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Abstract: Intensive antiretroviral therapy successfully suppresses viral replication but is unable to eradicate the virus. 

HIV persists in a small number of resting memory T cells where HIV has been transcriptionally silenced. This review will 

focus on recent insights into the HIV transcriptional control mechanisms that provide the biochemical basis for 

understanding latency. There are no specific repressors of HIV transcription encoded by the virus, instead latency arises 

when the regulatory feedback mechanism driven by HIV Tat expression is disrupted. Small changes in transcriptional 

initiation, induced by epigenetic silencing, lead to profound restrictions in Tat levels and force the entry of proviruses into 

latency. In resting memory T cells, which carry the bulk of the latent viral pool, additional restrictions, especially the 

limiting cellular levels of the essential Tat cofactor P-TEFb and the transcription initiation factors NF- B and NFAT 

ensure that the provirus remains silenced unless the host cell is activated. The detailed understanding of HIV transcription 

is providing a framework for devising new therapeutic strategies designed to purge the latent viral pool. Importantly, the 

recognition that there are multiple restrictions imposed on latent proviruses suggest that proviral reactivation will not be 

achieved when only a single reactivation step is targeted and that any optimal activation strategy will require both removal 

of epigenetic blocks and the activation of P-TEFb. 
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 Even with an intensive regimen of highly active 
antiretroviral therapy (HAART), HIV infections persist 
throughout the lifetimes of patients due to the existence of a 
latent reservoir of virus in peripheral blood and lymphoid 
tissues. Latent HIV proviruses quickly resume active 
replication when HAART is interrupted [1-3]. Although it is 
difficult to exclude the possibility that slowly replicating 
virus persists in sanctuary sites which are poorly accessed by 
the antiviral drugs, genetic and biochemical evidence 
strongly suggests that the major latent viral reservoir resides 
in a very small population of resting memory CD4 T cells 
(~1 in 10

6
 cells)[1,2, 4-16]. The residual virus recovered 

from treated patients [17], and the rebounding virus 
recovered during the short treatment interruptions [18], have 
much less sequence heterogeneity than would be expected 
for a viral population replicating at low levels. 

 Eliminating the latent reservoir is particularly 
challenging since the reservoir is established early during 
infection [9], is extremely stable, with an estimated half-life 
of 44 months [8], and can be replenished during episodes of 
viremia [19] or by homeostatic replacement of latently 
infected cells [13]. Since intensification of antiviral regimens 
has essentially no impact on eradicating the latent pool from 
the infected host [4], there is a pressing need to devise novel 
strategies that specifically target the latent reservoirs of 
replication-competent HIV [20, 21]. Once reactivated, the 
viral reservoirs can in principle be purged by antiviral 
immune responses, viral cytopathic effects, or even 
intensified antiretroviral therapy. 
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 The molecular studies of HIV latency that we will review 
in this article have demonstrated that a complex combination 
of cellular events that suppress both the initiation of HIV 
transcription and its productive elongation are required for 
the establishment of latent proviruses. The multiple 
restrictions imposed on latent proviruses that need to be 
overcome suggest that efficient proviral reactivation will be 
achieved only if there is the simultaneous removal of 
multiple blocks to transcription initiation and elongation. 
Therefore, the development of molecular strategies to 
eradicate latent reservoirs of HIV demands an improved 
understanding of the molecular mechanisms controlling its 
transcriptional silencing and viral reactivation. 

ORGANIZATION OF THE HIV PROMOTER 

 HIV-1, in common with all other retroviruses uses its 
long terminal repeat (LTR) as the viral promoter (Fig. 1). 
The HIV-1 promoter is a powerful and highly optimized 
transcription machine comprised of three tandem SP1 
binding sites [22], an efficient TATA element [23] and a 
highly active initiator sequence [24]. Each of these elements 
participates in the co-operative binding of the initiation 
factor TFIID and its associated TAF co-factors to the TATA 
element [25] (Fig. 2). As a result, the HIV-1 LTR is one of 
the most efficient promoters that has ever been studied and it 
is capable of supporting even higher levels of transcription 
than the adenovirus major late promoter or the CMV 
immediate early promoter. 

 Transcription initiation from the HIV LTR is highly 
inducible. In addition to the core promoter, HIV-1 utilizes a 
signal-responsive "enhancer region" which contains two NF-

B binding motifs [26]. Members of both the NF- B family 
[27] and NFAT [28] can bind to the HIV-1 NF- B motifs. 
Because their recognition sequences overlap, binding of 
these factors is mutually exclusive [29, 30]. However,  
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Fig. (1). Autoregulation of HIV transcription by Tat. Left panels: Efficient transcription elongation from the HIV LTR is dependent upon 

Tat. Small changes in initiation efficiency, due to transcriptional interference or epigenetic silencing, reduce Tat levels in the cell and 

disproportionately inhibit transcription, driving the HIV provirus into latency. Re-initiation stimulates Tat production and restores full 

transcription efficiency. Right panels: Recognition of TAR RNA by Tat and P-TEFb. The red bases in TAR are recognized by Tat in the 

TAR bulge region, and by CycT1 in the TAR loop region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Chromatin control of HIV transcription. The structure of the HIV promoter and flanking nucleosomes is shown in the center. 

