
RESEARCH ARTICLE

The influence of pressure on crude oil

biodegradation in shallow and deep Gulf of

Mexico sediments

Uyen T. Nguyen1☯*, Sara A. Lincoln1☯, Ana Gabriela Valladares Juárez2☯,
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Abstract

A significant portion of oil released during the Deepwater Horizon disaster reached the Gulf

of Mexico (GOM) seafloor. Predicting the long-term fate of this oil is hindered by a lack of

data about the combined influences of pressure, temperature, and sediment composition on

microbial hydrocarbon remineralization in deep-sea sediments. To investigate crude oil bio-

degradation by native GOM microbial communities, we incubated core-top sediments from

13 GOM sites at water depths from 60–1500 m with crude oil under simulated aerobic sea-

floor conditions. Biodegradation occurred in all samples and followed a predictable com-

pound class sequence dictated by molecular weight and structure. 45 to ~100% of total n-

alkane and 3 to 60% of total polycyclic aromatic hydrocarbons (PAH) were depleted. In reac-

tors incubated at 4˚C and at pressures of 6–15 MPa, the depletion in total n-alkane was

inversely correlated to pressure (R2 ~ 0.85), equivalent to a 4% decrease in total n-alkane

depletion for every 1 MPa increase. Our results indicated a modest inhibitory effect of pres-

sure on biodegradation over our experimental range. However, the expansion of oil explora-

tion to deeper waters (e.g., 5000 m) opens the risk of spills at conditions at which pressure

might have a more pronounced effect.

Introduction

The 2010 Deepwater Horizon (DWH) blowout created the first major oil spill in deep waters.

It released ~5 million barrels of Macondo oil to the Gulf of Mexico (GOM) at a water depth of

1500 m. An estimated 3–31% of the oil was transported to the seafloor, contaminating a region

of 3200 km2 around the Macondo wellhead [1, 2]. Oil sedimentation was promoted by marine

oil snow formation and flocculent accumulation (“MOSSFA”) [3, 4] which created oil-particle

aggregates able to sink from surface waters or from the deep intrusion layers that formed in

the water column at depths of 1000–1300 m [5]. These subsurface oil plumes, rather than oil
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that reached surface waters, were considered a major source of oil to the seafloor, based on evi-

dence of minimal photodegradation in oiled sediment samples [2]. Sinking high-density oil

residues [6] and diffusion through the water column [7] may also have contributed to oil

sedimentation.

Little information about the fate of oil spilled in deep-sea environments was available

before the Deepwater Horizon blowout, and it was unclear how much could be extrapolated

from studies of previous spills in very different environments (e.g. Exxon Valdez [8] and

Gulf War [9]). Biodegradation is expected to be the major depletion mechanism of oil in

deep, dark waters [10], where other common weathering processes in surface waters such as

photooxidation and evaporation are not active. This expectation was reinforced by studies

that revealed the enrichment of indigenous oil-degrading microbes and upregulation of

hydrocarbon-degrading genes in deep waters following the spill [11–14]. Additionally,

Stout & Payne [15] and Bagby et al. [16] found a significant depletion in various Macondo

compound classes in deep (1000–1912 m) GOM sediments over the 4 years following the

spill, indicating that indigenous microbial communities of the deep sea actively degrade oil

components.

Deep sea environments, characterized by low temperature and high hydrostatic pressure,

present energetic challenges to microbial metabolism. Among interconnected factors (e.g.,

physical conditions, nutrient and oxygen levels, background organic matter, and microbial

community composition) that likely control hydrocarbon biodegradation on the seafloor

[17, 18], the influence of pressure is least studied. Laboratory incubation experiments [19–

25] have demonstrated that some bacteria are capable of hydrocarbon degradation under

elevated pressure, but the effect of pressure in these studies has been mixed. Schwarz et al.

[19, 20] discovered a 10 x decrease in rates of growth and hexadecane utilization of a micro-

bial culture isolated from 4940-meter-deep sediments in the Atlantic Ocean at 50 MPa com-

pared to the same culture incubated at ambient pressure (0.1 MPa). Grossi et al. [23]

conversely, found no inhibitory effect of pressure on the growth and hexadecane consump-

tion of piezotolerant, alkane-degrading Marinobacter hydrocarbonoclasticus strain #5 at 35

MPa. While 15 MPa slightly inhibited Rhodococcus qingshengii TUHH-12 growth on n-hexa-

decane, it completely halted Sphingobium yanoikuyae B1 growth on naphthalene [25]. In

the first experimental study of the effect of pressure on oil degradation using environmental

samples containing mixed microbial assemblages, Prince, Nash, and Hill [26] found that

crude oil biodegradation by a surface water inoculum was 33% slower at 15 MPa than at sur-

face pressure (0.1 MPa).

