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Abstract: Understanding the cellular and molecular basis of selective vulnerability has been
challenging, especially for motor neuron diseases. Developing drugs that improve the health
of neurons that display selective vulnerability relies on in vivo cell-based models and quantitative
readout measures that translate to patient outcome. We initially developed and characterized
UCHL1-eGFP mice, in which motor neurons are labeled with eGFP that is stable and long-lasting.
By crossing UCHL1-eGFP to amyotrophic lateral sclerosis (ALS) disease models, we generated ALS
mouse models with fluorescently labeled motor neurons. Their examination over time began to reveal
the cellular basis of selective vulnerability even within the related motor neuron pools. Accumulation
of misfolded SOD1 protein both in the corticospinal and spinal motor neurons over time correlated
with the timing and extent of degeneration. This further proved simultaneous degeneration of both
upper and lower motor neurons, and the requirement to consider both upper and lower motor neuron
populations in drug discovery efforts. Demonstration of the direct correlation between misfolded
SOD1 accumulation and motor neuron degeneration in both cortex and spinal cord is important for
building cell-based assays in vivo. Our report sets the stage for shifting focus from mice to diseased
neurons for drug discovery efforts, especially for motor neuron diseases.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a motor disease characterized by the loss of upper and
lower motor neurons. However, not all motor neurons are vulnerable to degeneration to the same
extent in ALS. For example, large fast fatigable (FF) alpha spinal motor neurons (SMN) are the most
vulnerable and the small slow-twitch fatigue-resistant (S) alpha SMN and gamma SMN that innervate
the intrafusal fibers are more resistant to degeneration [1–7]. Likewise, not all corticospinal motor
neurons (CSMN) degenerate to the same extent even at the end-stage. The reason for this varying
degree of vulnerability and resistance to degeneration is not fully understood. Misfolded proteins
are a hallmark of neurodegenerative diseases [8,9] including ALS [10,11]. Toxic gain of function of
mutated misfolded SOD1 protein has been one of the most-widely studied underlying causes of
ALS [7], but even today we do not know why different motor neuron pools display a wide range of
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degeneration in disease. Understanding the basis of selective vulnerability even within motor neuron
pools would be instrumental for building treatment strategies. In addition, it can be used as criteria
for an outcome measure in drug discovery studies, which are designed to monitor motor neuron
survival upon compound treatment. Therefore, revealing a potential correlation between misfolded
SOD1 accumulation and motor neuron degeneration, both in the cortex and in the spinal cord, is an
important task that has not yet been fully addressed.

Misfolded SOD1 protein can be detected in the SMN in the ventral horn of the hSOD1G93A mouse
spinal cord as early as postnatal day seven (P7) [12–15]. Several misfolded SOD1 antibodies such as
A5C3, B8H10, and D3H5, show that misfolded SOD1 colocalizes with choline acetyltransferase positive
(ChAT+) SMN [16], allowing investigation, monitoring, and quantitative assessment of SMN that have
misfolded SOD1 accumulated in their cytoplasm. In addition, misfolded SOD1 is restricted to large
cell bodies of SMN between P30 and P85, after which intense punctate mSOD1 aggregates localized in
contiguous processes and in the neuropil throughout the spinal cord with very few discernable cell
bodies as the disease progresses [12].

CSMN degenerate together with SMN in ALS, and CSMN are crucial for the initiation and
modulation of voluntary movement. Investigating CSMN is challenging mostly because they are
very few in numbers and they are embedded within the complex and heterogeneous structure of
the motor cortex [17,18]. However, effective and long-term treatment strategies need to incorporate
strategies that monitor and assess their response to treatment. Previous studies have shown that in the
primary motor cortex, about 40% of layer 5 neurons were reported to contain misfolded SOD1 even at
P20 [19]. It is thus important to investigate the presence of a potential correlation between misfolded
SOD1 accumulation and CSMN vulnerability and degeneration, as this information can be utilized to
assess the potency of compound treatments, especially for upper motor neurons in ALS and other
related diseases.