Proviral reactivation depends upon recruitment of histone acetyltransferases that are recruited to the HIV LTR following induction of NF- B 

(or NFAT). The histone acetyltransferases in turn recruit the SWI/SNF chromatin remodeling machinery. This acts to remodel the restrictive 

nucleosome 1 (Nuc-1). During epigenetic silencing histone deacetylases are recruited to the promoter via DNA-binding molecules, including 

CBF-1 and YY1. The deacetylated proviral chromatin becomes a target for additional silencing via recruitment of the polycomb repressive 

complex-2 (PRC2) which mediates histone methylation and DNA methylation. In certain circumstances PRC2 can recruit PRC1 leading to 

further repression of the provirus. 
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binding of NF- B is more efficient than NFAT since it is 
enhanced by cooperative interactions with Sp1 [31]. 
Although mutation of the NF- B sites results in only a 
modest inhibition of virus growth in most transformed cell 
lines [32], signaling through the viral enhancer is essential in 
order to re-activate latent proviruses and support virus 
replication in primary T-cells, regardless of whether it is 
stimulated by NF- B or by NFAT [33-37]. 

ELONGATION CONTROL OF HIV TRANSCRIPT-

ION BY TAT 

 The HIV promoter is distinct from cellular promoters 
because it is highly dependent upon the viral trans-activator 
protein Tat. The first evidence that HIV transcription is 
dependent upon a viral factor came from experiments by 
Sodroski et al. [38, 39] who noted that the expression of 
reporter genes placed under the control of the viral long 
terminal repeat (LTR) was dependent upon a trans-activating 
factor (Tat) present in HIV-infected cells. Deletion analysis 
of the viral LTR showed that Tat activity required the 
transactivation-responsive region (TAR), a regulatory 
element located downstream of the initiation site for 
transcription between nucleotides +1 and +59 (Fig. 1). The 
interactions between Tat and TAR are direct: Dingwall et al. 
[40-41] demonstrated that Tat is able to specifically 
recognize TAR RNA and mapped its recognition site to a U-
rich bulge near the apex of the TAR RNA stem. Detailed 
analysis of Tat’s interactions with TAR RNA by NMR 
subsequently revealed that Tat recognition of TAR requires 
conformational changes in the RNA structure involving the 
displacement of the first residue in the bulge (U23) by one of 
the arginine side chains present in the basic binding domain 
of the Tat protein to create a binding pocket together with 
the adjacent G26:C39 base pair [42-45]. 

P-TEFB IS AN ESSENTIAL COFACTOR FOR TAT 

MEDIATED TRANSCRIPTIONAL ELONGATION 

 The use of a transcribed RNA element to regulate HIV 
transcription suggested that Tat might be regulating HIV-1 
transcriptional elongation, rather than transcriptional 
initiation. Early RNase protection experiments by Kao et al. 
[46] demonstrated that in the absence of Tat, the majority of 
RNA polymerases initiating transcription stall near the 
promoter, whereas in the presence of Tat there is a dramatic 
increase in the density of RNA polymerases found 
downstream of the promoter. Promoter proximal pausing has 
now been recognized as a common feature of many cellular 
genes, but at the time of the initial discovery in HIV it was 
unprecedented [47-50]. 

 A 10-year long search for cellular cofactors required for 
Tat activity culminated with the identification of the 
elongation factor P-TEFb in 1997 [51-52]. P-TEFb was 
originally identified as global transcription elongation factor 
that was selectively inhibited by an ATP analog, DRB  
(5,6-Dichlorobenzimidazole 1- -D-ribofuranoside)without 
directly blocking RNA polymerase II (RNAP II) activity 
[53,54]. Since DRB also selectively blocks the ability of Tat 
to stimulate productive elongation, it was proposed that the 
elongation activity of Tat on the proviral DNA has to be 
mediated by a DRB-sensitive host elongation factor [55]. 

Subsequently Herrmann and Rice used HIV Tat as bait to 
affinity purify a DRB-sensitive Tat-associated kinase (TAK) 
from HeLa nuclear extracts which could hyperphosphorylate 
the C-terminal domain of the large subunit RNAP II [56]. 
TAK was unequivocally identified as P-TEFb when Zhu et 
al. [52] cloned and identified the kinase subunit, CDK9 [53, 
57]. Simultaneously, a set of novel CDK9 protein kinase 
inhibitors were shown be selective inhibitors of HIV-1 
transcription [51]. 

 In parallel, the search for cellular factors capable of 
interacting with TAR RNA also pointed to P-TEFb as a 
critical co-factor for Tat activation of elongation. Wei et al., 
[58] discovered that P-TEFb contains a cyclin component, 
CycT1, which can form a stable complex with CDK9, Tat 
and TAR RNA. Crucially, for a putative Tat co-factor, 
complex formation between Tat, P-TEFb and TAR requires 
both the Tat binding site and the essential TAR RNA loop 
sequence. 

 After these seminal biochemical observations, persuasive 
genetic evidence demonstrated that CycT1 is essential for 
Tat activity. The murine CycT1 sequence differs from the 
human sequence by a single substitution of cysteine 261 for 
tyrosine and is unable to interact with HIV-1 Tat. 
Introduction of Y261 into the human CycT1 blocked HIV-1 
transactivation in transfected cells whereas, conversely, 
introduction of C261 into the murine CycT1 restored Tat-
mediated transactivation [59-62]. 

 Human cyclin T1 (hCycT1) has been shown to be the 
only form of cyclin T that is co-opted by Tat to mediate 
efficient elongation of HIV [63]. hCycT1 forms the 
regulatory subunit in a majority of cellular P-TEFb [52, 63], 
however, as described below, resting T cells can survive 
when CycT1 levels are absent because they can utilize the 
homologous cyclin T2a and T2b subunits to sustain 
transcription. 

 Finally, in an illuminating paper, culminating over 2 
decades of research on P-TEFb by David Price and his 
colleagues, the crystal structure of a Tat:pTEFb complex was 
determined in 2010 [64]. The structure shows that Tat forms 
extensive contacts both with the CycT1 subunit of P-TEFb 
and also with the T-loop of the Cdk9 subunit (Fig. 1). 