The expansion of oil exploration and production to deeper marine environments

increases the likelihood of deep-sea oil spills. However, laboratory studies of the effect of

pressure on hydrocarbon biodegradation have only focused on the fate of individual oil

model compounds (e.g., hexadecane and naphthalene) or of crude oil in the water column.

Biodegradation occurring in the water column, however, might not represent that in sedi-

ments, owing to potential differences between the two systems such as microbial concentra-

tion and access to hydrocarbon substrates. In this work, we investigated the rate and extent

of crude oil biodegradation in sediments from the Northern GOM, collected at water depths

from 62–1520 m, with a specific focus on the role of pressure. We approximated in-situ

temperatures and pressures of sediments in 18-day incubation experiments with crude oil

and examined changes in gas chromatography (GC)—amenable hydrocarbons. This is the

first comparative study of crude oil biodegradation by indigenous microbes in sediments

under deep and shallow marine conditions, designed to assess the potential for natural

attenuation of spilled oil in GOM sediments.
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Materials and methods

Incubation experiments

Thirteen sediment cores were collected in the Northern Gulf of Mexico (GOM) at water

depths ranging from 62 to 1520 m, using a multicorer (Ocean Instruments MC-800) deployed

from the R/V WeatherBird II ship, in August 2014. Sampling area spanned from 28˚49’36” N

to 29˚53’56” N and from 86˚17’40” W to 89˚30’48” W (Fig 1, Table 1). Field area was not on

any private land, no permissions were required for collecting sediment cores at these sites and

this study did not involve endangered or protected species. Approximately 0.2 g of coretop (0–

4 mm) sediment from each site were amended with 5 μL autoclaved sweet Louisiana crude, a

Macondo oil surrogate, and 5 mL of minimal mineral medium following DSMZ methanogen-

ium medium 141 recipe [25, 27] and vortexed. Incubation conditions approximated in-situ

physical environments of the sediments: pressure ranged from 0.1 to 15 MPa and temperatures

were 4, 10, and 20˚C. For each sediment site, we incubated oil-amended sediment in duplicate,

with a parallel control of un-amended sediment. An oil-amended control was frozen to -20˚C

immediately after shaking and was used to determine the initial extractable oil composition.

Sediments were incubated at pressures ranging from 0.1 to 15.3 MPa, selected in order to

approximate in situ pressures for the sample (Table 1). Incubation vials in > 0.1 MPa experi-

ments were placed in stainless steel reactors that were capped with bronze lids and pressurized

with nitrogen gas [28]. Incubation vials in ambient pressure experiments (0.1 MPa) were

placed in equivalent aluminum reactors. In addition, to further explore the effects of pressure,

Fig 1. Map of sampling sites. Locations of 13 sampling sites across the Northern Gulf of Mexico at water depth ranging from 60–1520m. Circles are

color-coded representing total organic content (TOC, percent weight of sediments). Schlitzer, R., Ocean Data View, http://odv.awi.de, 2016.

https://doi.org/10.1371/journal.pone.0199784.g001
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three deep sediment samples were incubated both at high pressures (9.4, 11.1, and 15.3 MPa)

and at 0.1 MPa and 4˚C. Because core-top sediments were relatively well-oxygenated in situ
(Table 1), all experiments were carried out under aerobic conditions. Incubation vials were

stirred at 200 rpm with magnets to keep oxygen, sediments, and nutrients well-mixed over the

course of the incubation period. Experiments were stopped after 18 days and frozen at -20˚C

until analysis.

Organic extraction and analysis

Total organic content (TOC) of core-top sediments was measured as weight percent carbon of

sediment using a Leco C/S-744 analyzer after sediments were treated with hydrochloric acid

1N to remove inorganic carbon. Incubation vials were centrifuged to separate aqueous and

solid phases in order to measure the water fraction and sediment-associated oil components.

Any visible oil on vial walls after decanting was recovered with additional sea water medium

and transferred to the water fraction (WAF). For each sample, both phases were extracted with

an azeotrope of dichloromethane and methanol (in a proportion of 9:1 by volume) three

times. Liquid phases (~5 mL) were extracted with a total of 15 mL, while sediments (~ 0.2 g)

were extracted with a total volume of 10 mL solvent. Organic extracts were separated into

Table 1. Physical conditions of sediment sites and laboratory incubation conditions. (CTD: conductivity-temperature-depth device, P: pressure, T: temperature).