In an effort to visualize motor neurons, we recently generated UCHL1-eGFP reporter mice, in
which CSMN in the motor cortex and a subset of SMN in the spinal cord are genetically labeled with
eGFP expression that is stable and long-lasting [20]. When hSOD1G93A mice—the golden standard
for ALS drug discovery efforts for the past 15 years—are crossed with UCHL1-eGFP reporter mice to
generate hSOD1G93A-UeGFP ALS reporter mouse model, a significant reduction in the number CSMN
was observed, but in the spinal cord, eGFP expression was restricted mostly to S and gamma SMN
resistant to degeneration in ALS for unknown reasons [20].

In this study, we investigate the presence of a direct correlation between misfolded SOD1
accumulation and motor neuron vulnerability in both cortex and spinal cord throughout the disease.
This information reveals one of the underlying causes of selective vulnerability even within the same
motor neuron pools. Most importantly, it also lays a foundation for future drug discovery efforts,
which utilize improved motor neuron survival as an outcome measure.

2. Materials and Methods

2.1. Mice

All animal procedures were approved by the Northwestern University Animal Care and Use
committee on November 1st 2018 (Protocol: IS00009980) and comply with the standards of the National
Institutes of Health. Northwestern University has an Animal Welfare Assurance on file with the
Office of Laboratory Animal Welfare (A3283-01). Transgenic hemizygous males expressing high
copy number of the human SOD1 gene with the G93A mutation (B6SJL-Tg(SOD1*G93A)1Gur/J; The
Jackson Laboratory) were bred to hemizygous UCHL1-eGFP (C57BL/6-Tg(Uchl1-EGFP)G1Phoz/J;
The Jackson Laboratory) females to generate hSOD1G93A-UeGFP and WT-UeGFP (control) mice as
described previously [20]. Transgenic mice were identified by PCR amplification of DNA extracted
from tail as previously described [20,21]. In this study, WT-UeGFP (n = 11) and hSOD1G93A-UeGFP
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(n = 15) mice of either sex were used. Mice at P30 (presymptomatic), P60 (early symptomatic), P90
(symptomatic), and P140 (end-stage) were used for analysis. All mice were on the C57BL/6 background.

2.2. Histology

Adult mice were deeply anesthetized using ketamine (90 mg/kg) with xylazine (10 mg/kg), and
transcardially perfused with 4% PFA in PBS. The brains and spinal cords were removed intact and
post-fixed (4% PFA, overnight) and stored in PBS with sodium azide (0.01%) at 4 ◦C. Sections were
cut in coronal (50 µm) planes using a vibratome (Leica, Buffalo Grove, IL, USA) and collected in
6-well plates.

2.3. Immunocytochemistry and Cellular Staining

Antibodies used are as follows: anti-misfolded SOD1 (1:200, Clone B8H10, MediMabs; Montreal,
Quebec, Canada), anti-GFP (1:500, Thermo Scientific, Waltham, MA, USA). Briefly, sections were
treated with blocking solution (PBS, 0.05% BSA, 2% FBS, 1% Triton X-100, and 0.1% saponin) for 30 min
followed by incubation with primary antibody solution diluted in blocking solution overnight at 4 ◦C.
Appropriate secondary fluorescent antibodies (1:500, AlexaFluor-488 or AlexaFluor-647 conjugated,
Invitrogen, Waltham, MA, USA) were added to the blocking solution at room temperature for 2 h in
the dark. All samples were subjected to the immunofluorescent staining at the same time using the
same antibody cocktail.

2.4. Imaging

Low-magnification images were acquired using an Eclipse TE2000-E (Nikon Instruments Inc.,
Melville, NY, USA) for qualitative analysis of GFP expression patterns at different ages. An LSM880
(Carl Zeiss Microscopy LLC., White Plains, NY, USA) was used to image and collect Z-stack images
of the motor cortex at P30, P60, P90, and P140. Confocal images were captured on multiple sessions
with the same pinhole and laser settings so that image intensities would be the same for each image.
Z-stacks were processed to generate maximum intensity projections.