CONTROL OF TRANSCRIPTION ELONGATION BY 

TAT 

 There is no specific host repressor that directs a provirus 
to become latent. Instead, the switch between productive 
transcription and latency is due to the manipulation of the 
powerful feedback mechanism fueled by Tat (Fig. 1). In the 
absence of Tat latently infected cells carry paused 
transcription complexes near their promoters and accumulate 
short transcripts that terminate shortly after TAR RNA [65-
67]. The promoter-proximal pausing events that need to be 
overcome by Tat thus represent a critical rate-limiting step in 
the productive synthesis of HIV mRNA synthesis that is a 
characteristic of the latent state of the provirus. The detailed 
transactivation mechanism involves a complex set of 
phosphorylation events mediated by the Tat-activated P-
TEFb that modify both positive and negative cellular 
elongation factors (Fig. 3). 



Molecular Regulation of HIV-1latency Current HIV Research, 2011, Vol. 9, No. 8    557 

 Like all cellular genes, HIV transcription initiation is 
triggered by the phosphorylation of the C-terminal domain 
(CTD) of the large subunit of RNAP II by the CDK7 subunit 
of TFIIH at Ser-5 residues of the heptad repeat sequence [68-
69]. The nascent transcription complex is able transcribe 
through the 59-nucleotide TAR RNA hairpin structure 
before pausing is induced by the negative host elongation 
factors (NELF) and the DRB sensitivity-inducing factor 
(DSIF) [70-73]. The Tat/P-TEFb complex cooperatively 
binds to the nascent TAR RNA bringing the CDK9 kinase of 
P-TEFb into proximity of the paused RNAP II complex [58, 
74]. 

 The binding of Tat to P-TEFb induces significant 
conformational changes in CDK9 that constitutively activate 
the enzyme [58, 64, 68] and permit it to extensively 
phosphorylate multiple proteins in the transcriptional 
elongation complex. Phosphorylation of the NELF-E subunit 
by P-TEFb forces dissociation of NELF from TAR and 
releases paused transcription elongation complexes [73, 75-
76]. Cell-free transcription studies have shown that Tat:P-
TEFb also hyperphosphorylates the RNAP II CTD during 
elongation [68, 77]. This reaction creates a novel form of the 
RNA polymerase that is highly enriched for phosphorylated 
Ser-2 residues in the CTD and has enhanced processivity 
[77-78]. Finally, P-TEFb is also able to extensively 
phosphorylate Spt5, a subunit of DSIF, which carries a CTD 
homologous to the RNAP II CTD [79-81]. Although the 
unmodified DSIF inhibits elongation [76], phosphorylation 
of Spt5 separates it from the rest of the complex and 
converts it into a positive elongation factor that stabilizes 
transcription complexes at terminator sequences [79, 82]. 
Both cell-free and chromatin immunoprecipitation studies 
have demonstrated that the Tat: P-TEFb complex forms a 
stable interaction with the RNAP II elongation machinery 
suggesting that it facilitates transcription elongation at 
multiple sites along the proviral genome [77, 79, 83-84]. 
Thus, Tat and P-TEFb are able to stimulate HIV-1 
transcription both through the removal of blocks to 
elongation imposed by NELF and DSIF and by the 

enhancement of RNAP II processivity through the 
phosphorylation of Spt5 and the RNAP II CTD. 

 Recent proteomic studies have shown that in addition to 
P-TEFb, Tat also helps to direct the transcription factor 
ELL2 and co-activators belonging to the MLL-fusion protein 
family (AFF4, ENL, and AF9) to the HIV LTR as part of a 
so-called super elongation complex (SEC) [85-86]. RNAi 
knockdown of SEC components dramatically reduces Tat-
dependent HIV LTR-driven reporter gene expression, 
demonstrating a direct role for the SEC in HIV elongation 
[85-86]. In addition to facilitating the recruitment of the 
SEC, Tat can also stabilize the SEC complex by preventing 
the rapid proteasomal degradation of ELL2 [86]. Recently 
ENL and AF9 were shown to possess a YEATS domain that 
interacts with the PAF1 subunit of Polymerase-Associated 
Factor complex (PAFc) [87]. This additional interaction is 
likely to enhance SEC association with the promoter 
proximally paused RNAP II complex. 

 A poorly understood aspect of HIV transcriptional 
control is the coupling that occurs between transcriptional 
elongation, the regulation of splicing, polyadenylation and 
RNA export. Evidence that the splicing-associated c-Ski-
interacting protein, SKIP, activates both Tat transactivation 
and HIV-1 splicing provides an intriguing insight into how 
these diverse events may be coordinated [88]. Furthermore, 
P-TEFb kinase activity has been shown to be important in 
controlling splicing and 3’-end processing of pre-mRNA 
transcripts [89-92]. In addition the CDK11 kinase, which is 
related to CDK9, has been recently implicated in control of 
HIV transcription and processing. Valenti et al. [93] found 
that HIV-1 expression is potently inhibited by set of factors 
that includes eIF3f, the SR protein 9G8, and CDK11, all of 
which contribute to HIV mRNA 3’ end processing. Finally 
the CDK13 kinase has been implicated in the regulation of 
HIV splicing [94]. Thus, in common with cellular genes, 
HIV may employ a series of CDK kinases that traverse the 
genome along with the elongation complex and orchestrate 
pausing, splicing and termination events by differentially 
phosphorylating the RNAP II CTD [95]. 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Activation of HIV transcription elongation by Tat and P-TEFb. In latent proviruses transcription elongation is very inefficient 

due to absence of the transcription elongation factor NF- B as well as chromatin restrictions. Initiation is strongly induced by NF- B, which 

acts primarily to remove chromatin restrictions near the promoter through recruitment of histone acetyltransferases and chromatin 

remodeling factors. After the transcription through the TAR element, both NELF and the Tat/P-TEFb complex (including CDK9 and CycT1 

and the accessory elongation ELL2 complex) are recruited to the elongation complex via binding interactions with TAR RNA. This activates 

the CDK9 kinase and leads to hyperphosphorylation of the CTD of RNA polymerase II, Spt5 and NELF-E. The phosphorylation of NELF-E 

leads to its release. The presence of hyperphosphorylated RNAP II and Spt5 allows enhanced transcription of the full HIV genome. 
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POSITIVE FEEDBACK CONTROL OF HIV TRANS-
CRIPTION BY TAT DETERMINES PROVIRAL 