Site Water

depth (m)

Latitude Longitude CTD bottom

water T (˚C)

CTD bottom

water oxygen

(μmol/kg)

Incubation P

initial (MPa)

Incubation P

final (MPa)

Incubation T

(˚C)

Comments

SL1240 62 28

49.592

89 30.796 20.71 129.26 0.1 0.1 20 Incubation conditions

approximated in situ pressure

and temperature conditionsPCB03 96 29

53.935

86 17.68 18.33 126.77 0.1 0.1 20

SL980 150 29

17.513

88 02.512 16.08 118.28 2.5 2.5 20

SL7150 196 29

35.231

86 22.84 10.91 111.6 1.9 1.8 10

SL1460 212 29

27.348

87 26.994 18.28 126.69 2.5 2.1 20

SL8100 226 29

42.428

87 11.338 11.04 109.52 1.9 1.9 10

SL9150 251 29

14.957

87 59.750 11.12 118.76 2.5 2.3 10

MC04 399 29 18.44 86 40.495 9.42 112.55 4.0 3.6 10

MC06 595 29 5.013 86 54.871 7.26 124.08 5.8 5.4 4

PCB09 981 28

51.548

87 12.888 5.22 165.33 10.5 9.4 4

PCB06 1008 29

07.371

87 15.928 5.18 165.86 9.4 8.7 4

DSH08 1127 29

07.378

87 52.091 4.83 176.5 11.1 10.5 4

DSH10 1520 28

58.687

87 53.438 5.07 169.4 15.28 14.08 4

PCB06 1008 29

07.371

87 15.928 5.18 165.86 0.1 0.1 4 Ambient pressure replicates of

the three deepest sites

DSH08 1127 29

07.378

87 52.091 4.83 176.5 0.1 0.1 4

DSH10 1520 28

58.687

87 53.438 5.07 169.4 0.1 0.1 4

https://doi.org/10.1371/journal.pone.0199784.t001
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aliphatic, aromatic, and polar fractions by silica gel chromatography using 100% n-hexane, n-

hexane and dichloromethane (4:1, v/v), and dichloromethane and methanol (4:1, v/v)), respec-

tively, as eluents (S1 Fig). The aliphatic and aromatic fractions, represented in the first and sec-

ond eluted fractions, were analyzed on a Trace 1310 gas chromatography (GC) coupled to an

ISQ LT single quad mass spectrometer (MS) (Thermo Scientific) (S1 Appendix). Polycyclic

aromatic hydrocarbons (PAHs) in the aromatic fraction were further characterized on an Agi-

lent HP 6890 GC coupled to a HP 5973 mass selective detector in selected ion monitoring

(SIM) mode due to the higher peak resolution on this system (S1 and S2 Tables). N-alkane and

branched alkanes were quantified using an alkane standard mix of C7-C40 solution (Sigma-

Aldrich). Parent PAHs and their alkylated homologues were quantified using a standard mix

of 16 EPA priority PAH (Sigma-Aldrich) (S1 Appendix).

Biodegradation parameters

To characterize and quantify biodegradation effects on oil components, we normalized com-

pounds to internal biomarkers generally considered to be recalcitrant [29–31]. Aliphatic com-

pounds were normalized to 17α(H),21β(H)-hopane (C30 hopane, detected and quantified with

m/z 191) and aromatic compounds were normalized to C26 triaromatic sterane (C26 TAS,

detected and quantified with m/z 231), both of which were abundant in the amended oil. The

relative loss of different compound classes was calculated as following (t0 and tf are the initial

and final time points for the incubation):

Total n� alkane loss ð%Þ ¼ 1 �

P
n� alkane

C30 hopane

h i

tf

,

P
n� alkane

C30 hopane

h i

t0

2

6
4

3

7
5 � 100 ð1Þ

Total PAH loss ð%Þ ¼ 1 �

P
PAH

C26 TAS

h i

tf

,

P
PAH

C26 TAS

h i

t0

2

6
4

3

7
5 � 100 ð2Þ

We defined total n-alkanes as the sum of C15–40 n-alkanes and total PAH as the sum of all

PAHs analyzed (S1 Table). We also determined ratios of biomarker abundances that are com-

monly used in petroleum biodegradation studies such as C17 n-alkane/pristane, C18 n-alkane/

phytane, ∑C15–20 n-akane/∑C15–40 n-alkane, and isomer ratios of mono-methylated PAH [32].