2.5. Data Collection and Analysis

The number of CSMN that included misfolded SOD1 (eGFP+ and B8H10+ neurons) in the 25X oil
field of view of primary motor cortex of hSOD1G93A-UeGFP mice were quantified (n = 94 to 161 neurons
per mouse, P30: n = 3 mice; P60: n = 4 mice; P90: n = 4 mice, and P140: n = 4 mice). The average
percentage of CSMN that included misfolded SOD1 was determined based on these quantifications. In
WT mice, none of the CSMN included misfolded SOD1. Likewise, the number of cells that are not
CSMN [eGFP negative (eGFP-)] and that contain misfolded SOD1 (B8H10+) were also quantified in
layer 5 of the motor cortex. The average percentage of the non-CSMN cells that contain misfolded
SOD1 protein was reported; the mean and standard error of mean (S.E.M.) was also determined. Please
refer to Table 1.

Table 1. Quantification of neurons containing misfolded SOD1 in primary motor cortex.

Age Number of
Mice

Total
Number of

Neurons

Average %
of

Non-CSMN
with

Misfolded
SOD1

S.E.M.

Average %
of CSMN

with
Misfolded

SOD1

S.E.M.

P30 3 452 64.68% 2.98% 78.52% 5.40%
P60 4 485 58.81% 1.10% 90.29% 1.05%
P90 4 579 60.08% 2.36% 86.06% 2.74%
P140 4 575 52.41% 2.40% 86.37% 6.74%
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Statistical analysis was performed using Prism (GraphPad, San Diego, CA, USA). Ordinary
one-way ANOVA with Tukey’s multiple comparisons test was used to determine adjusted p values.

3. Results

3.1. Misfolded SOD1 Is Expressed mainly in Layer 5 of the Motor Cortex and Colocalizes with Diseased CSMN

hSOD1G93A-UeGFP mice were previously generated by crossing hSOD1G93A with UCHL1-eGFP
mice (Figure 1a) after CSMN identity of eGFP+ neurons in layer 5 of the motor cortex were confirmed
and the numbers of GFP+ CSMN were significantly reduced with disease progression starting at
P90 [20]. CSMN in hSOD1G93A-UeGFP mice recapitulated the progressive degeneration observed
in the hSOD1G93A mice. However, it was not clear whether the accumulation of misfolded SOD1
contributed to CSMN death. CSMN are identified by their expression of eGFP (Figure 1b,c). Their soma
is located in layer 5 of the motor cortex and apical dendrite project to the top layers. Misfolded SOD1
antibody B8H10 is specific for labeling not all forms of SOD1, but only the misfolded form [12,13,16,22],
allowing us to assess the correlation between the presence of misfolded SOD1 and motor neuron loss
in the cortex and the spinal cord. There was no B8H10 signal, and thus no misfolded SOD1 protein in
the brains of WT-UeGFP control mice at any age investigated in this study (Figure 1b and Figure S1).
In striking contrast, misfolded SOD1 was present in the cortex, the brightest signal observed especially
in layer 5, and most co-localized with diseased CSMN of hSOD1G93A-UeGFP mice (Figure 1c).
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SOD1 was not detected (Figure 2a). However, misfolded SOD1 protein was present in eGFP+ CSMN 
as early as P30 (Figure 2b) before disease onset, and continued to be present at P60 (Figure 2c; early 
symptomatic), P90 (Figure 2d; symptomatic), and at P140 (Figure 2e; end-stage). Higher 
magnification and confocal imaging confirmed that low levels of misfolded SOD1 were also present 
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Figure 1. Generation of hSOD1G93A-UeGFP amyotrophic lateral sclerosis (ALS) reporter mouse model
and detection of misfolded SOD1 protein. (a) hSOD1G93A-UeGFP mice were generated by breeding
hSOD1G93A male mice carrying high copy number of human SOD1 protein with a point mutation at
position 93 with female UCHL1-eGFP reporter mice that label corticospinal motor neurons (CSMN)
with eGFP expression; (b,c) B8H10 antibody detects misfolded human SOD1 protein in the primary
motor cortex of hSOD1G93A-UeGFP (c) but not WT-UeGFP (b) mice. Misfolded SOD1 signal is the
brightest in layer 5 where GFP+ CSMN are located. Scale bar, 250 µm.