LATENCY 

 The strong amplification of transcription stimulated by 
Tat, coupled with the disproportionate decline in 
transcription that ensues when Tat levels become restricted, 
gives the HIV promoter a “bipolar” character: in the absence 
of Tat transcription is more restricted than from a typical 
cellular promoter, whereas in the presence of Tat, the 
activated complex produces unprecedented levels of viral 
transcripts. Insightful studies by Weinberger et al. [96-98] 
and Burnett et al. [99] have emphasized how stochastic 
fluctuations in Tat gene expression can act as a molecular 
switch forcing the virus into a Tat-dependent “on state” or a 
Tat-independent “off state”. 

 An important consequence of the bipolar character of the 
HIV promoter is that small changes in initiation rates are 
sufficient to restrict Tat production and lead to enhanced 
rates of viral entry into latency (Fig. 1). This switching 
mechanism crucially depends on the auto-regulation and 
activity of Tat. The introduction of mutations into the NF- B 
and Sp1 binding sites, which reduce initiation [99], and 
mutations that attenuate Tat activity both lead to an increased 
frequency of viruses entering latency [100]. Similarly, 
viruses recovered from the latently-infected CD4

+
 T cells of 

patients are enriched for HIV-1 Tat variants with impaired 
transactivation activity [101]. The importance of the 
feedback mechanism is demonstrated by the observation that 
expression of Tat in trans from an ectopic promoter, results 
in constitutive activation of HIV proviruses that are unable 
to enter latency [100]. Similarly, changes in the cellular 
environment that restrict transcription initiation are able to 
reduce Tat availability and force the virus into latency, but 
the virus remains poised to resume its replication in response 
to triggers that stimulate transcription initiation and restore 
Tat levels. Because of the Tat feedback mechanism, when 
latently infected cells are partially activated, intermediate 
viral expression levels are rarely observed. Instead, the 
subset of cells that is able to produce Tat becomes fully 
activated, while the subset of cells that fails to achieve 
threshold levels of Tat reverts to a silenced state. 

 HIV latency can therefore be thought of as a consequence 
of changes in the cellular environment that lead to reduced 
Tat levels. At the chromatin level, epigenetic silencing is 
used to restrict HIV transcription initiation. In addition, 
several features of the metabolism of resting CD4

+ 
T cells 

are critical for the establishment of latency. First, resting 
cells lack the co-activating factors NF- B or NFAT. 
Induction of either transcription factor by drugs, or by T-cell 
receptor activation, provides a powerful signal leading to the 
resumption of transcription by latent HIV proviruses. 
Secondly, reductions in the level the P-TEFb component 
CycT1 and sequestration of the P-TEFb complex by the 
HEXIM/7SK RNA complex also appear to restrict HIV 
transcription in resting lymphocytes. In addition to these 
mechanisms, it has also been suggested that HIV mRNA 
export is impaired in resting T cells, posing a further barrier 
to expression of provirus in resting cells. Below we describe 
these key mechanisms used to limit transcription initiation 
and Tat-mediated transcription elongation in latently infected 
cells. 

EPIGENETIC MECHANISMS THAT LIMIT HIV 

TRANSCRIPTION INITIATION 

 HIV integrates into the host genome preferentially within 
actively transcribed intronic regions [102-104]. Following 
integration a highly ordered nucleosomal structure is 
assembled surrounding the promoter [105-107]. These 
nucleosomal structures, especially nucleosome 1 (Nuc-1), 
which is positioned around the transcription start site and is 
therefore able to block RNAP II initiation [105], play a 
crucial role in regulating HIV transcription and contribute to 
the transcriptional silencing of the provirus by serving as 
targets for epigenetic modifications (Fig. 2). Latent HIV 
proviruses are subject to a wide range of epigenetic silencing 
mechanisms including restrictions imposed by deacetylated 
histones [108], methylated histones [109-111] and DNA 
methylation [112-113]. 

 The first epigenetic modification of HIV that was 
identified was the repression of HIV transcription by the 
recruitment of histone deacetylases (HDACs). In a series of 
elegant mechanistic studies Margolis and colleagues have 
detailed how the cooperative binding of LSF and YY-1 to 
the LTR mediates the recruitment of HDAC1 to the Nuc-1 
region of the LTR and identified HDACs as critical 
repressors of HIV transcription [108, 114-116]. 
Subsequently several additional cellular proteins have been 
identified that can enhance HDAC recruitment to the HIV 
provirus. Williams et al. [117] found that p50 subunits of 
NF- B are constitutively bound to the NF- B element at the 
LTR of the latent proviral DNA. NF- B p50 homodimer 
occupancy of the LTR mediated the recruitment of HDAC1 
leading to HIV repression. This is reversed by displacement 
of the homodimer by the p65/p50 heterodimer following 
TNF-  stimulation. HDACs can also be recruited to the HIV 
LTR by CBF-1, a key regulator of the Notch signaling 
pathway [35, 118]. Knockdown of CBF-1 by shRNA 
stimulates the partial reactivation of viral expression that is 
associated with disappearance of HDAC1 from the LTR, 
enhanced acetylation of Nuc-1 at histone H3, and improved 
RNAP II recruitment [118]. In a primary CD4 T cell model 
of HIV latency, CBF-1 and its associated co-factors CIR and 
mSin3A are bound at the latent HIV LTR in conjunction 
with HDAC1 and other markers of restrictive chromatin that 
are removed upon reactivating these cells through the T-cell 
receptor [35]. 