Results and discussion

Biodegradation sequence

Compound loss patterns after incubation followed the canonical biodegradation sequence

[31–34] and were consistent with field data on Macondo oil degradation [15, 16]. The loss

sequence was governed by molecular weights and structures; short chain alkanes were

degraded to a greater extent than long chain alkanes (S2 Fig), and straight chain n-alkanes

were preferentially degraded over their saturated isoprenoid analogues (Fig 2). Long chain n-

alkanes up to C40 were degraded, suggesting that these long alkanes were more susceptible to

biodegradation than C30 hopane; these results contrast with those reported by Bagby et al.,

who used C40 n-alkane as conservative tracer due to its recalcitrance in biodegradation [16].

Total PAH decreased to a smaller extent than total n-alkanes, with the resistance to biodegra-

dation increased with the number of rings and the degree of alkylation. For instance, 3-ring

PAHs including phenanthrene and its alkylated homologues were depleted in most samples,

Pressure and crude oil biodegradation
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whereas 4-ring PAHs such as pyrene and chrysene were only slightly degraded in the most

degraded samples (S3 Fig).

We used C30 hopane and C26 TAS as conservative oil biomarkers in our analyses. Com-

pound groups such as hopanes, steranes, and TAS have been widely used as conservative trac-

ers for oil, based on the assumption that they are relatively recalcitrant [29–31]. However,

recent laboratory studies [35–37] and field data [15, 16] have shown that these compounds can

be more subject to biodegradation than previously thought. We justified the treatment of C30

hopane and C26 TAS as conservative tracers in our study for two reasons. First, our incubation

duration (18 days) was shorter than the time scales of hopane and sterane biodegradation

observed in the field [38] and experimentally. Homohopane biodegradation in laboratory

experiments was reported to begin after 3–5 weeks at 30˚C [35–36], while no degradation of

TAS occurred over 21 days of oil incubation at 37˚C [39]. Second, our experiments showed no

change in ratios of R/S isomers of homohopane series (S2 Appendix), as is usually observed

during biodegradation of these biomarkers [40–43].

Fig 2. Chromatograms of crude oil biodegradation. Examples of total ion chromatograms of oil extract (normalized to C30 hopane) from two extremes of

biodegradation at different water depths (nC17 = C17 n-alkane, nC18 = C18 n-alkane, Pr = Pristane, Phy = Phytane).

https://doi.org/10.1371/journal.pone.0199784.g002

Pressure and crude oil biodegradation

PLOS ONE | https://doi.org/10.1371/journal.pone.0199784 July 3, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0199784.g002
https://doi.org/10.1371/journal.pone.0199784


Alkane degradation and pressure inhibitory effect

After 18 days, total n-alkanes were depleted in all samples. The percent loss of total alkanes

ranged from 40% to 100%, and samples incubated at lower pressures (< 5 MPa) had more

than 80% alkane depletion. Replicate incubations exhibited a small range of variability, with

standard deviations from 0.03 to 5% (S3 Table). The extent of biodegradation was greater at

shallower sites than at deeper sites (p< 0.05, one tailed t-test, Figs 2 and 3A, Table 2). Degra-

dation of oil in both sediment and water fractions were relatively similar at each site. For all

samples incubated at higher pressures (i.e., from 5.8 to 15 MPa, at 4˚C), total n-alkane loss was

inversely proportional to pressure (r2 > 0.85). This linear relationship represents ~ 4%

decrease in the rate of alkane loss via biodegradation per 1 MPa increase, assuming simple first

order kinetics (Fig 3B). The rate of n-alkane loss was slowest in samples incubated at 15 MPa,

and ~ 36% less than in their counterparts incubated at 0.1 MPa and ~ 55% slower than samples

incubated at 0.1 to 2.5 MPa from other sediment sites.

We calculated mean half-lives (assuming a first-order rate law) for total n-alkane to be ~ 21

days at 15.3 MPa, and ~ 9 days at 0.1–2.5 MPa. Our results are consistent with those of Prince,

Nash, and Hill [26] who observed a 33% reduction in degradation rate at 15 MPa compared to

0.1 MPa, using a water column inoculum amended with 3 ppm oil. We also found inverse rela-

tionships between loss via biodegradation and water depth for other aliphatic compounds,

including cyclohexanes, pristane, and phytane (S4 and S5 Figs).