In an effort to investigate whether diseased CSMN express misfolded SOD1, we studied the motor
cortex of hSOD1G93A-UeGFP mice at P30, P60, P90, and P140. In WT-UeGFP mice, misfolded SOD1
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was not detected (Figure 2a). However, misfolded SOD1 protein was present in eGFP+ CSMN as
early as P30 (Figure 2b) before disease onset, and continued to be present at P60 (Figure 2c; early
symptomatic), P90 (Figure 2d; symptomatic), and at P140 (Figure 2e; end-stage). Higher magnification
and confocal imaging confirmed that low levels of misfolded SOD1 were also present in other cells that
are not CSMN (eGFP-; P30: 64.68% ± 2.98%; P60: 58.81% ± 1.1%; P90: 60.08% ± 2.36%; P140 52.41% ±
2.40%). However, most CSMN soma included comparable and high levels of misfolded SOD1 at all
ages investigated without statistical significance among ages (P30: 78.52% ± 5.40%; P60: 90.29% ±
1.05%; P90: 86.06% ± 2.74%; P140: 86.37% ± 6.74%), and the intensity of expression increased with
disease severity (Table 1).Cells 2020, 9, x FOR PEER REVIEW 6 of 14 
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Figure 2. Misfolded SOD1 protein in the primary motor cortex. (a) B8H10 antibody does not detect
any misfolded SOD1 protein in the primary motor cortex of WT-UeGFP control mice; (b–e) misfolded
SOD1 protein can be detected in the primary motor cortex of hSOD1G93A-UeGFP mice by the B8H10
antibody at P30 (b), P60 (c), P90 (d), and P140 (e). Boxed areas enlarged in the right panels. Scale bar,
250 µm (left, low mag) and 50 µm (right, high mag).
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3.2. Misfolded SOD1 Protein Is Detected Primarily in Vulnerable and Degenerating SMN

In the spinal cord of UCHL1-eGFP mice, initially, all SMN are labeled by eGFP expression,
but by P30, the expression becomes restricted to a subset of small diameter ChAT+ SMN that are
more resistant to neurodegeneration [20]. The lack of eGFP expression in the large diameter SMN
that are selectively more vulnerable to degeneration in hSOD1G93A-UeGFP mice was puzzling [20].
In an effort to investigate a potential correlation between the presence of misfolded SOD1, eGFP
expression and vulnerability state of SMN, we investigated the presence of misfolded SOD1 in the
SMN of hSOD1G93A-UeGFP mice at P30, P60, P90, and P140. Misfolded SOD1 was not detected in
the spinal cords of WT-UeGFP mice between P30 and P140 (Figure 3a and Figure S2). However,
ChAT+ SMN in the ventral horn of hSOD1G93A-UeGFP mice included misfolded SOD1 as early as P30
(Figure 3b). Interestingly GFP+ SMN were immunopositive for ChAT, but not misfolded SOD1 protein
(Figure 3b arrows).Cells 2020, 9, x FOR PEER REVIEW 7 of 14 
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Figure 3. Misfolded SOD1 protein in the ventral horn of the lumbar spinal cord. (a) No B8H10 signal is
detected in the spinal cord of WT-UeGFP control mice; (b) misfolded SOD1 protein can be detected in
the lumbar spinal cord of hSOD1G93A-UeGFP mice by the B8H10 antibody in ChAT+ SMN. Arrows
point to eGFP+ ChAT+ SMN without a misfolded SOD1 signal. Boxed areas enlarged in the panels
below. Scale bar, 100 µm (top, low mag) and 50 µm (bottom, high mag).