 Latent HIV-1 proviruses also carry methylated histone 
H3 which has been either trimethylated on lysine 9 
(H3K9me3) or lysine 27 (H3K27me3) [100, 110, 111] or 
dimethylated on lysine 9 (H3K9me2) [119]. Each of these 
modified histones are considered to be repressive marks for 
cellular genes [120]. SUV39H1, which is the histone lysine 
methyltransferase (HKMT) responsible for synthesizing 
H3K9me3, has been implicated in maintaining HIV-1 
latency in microglial cells because of its interactions with 
CTIP-2 and HP1  [110-111]. In these systems, knockdown 
of either CTIP-2 or HP1  proteins led to activation of HIV-1. 
Similarly, Imai et al. [119] have proposed that the HKMT 
G9a, which is responsible for creating di-methyl H3K9, can 
also contribute to the maintenance of HIV-1 latency. Our 
laboratory has recently demonstrated that EZH2, the enzyme 
responsible for H3K27me3 formation is found at the 
promoter of latent HIV-1 proviruses in T-cells together with 
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the corresponding H3K27me3 [109]. Knockdown of EZH2 
with shRNA, or inhibition of EZH2 with chemical inhibitors, 
efficiently reactivates a significant portion of silenced 
proviruses. 

 In addition to its enzymatic activity, EZH2 acts as a 
structural component of the Polycomb Repressive Complex 
2 (PRC2). Many intriguing parallels between mechanisms 
associated with PRC2 silencing of genes during early 
development and HIV transcriptional control suggest that 
polycomb can be regarded as a central regulator of HIV 
epigenetic silencing. PRC2 can serve as a binding platform 
for multiple histone modifying and DNA modifying 
enzymes including DNA methyltransferase-1 (DNMT1) 
[121], the SWI/SNF component bromo-domain containing 
protein Brd7 [122], and histone deacetylases [123]. It seems 
likely that these additional components of the silencing 
machinery can also contribute to the development of HIV 
latency, and some of these factors have already been 
associated with HIV latency. For example, DNMT1 is 
known to mediate methylation of the HIV LTR and further 
enhance HIV-1 latency [112-113, 121]. PRC2 
characteristically targets genes that carry paused RNAP II 
and generate short RNA transcripts, analogously to the HIV 
provirus [124-125]. It is tempting to speculate that the short 
HIV transcripts containing TAR RNA facilitate the 
recruitment of PRC2 to the LTR. In addition, PRC2 
selectively targets genes that contain domains of 'bivalent' 
chromatin (genes carrying both the histone H3K4me3 and 
H3K27me37 markers) [126-127]. Similarly, we have 
recently found H3K4me3 is also associated with the HIV 
provirus, especially in the downstream Nuc-2 region 
(unpublished data). Finally, PRC2 is typically found at genes 
that are enriched in CpG islands [126] and HIV also carries 
CpG islands in its LTR which are subject to DNA 
methylation [112] and could contribute to PRC2 recruitment. 

 In contrast to developmentally-regulated cellular genes, 
where gene silencing is uniform, epigenetic silencing of 
HIV-1 results in complex and heterogeneous patterns of 
histone modifications and DNA methylation [100, 112-113, 
128]. Heterogeneity of epigenetic markers exists both 
between individual clones and, more surprisingly, within 
clonal populations that carry identical integrated proviruses 
[109, 112-113]. This epigenetic variation may provide an 
explanation for why certain subsets of silenced proviruses 
fail to get reactivated when cells are stimulated with 
exogenous signals and many of the drug candidates currently 
under evaluation. 

CONTROL OF LATENCY BY TRANSCRIPTIONAL 

INTERFERENCE 

 The observation that HIV integrates within highly active 
transcription units prompted investigations into whether 
latency arises because of transcriptional interference between 
the host promoter and the viral LTR. Lenasi et al. [129] 
showed that in latently infected Jurkat T-cell lines, host-
initiated transcripts terminated at the polyadenylation site in 
the 5’ LTR of the integrated proviruses. Similarly, Han et al. 
[130] showed in cell lines that were engineered to insert HIV 
proviruses in either orientation downstream of the HPRT 
gene, readthrough transcription inhibited HIV-1 gene 
expression for convergently orientated provirus but enhanced 

HIV-1 gene expression when HIV-1 was in the same 
orientation as the host gene. 

 Although transcriptional interference was clearly 
documented in several proviral clones, it remains unclear 
whether it is a primary cause of latency or a consequence of 
the insertion of a repressed provirus into an active gene. 
Duverger et al. [131] have argued that transcriptional 
interference leads to the “silent integration” of proviruses in 
the majority of latently infected cells. However, these 
experiments were designed to select for population of viruses 
that were subjected to immediate silencing events. By 
contrast, studies from our laboratory have shown that after 
the selection of cells that carry highly expressed viruses 
there is progressive silencing due to the imposition of 
epigenetic restrictions [35, 100, 109]. If transcriptional 
interference were the dominant mechanism driving HIV 
latency, then it might be expected that there is a strong 
orientation bias seen in latently infected cells. Shan et al. 
[103] observed a modest preference for integration in the 
same transcriptional orientation as the host gene (63.8% vs 
36.2%) which was not observed in acutely infected or 
persistently infected cells, suggesting that transcriptional 
interference can play an important role, but not an exclusive 
role, in establishing latency. 

