid peroxidation) was also observed
at 30 min after high-fat meal intake. The alteration of postprandial antioxidant activity
was previously attributed to lipid peroxidation by the hydrogen abstraction or addition
of an oxygen radical, resulting in the decomposition of polyunsaturated fatty acids [42].
In addition, presence of disulfide bonds in sulfhydryl groups was shown to act as an
antioxidant defense mechanism [43]. The depletion of protein thiol indicates an increased
oxidative protein damage, causing a decrease in plasma antioxidant activity. In the present
study, ingestion of CTE with the HF meal improved postprandial plasma antioxidant
capacity by increasing plasma FRAP and maintaining the plasma thiol levels. These
findings are consistent with those yielded by our previous study demonstrating the effect
of CTE beverage on postprandial plasma antioxidant capacity in healthy subjects. Drinking
CTE (1 g or 2 g) with and without a sucrose-containing beverage elevated plasma FRAP,
oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC)
and protein thiol, while decreasing the MDA levels [27]. According to Chusak et al.,
the antioxidant capacity of blood increases after consuming beverages containing CTE
because of the antioxidant activity of phytochemical compounds presented in CTE [27].
Our previously reported findings support the suggestion that CTE demonstrates strong
antioxidant activity toward free radical scavengers [20].

Glutathione peroxidase (Gpx), known as a selenium-dependent enzyme, is one of
the most essential endogenous antioxidant enzymes in the human body, as it helps to
eliminate hydrogen peroxides and other organic peroxides, such as lipid peroxides [44]. In
addition to the antioxidant defense mechanism, Gpx decomposes peroxide molecules into
water and competes with catalase for hydrogen peroxides, thereby reducing the degree of
oxidative stress in cells and limiting tissue damage [44]. Several studies have shown that
consumption of edible plants containing polyphenol compounds increases the activity of
antioxidant enzymes in rats and humans [45–47]. In the present study, the consumption of
the HF meal with CTE was shown to increase Gpx activity with a concomitant increase in
plasma FRAP and thiol at 180 min. An increase in Gpx activity with decreasing protein
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oxidation by a phytochemical-rich plant was also observed in high-fat, high-fructose diet-
induced obese rats [47]. Our findings suggest that the Gpx activity increase by CTE may be
related to multiple mechanisms of action. We posit that CTE may exert a protective effect
against high fat-induced oxidative damage to antioxidant defense enzymes through its
antioxidant activity as a direct scavenger. Consequently, this action helps blood circulation
to maintain high levels of antioxidant enzyme activity for preventing excessive generation
of harmful reactive oxygen species. Moreover, CTE may directly activate the antioxidant
response by promoting specific redox-sensitive transcription factors, such as activating
protein 1 (AP-1) and NF-κB, leading to an increase in the mRNA expression of endogenous
antioxidants, such as superoxide dismutase, catalase and Gpx [48,49].

Extant studies further indicate that HF meal intake is associated with higher pro-
inflammatory cytokine levels through the activation of immune cells, leading to increased
low-grade inflammation [50,51]. Interestingly, saturated fatty acids were found to induce
the release of pro-inflammatory cytokines, such as IL-6, IL-1β and TNF-α, from immune
cells into blood circulation, particularly in individuals with metabolic disorders [52]. In the
study conducted by Herieka et al., the peak concentration of postprandial pro-inflammatory
cytokines was observed 4–6 h after HF meal loading [53]. Similarly, in the current study,
the alteration in the pro-inflammatory cytokine profile was noted at 6 h. It has been re-
ported that the intake of phytochemical-rich plants has the capacity to suppress the rise
in pro-inflammatory cytokine response to the HF meal. For instance, consumption of HF
foods accompanied by a fruit juice resulted in a significant decrease in plasma cholesterol
and triglyceride concentration in healthy overweight subjects with a concomitant reduction
of inflammatory response mediated by IL-6 and TNF-α [54]. On the other hand, Davis
et al. reported that an intake of polyphenol-rich cocoa could not improve postprandial
inflammatory biomarkers (IL-6 and IL-1β) in subjects following HF meal intake [55]. Ac-
cording to Edirisinghe et al., serum concentration of IL-1β was not altered in individuals
that consumed strawberry beverages alongside an HF meal [17]. However, consumption
of CTE tended to counteract the HF meal effect on the level of pro-inflammatory cytokines.
This finding may be a result of low doses of phytochemical compounds in CTE, which
could not induce sufficient reduction in postprandial circulating pro-inflammatory cytokine
levels following an HF meal.

The main contribution of the current study stems from its original design and its
focus on postprandial effect of CTE on the lipemic response and antioxidant capacity
after consumption of an HF meal. Specifically, we incorporated CTE into a beverage
to mimic the traditional consumer behavior. However, as the sample size was small,
the study findings cannot be generalized. Moreover, participants were aware of their
group assignment because the colors of CTE and control beverages were different. Finally,
only male participants were recruited for this study to avoid the effect of gender on the
measured variations in blood biochemistry. To address these limitations, further studies
are warranted, especially long-term trials involving both male and female individuals with
cardiovascular risk factors.

5. Conclusions

This is the first study to demonstrate that acute consumption of an HF meal accom-
panied with CTE decreases postprandial serum triglycerides and FFA concentration in
overweight and obese men. CTE also significantly improves plasma antioxidant status
responses to the HF meal by increasing plasma FRAP, thiol and the activity of endogenous
antioxidant enzyme, glutathione peroxidase. However, CTE could not reduce the effect
of HF meal-induced increase in postprandial glycemia and the level of pro-inflammatory
cytokines. These findings suggest that CTE may be used as an effective ingredient to
suppress postprandial lipemia and improve the antioxidant status in overweight and obese
individuals that frequently consume HF foods.
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