The detailed analyses over time (Figure 4) further revealed that misfolded SOD1 was not present
in all neurons or cells at the same level, and its intensity increased with disease progression especially in
the large alpha SMN that are most vulnerable to degeneration. The misfolded SOD1 was not detected
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in the spinal cord of WT-eGFP mice (Figure 4a), but low levels of expression became present as early as
P30 in the spinal cord of hSOD1G93A-UeGFP mice (Figure 4b). As the disease progressed with age, the
intensity of misfolded SOD1 expression increased mainly in the large size SMN, which among all other
SMN, become vulnerable very early and display the fastest rate of degeneration [1–7]. In contrast,
the eGFP+ SMN in the hSOD1G93A-UeGFP mice, which are degeneration resistant, were devoid of
misfolded SOD1 at P30 (Figure 4b), P60 (Figure 4c), P90 (Figure 4d), and even at P140 (Figure 4e).Cells 2020, 9, x FOR PEER REVIEW 8 of 14 
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Figure 4. Misfolded SOD1 protein in the ventral horn of the lumbar spinal cord. (a) There is no
misfolded SOD1 protein in the spinal cord of WT-UeGFP control mice; (b–e) misfolded SOD1 protein are
detected in the lumbar spinal cord of hSOD1G93A-UeGFP mice by the B8H10 antibody and degeneration
resistant eGFP+ SMN do not have misfolded SOD1 at P30 (b), P60 (c), P90 (d), and P140 (e). Boxed
areas enlarged in the right panels. Scale bar, 100 µm (left, low mag) and 50 µm (right, high mag).

4. Discussion

ALS is characterized by selective vulnerability and degeneration of motor neurons both in the
cortex and spinal cord [23–26]. In the brain, the upper motor neurons, which are called Betz cells
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in patients and CSMN in mice, display selective vulnerability and progressive degeneration [20,27].
Interestingly, in the spinal cord, not all SMN display equal vulnerability and some remain resistant
to degeneration. There appears to be a progressive line of degeneration among different subsets of
SMN, where S alpha SMN displays initial signs of degeneration, followed by FR and FF remain mostly
resistant [20,28–32]. Differentiating vulnerable and degeneration-resistant neurons in a reporter line
is of great importance to monitor and assess their responses to compound treatment strategies. It
is also important to understand why some motor neurons are more resistant to degeneration than
others. This information can be used to modulate other degeneration prone neurons so that they also
become resistant.

Mutant SOD1 protein was previously shown to form a misfolded form that has the gain of toxic
function, leading to selective degeneration especially in motor neurons. However, even though the
mutant SOD1 gene is expressed in all cells and neurons, it was not clear why motor neurons display
primary vulnerability. Even though the differential vulnerability of different subtypes of SMN to
degeneration in motor neuron diseases is well established [1–7], the molecular mechanisms underlying
the basis of selective vulnerability is beginning to emerge. Therefore, being able to detect misfolded
proteins gain attention.

There are numerous antibodies available that recognize various epitopes of the SOD1 protein [33,34].
The antibody used in this study, mouse monoclonal B8H10 antibody, recognizes the exon3 of the SOD1
protein encoding the loop IV in the 3D structure [34,35], and does not immunoprecipitate WT SOD1
protein [36]. In the spinal cord of hSOD1G93A mice, B8H10 antibody shows a similar pattern compared
to A5C3 and D3H5 antibodies with misfolded SOD1 protein being detected in motor neurons between
P30 and P85, after which all three antibodies detect punctate structures within the neuropil in addition
to SMN, and at the end-stage of the disease, only punctate aggregates are detectable throughout the
spinal cord [12]. Our findings in the spinal cord using the B8H10 antibody is in agreement with this and
other reports of misfolded SOD1 protein accumulation in SMN [12–16]. There has been only one report
of misfolded SOD1 protein accumulation in layer 5 neurons in the cortex so far using the same antibody
as in our study [19]. Based on the similarity of staining pattern in the spinal cord using different
antibodies, it is expected to observe a similar pattern in the motor cortex with different commercially
available antibodies as well, but it would be interesting to see if antibodies with differential selectivity
for different isotypes of SOD1 protein might yield novel insights into selective vulnerability of CSMN
in ALS mouse models.