 Recently Gallastegui et al. [132] used detailed RNA-PCR 
assays to analyze transcriptional interference. They found 
that HIV integration into an intron of a gene does not abolish 
expression of its normally spliced transcript and host gene 
expression was decreased when HIV was reactivated, the 
opposite of what would be expected from a model of 
transcriptional interference where host gene transcription 
prevents HIV transcription. A possible link between the 
observations that HIV chromatin structures are strongly 
repressive and transcriptional interference mechanisms 
comes from the observation that depletion of chromatin 
remodeling factors which can associate with elongating 
transcription complexes (e.g. Spt6, Chd1, and FACT, or the 
histone chaperones ASF1a and HIRA), promoted HIV 
reactivation concomitantly with chromatin relaxation and a 
decrease in general RNA polymerase activity [132]. 

SEQUESTRATION OF TRANSCRIPTION INITIAT-

ION FACTORS 

 The HIV promoter is exquisitely sensitive to the 
activation state of the infected cell. Activated CD4 T cells, 
which can be readily and productively infected with HIV, 
provide a suitable environment for efficient HIV 
transcription by expressing high nuclear levels of NF- B or 
NFAT and AP-1. By contrast, resting memory T cells are 
characterized by the cytoplasmic sequestration of NF- B, 
NFAT, and AP-1 which severely limits transcription 
initiation. TCR stimulation of resting T cells induces a 
complex cascade of pathways leading to the activation of 
NF- B through a protein kinase C-mediated pathway and 
NFAT through the Ca

+2
-calcineurin pathway. 

 NF- B binding to the HIV LTR triggers proviral 
reactivation by directing recruitment of the histone 
acetyltransferases (HATs) to the HIV LTR [133-136]. The 
acetylation of histones near the HIV promoter in turn 
provides a signal for the recruitment of the chromatin 



560    Current HIV Research, 2011, Vol. 9, No. 8 Mbonye and Karn 

remodeling complex BAF which activates transcription by 
displacing the nucleosome-1 (Nuc-1) which is positioned 
immediately downstream from the transcriptional start site 
[105-107, 137-139]. The recruitment of HATs may also help 
to stabilize NF- B on the viral promoter, since acetylation 
[140-141] and methylation [142] of the p65 subunit enhances 
its DNA binding affinity. NFAT also interacts with the HIV 
LTR via the NF- B binding sites. It seems likely that 
members of the NFAT family also serve to mediate HAT 
recruitment to the HIV-1 LTR since they are known to 
recruit the coactivators p300 and CBP to cellular genes 
[143]. 

 Although there has been a long standing controversy 
about whether NFAT [28, 34, 144] or NF- B [35-36, 145-
146] is the dominant factor mediating proviral reactivation in 
primary CD4

+
 T cells, it is now evident that multiple cellular 

pathways are able to independently reactivate latent HIV 
expression. In latently infected primary T cells derived from 
thymocytes both the PKC pathway leading to NF- B 
activation and the NFAT are able to stimulate virus 
expression [145]. TLR5 stimulation induces activation of 
NF- B and can reactivate latent HIV-1 in quiescent central 
memory CD4+ T cells [147]. Similarly, inducers of NF- B 
such as prostratin and HIV-1-reactivating protein factor 
(HRF) [146, 148-149] are potent inducers of latent HIV 
proviruses in resting memory T-cells. By contrast, in 
polarized T-cells generated in vitro, NFAT is clearly the 
exclusive activator of latent proviruses [34]. Thus both 
transcription factors can stimulate HIV initiation depending 
on the signaling pathways that have been activated. 
However, it is unlikely that both transcription factors can act 
simultaneously since structural studies have shown that both 
NF- Band NFAT assume unique, mutually exclusive, 
conformations upon binding the HIV LTR [29-30, 150-151]. 
 

REGULATION OF P-TEFB 

 In addition to the transcription initiation factors, P-TEFb 
is tightly regulated in latently infected T cells (Fig. 4). First, 

the expression of hCycT1 in resting CD4
+
 T cells is normally 

highly restricted. hCycT1 rapidly rise (within 1 h) upon 
activation of these cells with cytokines, protein kinase C 
agonists or through the T cell receptor [152-156]. Nuclear 
factor 90 (NF90), a cellular RNA binding protein, has been 
recently reported to be an essential factor required for cyclin 
T1 translation initiation which is upregulated in activated T-
cells [157]. Similarly, hCycT1 expression can barely be 
detected in undifferentiated monocytes due to a microRNA 
miR-198 that represses hCycT1 protein synthesis [158-159]. 
Monocyte differentiation into macrophages downregulates 
miR-198, thereby, permitting hCycT1 expression [158]. 

 There are two isoforms of CDK9 (CDK942 and CDK955) 
[160]. CDK955 differs structurally from CDK942 by 
harboring an N-terminal 117-residue extension and is 
synthesized by a promoter that is upstream of the promoter 
for CDK942 [160]. Both CDK942 and CDK955 appear to be 
expressed at similar levels in human peripheral blood 
lymphocytes [161] and both isoforms possess comparable 
kinase activity toward the C-terminal domain of the large 
subunit of RNAP II and can interact with Tat [160-161]. 
While the basal expression of CDK942 is significantly 
elevated after ~1-2 days exposure to activation signals there 
is a reciprocal decrease in the levels of CDK955 [156, 161]. 