PAH degradation

Overall, total PAH concentrations decreased as much as 60% after incubations, and standard

deviations averaged 19% between replicates from each site (S3 Table). There was no significant

difference between shallow and deep sediments (p> 0.05, one tailed t-test, Table 2). Sediments

from the shallowest water depths (incubated at 0.1 MPa) only exhibited limited PAH biodegrada-

tion. Samples incubated at 2.5 MPa showed the greatest extent of PAH depletion, consistent with

having the greatest n-alkanes degradation. High pressure samples (9.4–15 MPa) also showed

decreases in total PAHs, though to a smaller extent than at 2.5MPa. Depletion of total PAHs at 15

MPa (~ 35%) was comparable to PAH depletion in samples incubated at 2.5 MPa. This was sur-

prising since the 15 MPa sample showed the least n-alkane depletion. This led us to consider the

potential for an experimental artifact due to loss of volatile compounds during sample decom-

pression following the incubation period. Indeed, when this is accounted for, we observed a

trend toward greater PAH loss at lower pressures (Fig 4A and S6 Fig). To estimate the effect of

off-gassing, we used ratios of methylated homologues of phenanthrene (MP), fluorene (MF), and

dibenzothiophene (MDBT). Biodegradation of hydrocarbons is often isomer-specific. Isomers

may share similar physicochemical properties yet be more or less susceptible to biodegradation

[34, 44–46], possibly due to enzyme specificity or steric considerations. At low pressures (2.5

MPa), samples with high levels of preferential degradation of certain methylated PAH isomers

was consistent with previous published studies. For instance, we detected a decrease in the ratio

of 1-MP/9-MP in degraded samples at 2.5 MPa, which is consistent with 9-methylphenanthrene

(9-MP) being the most resistant to microbial oxidation among all MP isomers [47]. In contrast,

this ratio remained relatively constant in 15 MPa samples, indicating both compounds, which

have similar vapor pressures, were loss during de-gassing to the same extent. Similar consistency

of ratios was observed for (2-MDBT+3-MDBT)/(1-MDBT+4-MDBT) and 4-MF/1-MF (Fig 4B).

Attributing all PAH loss at 15 MPa (~ 35%) to off-gassing, we calculated that off-gassing only

accounted for a maximum of ~ 3.5% loss in total n-alkane depletion at 15 MPa (out of a total loss

of ~ 42%) (S3 Appendix). Thus, we concluded that biodegradation was indeed the major cause

for n-alkane depletion at 15 MPa.
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Factors controlling biodegradation

Even before anthropogenic influence, the GOM seafloor was subject to petroleum input via

natural seeps (average of 140,000 tons of petroleum annually) [48], which have likely been

active over millions of years. Continued exposure may have primed GOM microbial

Fig 3. Total n-alkane degradation. Depletion of total n-alkane (%) after 18 days of incubation in both water fraction (WAF,

triangles) and sediment fraction (SED, circles), the dashed arrow is interpreted as the direction of increasing biodegradation

extent: A, All samples: Initial total n-alkanes are represented by squares. Samples are color-coded according to sampling

water depths and B, Inhibitory effect of pressure on n-alkane biodegradation at 4˚C. Error bars represent one standard

deviations from the means.

https://doi.org/10.1371/journal.pone.0199784.g003
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communities to develop the capability to readily degrade hydrocarbons. Prior exposure to

hydrocarbons could accelerate biodegradation, as a memory response [49]. We speculated that

our sediments were previously exposed to oil, based on the presence of background oil hydro-

carbons including n-alkanes and C30 hopane (S4 Appendix). In fact, several sites are within the

area impacted by Macondo oil, including the three deepest water sites (DSH08, DSH10, and

PCB06) [2, 16, 50]. This might explain the promptness in degrading oil of the GOM sediments

seen in our study.

The level of hydrocarbon contamination in sediments has been proposed to influence rates

of biodegradation [16, 51, 52]. In our study, oil amendment led to an average concentration of

1.1 μg C30-hopane/g sediment (S5 Appendix). This equates to a state of “heavy oil contamina-

tion” as defined by Valentine et al. (2014), who used a threshold of>750 ng/g in GOM sedi-

ments [2]. Samples at 2.5 MPa showed extensive biodegradation (~100% ∑n-alkanes, ~60%

∑PAHs depletion after 18 days) despite having similar heavy contamination level as deep sites,

suggesting that contamination level was not a direct inhibitory factor, and that other factors

such as nutrient and oxygen concentration, and microbial community composition might be

more important rate-limiting forces.