There have been reports of misfolded SOD1 pathology detected in sporadic ALS cases using
conformation-specific antibodies selective for misfolded SOD1 protein species [37], as well as the
absence of misfolded SOD1 in sporadic ALS [38]. In light of the prion-like properties of SOD1
protein [11], the potential contribution of misfolded WT SOD1 protein to ALS pathogenesis and
neurotoxicity becomes an interesting topic [36,39]. Both the loss of native SOD1 post-translational
modifications and the introduction of aberrant post-translational modifications can induce misfolding
of WT SOD1 protein, which can be toxic and mimic the fALS-linked mutant SOD1 [36].

Misfolded SOD1 protein has been detected in a subpopulation of alpha SMN at P7 but not
earlier in the hSOD1G93A mouse spinal cord [13]. At P60, ~50% of SMN had misfolded SOD1,
which were identified as FF alpha SMN by retrograde labeling [13]. By P90, misfolded SOD1 was
detected in ~80% of SMN, including both FF and FR alpha SMN subtypes [40]. In hSOD1G93A mice,
larger vulnerable SMN undergo a reduction in dendritic length and dendritic spine loss starting as
early as P30 before disease onset [41]. Enhancing SMN excitability reduced the misfolded SOD1
load and provided neuroprotection, whereas reducing excitability augmented SOD1 misfolding and
accelerated disease [13]. Coimmunoprecipitation experiments using the B8H10 antibody identified
Na+/K+ATPase-α3 as a binding partner of misfolded but not WT SOD1 protein, reducing its activity
and modulating the excitability of vulnerable FF SMN [42]. Recently, E3 ubiquitin ligase TRAF6 has
been identified as another binding partner of misfolded but not WT SOD1, which might underlie the
accumulation of misfolded SOD1 protein in vulnerable neurons [43].
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Vulnerable SMN were shown to be selectively prone to ER stress [3]. An ER chaperone SIL1 which
highly expressed disease-resistant SMN, but is selectively reduced in vulnerable FF SMN [44]. Loss of
Sil1 in SMN with misfolded SOD1 accumulation makes them vulnerable to neurodegeneration [44].
A calcium-binding ER chaperone calreticulin is reduced in SMN vulnerable to ALS [45], and further
reduction of calreticulin levels by breeding hSOD1G93A mice with hemizygous calreticulin mutant mice
accelerated disease onset and progression [40]. Expression of mir 17~92 was reduced in vulnerable
SMN prior to disease onset in hSOD1G93A mice, and gene therapy using AAV-mediated intrathecal
mir 17~92 delivery improved motor function and survival [46]. Misfolded SOD1 protein binds to the
cytoplasmic surface of mitochondria in SMN, and disrupts the normal mitochondria size, shape, and
distribution [47]. Enhancing mitochondrial calcium buffering capacity by deleting cyclophilin D, a key
regulator of the opening of the mitochondrial permeability transition pore, reduced misfolded SOD1
levels by 80% in the symptomatic stage of hSOD1G93A mouse spinal cord [48]. Failed homeostasis
theory of mitochondrial function was previously suggested and dysregulation of respiration, oxidation,
and calcium balance could indeed be one of the key contributors to selective vulnerability [49]. In
summary, even though we consider SMN as one neuron pool, it contains many different kinds of SMN
with different targets, firing potentials, activities, and even molecular signature. So, it should not be
surprising that they display different levels of vulnerability in diseases. It is interesting that some SMN
do not have misfolded SOD1 and those survive longer. Some SMN have very high levels of misfolded
SOD1 and they seem to be affected very early in the disease.

Delivery of SPD1 shRNA using AAV vectors in hSOD1G37R mice reduces levels of misfolded
SOD1 protein in the ventral horn of the lumbar spinal cord by ~90%, rescues the alpha SMN numbers
and motor function [22]. Matrix metalloproteinase MMP-9 is selectively expressed in fast SMN [50],
whereas extracellular matrix protein Osteopontin is selectively expressed in ALS-resistant SMN [51].
Similarly, several strategies are now underway to silence the expression of mutant SOD1 as a therapeutic
strategy [22,52–62]. Based on our findings, there is indeed a direct correlation between the presence of
misfolded SOD1 and neuronal vulnerability in the spinal cord. The eGFP+ SMN that were degeneration
resistant were the ones that lacked misfolded SOD1 expression, and other especially large alpha motor
neurons, which displayed very high levels of misfolded SOD1 were the most vulnerable. Therefore,
reducing the levels of misfolded SOD1 could indeed be a therapeutic target for the spinal motor neurons.