 Recent X-ray structures of the P-TEFb heterodimer 
(CDK9/hCycT1) and the Tat tri-molecular complex 
(CDK9/hCyT1/Tat) [64] have now defined the interaction 
interfaces between each of the P-TEFb subunits and Tat (Fig. 
5). The association between CDK9 and hCycT1 triggers the 
phosphorylation of CDK9 at Thr-186 located within the 
flexible activation loop (T-loop) of the enzyme, which in 
turn induces its kinase activity [162]. Tat binds to the 
phosphorylated P-TEFb and adopts a partially helical 
secondary structure after forming Zn-coordinated 
interactions with hCycT1. The Tat/P-TEFb X-ray structure 
also revealed that the N-terminal region of Tat forms two 
intermolecular hydrogen bonds with the T-loop region of 
CDK9 [64]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Model for the activation of P-TEFb in resting CD4
+
 T cells. In resting CD4

+
 T cells the majority of the P-TEFb in cells there are 

only low levels of CycT1. Induction of the cells leads to new CycT1 synthesis and the assembly of the transcriptionally inactive 7SK snRNP 

complex containing 7SK RNA, HEXIM and the RNA binding proteins MePCE and LARP7. Tat disrupts this complex by displacing HEXIM 

and forming a stable complex with P-TEFb. Prior to recruitment to the transcription complex a larger complex is formed between P-TEFb 

and transcription elongation factors from the mixed lineage leukemia (MLL) family, including ELL2. 
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Fig. (5). The CDK9 “T-loop” forms a critical part of the 

interface between CDK9, CycT1 and Tat. In this structural model 

based on Tahirov et al. [64] the CDK9 backbone is shown in red, 

Tat is shown in purple and CycT1 is shown in green. The CDK9 T-

loop is highlighted in grey, with the critical phosphorylated T186 

residue shown as a side chain. The T-loop is a critical part of the 

interface between CDK9, CycT1 and Tat. It is believed that 

alterations in the T-loop geometry induced by post translational 

modifications and interactions between the three subunits regulates 

the enzymatic activity of CDK9. 

 T-loop phosphorylation of CDK9 is strictly required for 
P-TEFb molecules to be held within the 7SK snRNP 
complex; point mutations of Thr-186 that prevent T-loop 
phosphorylation (both T186A and the phospho-mimetic 
T186D) inhibit P-TEFb from associating with 7SK snRNA, 
HEXIM1, and LARP7 [163-164]. It is not entirely clear how 
CDK9/hCycT1 heterodimerization triggers T-loop 
phosphorylation of CDK9. Baumli et al. [162] have 
identified Thr-186 to be a potential autophosphorylation site 
based on mass spectrometry analysis of in vitro 
phosphorylated CDK9. However, a catalytically inactive 
D167N CDK9 mutant will not only heterodimerize with 
hCycT1 as efficiently as wild-type, but can also become 
incorporated into the 7SK snRNP complex [163]. 
Additionally, in vitro kinase and 7SK snRNP reconstitution 
assays performed by Zhou and colleagues using 
phosphatase-treated recombinant CDK9 as substrate and 
HeLa nuclear extracts as the source of kinase activity 
suggested that there is a novel, still unidentified, nuclear 
kinase that mediates Thr-186 phosphorylation [165]. It 
seems likely that both autophosphorylation and external 
kinases are used to control Thr-186 phosphorylation. 

 Basal T-loop phosphorylation of CDK9 is extremely low 
in resting CD4

+
 T-cells [153-154], and this further restricts 

P-TEFb activity. Concomitant to hCycT1 induction, T-loop 
phosphorylation is significantly elevated upon brief (within 1 
h) stimulation of these cells through the T-cell receptor. By 
contrast total cellular CDK9 levels are unchanged under 
these conditions [154]. 

 Transcriptional activity of P-TEFb in peripheral CD4 T 
cells is further controlled by its sequestration into the 7SK 
snRNP complex [166-167]. Within this complex 7SK 

snRNA interacts directly with P-TEFb and its inhibitory 
protein HEXIM1 and acts as a scaffold to hold the complex 
together [168-177]. This nuclear regulatory complex also 
comprises the 7SK snRNA 5’ capping enzyme MEPCE, and 
LARP7 which binds to the 3’ uridine-rich end of 7SK 
snRNA and protects it from degradation by nucleases [178-
180]. Although P-TEFb molecules that are held within 7SK 
snRNP are T-loop phosphorylated and therefore catalytically 
active [163], they are transcriptionally inactive because they 
are physically unable to be accessed by genes. Nevertheless, 
P-TEFb-containing 7SK snRNP has been found to be 
conveniently localized in nuclear speckles in very close 
proximity to C-terminal hyperphosphorylated RNAP II 
which would be considered to be a marker of active 
transcription [152]. A molecular signal or cue that would 
trigger disassembly of 7SK snRNP and release of P-TEFb is 
also likely to enable its recruitment to active genes. 
Therefore, the activation of P-TEFb in resting memory CD4 
T cells may require multiple steps involving reversing the 
restriction on hCycT1 expression, P-TEFb complex 
formation and T-loop phosphorylation of CDK9, the initial 
assembly of P-TEFb molecules into 7SK snRNP, 
relocalization of the inactive complex into nuclear speckles, 
and the mobilization of active P-TEFb toward 
transcriptionally active genes (Fig. 4). 

 The molecular mechanisms leading to the disassembly of 
7SK snRNP and mobilization of P-TEFb toward active genes 
are not well understood. The bromodomain-containing 
protein Brd4 is able to remove P-TEFb from the 7SK 
complex and by virtue of its high affinity interaction with 
acetylated chromatin, can recruit P-TEFb to active cellular 
genes [164, 176, 181-182]. Similarly, Tat has also been 
shown to directly mobilize P-TEFb from 7SK snRNP by 
outcompeting and physically displacing HEXIM1 from 
hCycT1 binding [174, 176]. These findings have led to a 
model that proposes that Tat and Brd4 extract P-TEFb from 
the inactive 7SK snRNP complex in a mutually exclusive 
manner. 