There are inevitable challenges in isolating the effect of pressure on biodegradation. In pre-

vious studies of pressure effects, single inocula were incubated under both high and low pres-

sure; either sea surface inocula were introduced to high pressure [26] or piezotolerant strains

were placed in ambient pressure [19, 20]. Introducing microbes to non-native conditions can

impact their growth and carbon utilization [53–55]. In this study, we attempted to minimize

this concern by comparing the hydrocarbon-degrading capacity of native sediment communi-

ties under approximated in-situ conditions (although our sediments were exposed to surface

conditions for a period after sampling). Given possible compromising factors deep-sea micro-

bial communities encountered during sampling and experimental setup, we recognize that our

results may provide a conservative estimation of biodegradation at high pressure.

To better understand the impact incubation under non-native conditions might have, we

incubated three deep GOM sediments at both in situ seafloor (9.4–15 MPa) and atmospheric

pressure. Hydrocarbon degradation in these high and low pressure treatments of the same sed-

iments appeared to be stochastic. The DSH10 sample showed more extensive n-alkane biodeg-

radation at surface pressure (0.1 MPa) than at seafloor pressure (15 MPa), consistent with an

inhibitory effect of pressure. Conversely, the DSH08 sediment showed much less n-alkane deg-

radation at surface pressure than at seafloor pressure (11 MPa). The PCB06 sample, however,

showed virtually no difference in biodegradation between surface and seafloor pressure (9.4

MPa) treatments (Table 3). The absence of a clear trend in this subset of our data may be the

result of pressure-induced perturbation in sediment community. We conclude that, until tech-

nology for in-situ deep sea incubation [56, 57] or pressure-retaining sampling [58, 59]

becomes more widely available, the best practice for hydrocarbon biodegradation studies is to

incubate samples under conditions simulating their native, in-situ environments.

Table 2. Comparison in biodegradation of n-alkanes and PAHs between shallow (< 500 m) and deep (> 500 m) sediments.

Group by depth n-alkane–SED (%) n-alkane–WAF (%) PAH–SED (%) PAH–WAF (%)

< 500 m 91.4 ± 5.1 73.6 ± 14.6 33.5 ± 25 29.8 ± 15.8

> 500 m 62.4 ± 12.5 45.6 ± 17.4 34.5 ± 19.9 27.4 ± 9.1

t-test p value 0.00007 0.001 0.92 0.64

Mean ± one standard deviation of depletion percent in total n-alkane and total PAH, and p values for one tailed t-tests with significant level α = 0.05 (SED: sediment

fraction, WAF: water fraction).

https://doi.org/10.1371/journal.pone.0199784.t002
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Fig 4. PAH degradation. Depletion of total PAH (%) of crude oil in sediment fraction (SED, circles) at after 18 days of incubation. The

dashed arrow is interpreted as the direction of increasing biodegradation extent. A, All samples: Initial total PAHs are represented by squares.

Samples are color-coded according to sampling water depths. Depletion in deep water samples are possibly due to off-gassing effect. B,

Distinguishing biodegradation from off-gassing, using different isomer ratios of methylated-PAHs (MF: methyl fluorene m/z 180; MD:

methyldibenzothiophene m/z 198; MP: methylphenanthrene m/z 192). Samples are color coded by pressures (MPa). Error bars represent one

standard deviations from the means.

https://doi.org/10.1371/journal.pone.0199784.g004
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Conclusions

Our study assessed the rate and nature of oil biodegradation across the Northern GOM at a

wide water depth range (60–1520 m), representing a range of shallow water to approximately

the depth of DWH spill. All sediments were found to degrade oil. Piezotolerant microbial cul-

tures at pressure up to 15 MPa demonstrated their capability to degrade oil, suggesting a high

potential for natural attenuation of spilled oil. Under optimal nutrients and oxygen availability,

as provided here, we predict that it would take a minimum of 42 days for complete n-alkane

degradation at 15 MPa, compared to average of 19 days at shallow sites (0.1–2.5 MPa), assum-

ing first order kinetics. Our study focused on the early, oxic biodegradation of GC-amenable

oil, after 18 days of incubation. However, we expect that if the experiments were left to run lon-

ger on the scale of months or years with sufficient oxygen and nutrient supply, biodegradation

could extend to other compound classes such as>4-ring PAHs and biomarkers (e.g., hopanes,

steranes). Although pressure alone was not a major inhibitor of biodegradation in our experi-

mental range, the expansion of oil exploration to deeper waters (e.g., 5000 m) opens the risk of

spills at conditions at which pressure might have a more significant effect.
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