However, for the upper motor neurons in the motor cortex, the presence of misfolded SOD1 was
evident as early as P30 and was persistent until the end-stage. Interestingly the percent average of
CSMN that included misfolded SOD1 was relatively comparable throughout. This could be because
the percentage of CSMN that degenerate could be similar to the percentage of CSMN that begin to
accumulate misfolded SOD1, and thus the overall percentage of CSMN with misfolded SOD1 protein
may appear stable at different disease stages. It is important to note that misfolded SOD1 expression
was primarily restricted to layer 5, and was not detected in other layers of the motor cortex at any time
point. Interestingly, some non-CSMN neurons in layer 5 of the motor cortex also expressed misfolded
SOD1, albeit their percentages were much lower than that of CSMN. Therefore, reducing misfolded
SOD1 in the cortex would also be beneficial for CSMN and potentially for the overall motor neuron
circuitry. Being able to detect differences as early as P30 and having almost stable levels throughout
offers great advantages for investigating the impact of compound treatment within a wider window of
opportunity in vivo.

As the drug discovery efforts are accelerating for motor neuron diseases, including ALS, the need
for a reporter line that labels degeneration-resistant SMN is of great importance because the overall
goal of compound treatment is to investigate whether the SMN become resistant to degeneration
and whether their overall numbers will remain constant or increase. We have previously shown that
UCHL1-eGFP reporter mice label a subset of small diameter SMN resistant to neurodegeneration
in the hSOD1G93A-UeGFP ALS reporter mouse model [20]. Now, we show that after disease onset,
misfolded SOD1 protein highly and selectively accumulates in large diameter SMN most vulnerable to
neurodegeneration, whereas misfolded SOD1 protein seems to be excluded from the ALS-resistant
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GFP+ SMN in hSOD1G93A-UeGFP ALS reporter mouse model. This finding not only reveals why
CSMN and large alpha motor neurons display vulnerability in ALS, but also allows the development of
an in vivo platform for the assessment of compound treatment in ALS, and other related motor neuron
diseases. If the compounds are effective in protecting motor neurons from degeneration, they will
continue to express eGFP, allowing quantitative assessment of compound treatment on motor neuron
survival. This has been a major disconnect between compound treatment and the improvement of
neuron health. In its absence, the motor behavior of mice was used as an outcome measure, which
did not translate well in clinical trials, as more than 30 clinical trials failed even though they showed
improved behavior in ALS mouse models. Therefore, being able to visualize motor neurons both in the
cortex and in the spinal cord of the same reporter line for the disease, enable direct cellular assessment
for the efficacy of compound treatment.

5. Conclusions

These are exciting times for drug discovery efforts for ALS and other motor neuron diseases. To
expedite clinical trials and to increase their success rates, we need to build and characterize tools that
can be utilized to assess motor neuron survival upon compound treatment at a cellular level both in the
cortex and in the spinal cord. Having both CSMN and SMN labeled in the same reporter line, for the
first time, enables investigation of both the upper and the lower motor neuron survival simultaneously.
Here, we show that the SMN which do not have misfolded SOD1 remain resistant to degeneration
and are eGFP+ in the spinal cord, and this offers a unique opportunity especially for drug discovery
efforts, as the overall goal is to reduce toxicity and increase the numbers of neurons that are resistant
to degeneration.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/2/502/s1,
Figure S1: Misfolded SOD1 protein is not detected in the cortex of WT-UeGFP reporter mouse, Figure S2: Misfolded
SOD1 protein is not detected in the spinal cord of WT-UeGFP reporter mouse.
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