 It seems likely that post-translational modifications of 
components of the P-TEFb machinery mediate these 
mobilization events. Recently, we found that T-cell receptor 
(TCR) signaling in primary CD4 T lymphocytes and Jurkat 
T cells results in the immediate activation of transcription 
elongation from latent HIV proviruses, even at times when 
Tat levels are too low to sustain transcription elongation [35, 
84]. This early increase in elongation is due to the activation 
of P-TEFb by the disruption of 7SK snRNP through the ERK 
pathway. Natarajan et al. also reported that TCR signaling 
can enhance HIV transcription by stimulating P-TEFb 
dissociation from the RNP complex [183]. 

 In addition to this physiological pathway a variety of 
chemical inducers of HIV transcription appear to act by 
disrupting pTEFb. Zhou and colleagues [165] have reported 
that treatment of HeLa cells with UV irradiation or the drug 
HMBA induced 7SK snRNP complex disruption through the 
activation of two phosphatase enzymes via calcium 
signaling. According to their model, PP2B dephosphorylates 
HEXIM1 triggering a conformational change within the 
RNP that exposes the T-loop phosphate of Cdk9 to PP1 . 
Consequently, this sequential phosphatase activity 
disassembles the RNP complex. Finally Ott and colleagues 

T-loop
Tat

CDK9

CycT1
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[184] have found that the acetylation of hCycT1 by p300 in 
HeLa cells induces P-TEFb release from 7SK snRNP. 

 In summary, the data support the model for P-TEFb 
activation in resting T cells involving both assembly of the 
7SK snRNP complex and the subsequent mobilization of P-
TEFb by cellular signaling and Tat (Fig. 4). In the resting  
T cell there is relatively little P-TEFb assembled into active 
complexes or the 7SK snRNP complex, primarily because 
hCycT1 levels are limiting. After activation of the cells, 
hCycT1 rapidly rise due to new hCycT1 synthesis. The 
newly produced hCycT1 associates with pre-existing CDK9 
and stimulates autophosphorylation of the T-loop and 
assembly into the 7SK RNP complex. If signaling is 
sustained, post-translation modifications direct a fraction of 
the P-TEFb away from the 7SK snRNP complex where it 
can then bind to Brd4, or if HIV in present, to Tat, and 
stimulate transcription. 

RESTRICTION OF HIV RNA EXPORT 

 In addition to the mechanisms affecting transcription 
described above, post-transcriptional mechanisms may also 
make a contribution to latency. Using ultra-sensitive 
methods Lassen et al. [185-186] found that purified, primary 
CD4

+
 T cells derived from patients on HAART have low 

levels of full-length spliced and unspliced HIV-1 transcripts. 
Surprisingly both spliced and unspliced HIV-1 RNAs were 
found in the nucleus suggesting that there may be a block to 
nuclear mRNA export. This block to HIV-1 RNA export 
prevents translation of the viral regulatory proteins, thereby 
further reducing Tat and Rev levels, which contributes to the 
maintenance of latency. 

PROSPECTS FOR DRUG DISCOVERY 

 The most practical and effective approach to HIV 
eradication therapy will be based on small molecule inducers 
of latent viruses since this type of therapy can be developed 
using well established drug discovery tools and ultimately 
therapy can be delivered in normal clinical settings [20, 187-
190]. The goal of this therapy is to induce the transcriptional 
activity of the latent HIV-1 without inducing the polyclonal 
activation of non-infected cells (a “shock” phase). Once the 
virus is reactivated a “kill” phase will be used to eliminate 
the induced cells through existing immune responses, viral 
cytopathogenicity or cytotoxic drugs. The molecular studies 
reviewed here also emphasize that HIV has a plethora of 
potential drug vulnerabilities that could be exploited to 
prevent its re-emergence from latency. Extensive screens 
have shown that protein kinase C agonists lacking tumor-
promoter activities are a major class of drugs that are able to 
induce transcriptional activity of the latent HIV-1 without 
inducing the polyclonal activation of non-infected cells 
[191]. The range of compounds that are able to activate HIV 
via this mechanism of action is extremely diverse and 
includes phorboids such as prostratin [146, 149, 156, 192], 
the clinically-available macrolide bryostatin 1[193-195], and 
macrocyclic polyesters such as jatrophanes [196]. However, 
all of these drugs are expected to activate signaling pathways 
leading to NF- B mobilization. The second major class of 
activators are drugs that induce epigenetic modifications 
such as histone deacetylase (HDAC) inhibitors (SAHA, 

valproic acid) [197-201] and histone methyltransferase 
inhibitors (DZNep, BIX01294) [109, 119]. Of all of these 
compounds SAHA has proven to be the most potent in a 
variety of cell systems, perhaps because it may also have an 
impact on P-TEFb levels in resting T cells [202]. Finally 
new screens are identifying additional drugs with unknown 
mechanisms, such as disulfiram, that can reactivate HIV in 
latently infected primary CD4 T cells [37, 188, 203-206]. 

 The detailed molecular studies described above strongly 
imply that effective activation of the entire latent viral pool 
may ultimately require a cocktail of drugs that stimulate both 
transcription initiation and P-TEFb mobilization. It is 
therefore not too surprising that most of the agents so far 
identified can therefore only reactivate a subset of latently-
infected cells. As insights into HIV latency continue to 
emerge, it will be important to engage the best researchers 
from academia and industry in a concerted effort to develop 
safe and effective HIV eradication strategies. 
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