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Abstract

Agonist stimulation of smooth muscle is known to activate RhoA/Rho kinase signaling, and Rho kinase 
phosphorylates the myosin targeting subunit (MYPT1) of myosin light chain (MLC) phosphatase at Thr696 
and Thr853, which inhibits the activity of MLC phosphatase to produce a Ca2+ independent increase in MLC 
phosphorylation and force (Ca2+ sensitization). Alternative mRNA splicing produces four MYPT1 isoforms, 
which differ by the presence or absence of a central insert (CI) and leucine zipper (LZ). This study was 
designed to determine if Rho kinase differentially phosphorylates MYPT1 isoforms. In HEK293T cells ex-
pressing each of the four MYPT1 isoforms, we could not detect a change in Thr853 MYPT1 phosphorylation 
following GTPγS treatment. However, there is differential phosphorylation of MYPT1 isoforms at Thr696; 
GTPγS treatment increases MYPT1 phosphorylation for the CI+LZ- and CI-LZ- MYPT1 isoforms, but not 
the CI+LZ+ or CI-LZ+ MYPT1 isoforms. These data could suggest that in smooth muscle Rho kinase dif-
ferentially phosphorylates MYPT1 isoforms.
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Introduction

Phosphorylation of the smooth muscle 20 kDa myosin light chain (MLC) regulates smooth muscle con-
traction or vascular tone (1, 2), and MLC phosphorylation is determined by the balance of the activities of MLC 
kinase and MLC phosphatase (3). There are a number of important signaling pathways in smooth muscle that 
regulate vascular tone, and the vast majority influence the activity of MLC phosphatase (4, 5).

The signaling pathways converging on MLC phosphatase either increase phosphatase activity to decrease 
MLC phosphorylation and force, which is referred to as Ca2+ desensitization, or decrease phosphatase activity 
to increase MLC phosphorylation and force, which is referred to as Ca2+ sensitization (4). MLC phosphatase 
is a holoenzyme consisting of enzymatic, 20 kDa and myosin targeting (MYPT1) subunits (5). Alternative 
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mRNA splicing of a central and a 3’ exon produce a MYPT1 central insert (CI) and a COOH-terminal leucine 
zipper (LZ), respectively (5); there are four MYPT1 isoforms (CI+LZ+, CI+LZ-, CI-LZ+ and CI-LZ-), and 
MYPT1 isoform expression is developmentally regulated, tissue specific (6–8), and is modulated in disease 
(9–13).

The MYPT1 LZ domain is important for mediating Ca2+ desensitization during NO mediated vasodilata-
tion: during NO/cGMP signaling, LZ+, but not LZ-, MYPT1 isoforms are phosphorylated by PKG (14,  15). 
Therefore, LZ+/LZ- MYPT1 isoform expression, in part, underlies the heterogenous response of the vascu-
lature to NO and NO based vasodilators (14–17). For G-protein coupled agonists, the stimulation of Gq and 
G11 activates phospholipase C, and the subsequent increase in intracellular Ca2+ activates MLC kinase (4). 
However, a number of agonists also activate RhoA/Rho kinase through G12 and G13 (4). Rho kinase phosphory-
lates MYPT1 at both Thr696 and Thr853 (18), which decreases the activity of the MLC phosphatase (18–22) 
to produce Ca2+ sensitization (21, 23, 24). However, similar to Ca2+ desensitization, there is variability in the 
response of the vasculature to agonists; in smooth muscles, there is heterogeneity in the magnitude and sensi-
tivity of Ca2+ sensitization (25, 26), and the mechanism to explain this variability is unknown.

Therefore, this study was designed to determine if MYPT1 isoforms are differentially phosphorylated by 
Rho kinase. To investigate this question, we determined the time course of MYPT1 phosphorylation (Thr696 
and Thr853) following activation of Rho kinase with GTPγS in HEK293T cells lines that express each of the 
MYPT1 isoforms.

Methods

For the present study, we used our human embryonic cell (HEK293T) lines that express the four avian 
MYPT1 isoforms (CI+LZ+, CI+LZ-, CI-LZ+, CI-LZ-). These HEK293T cell lines have the SV40 Large T-anti-
gen, which allows an episomal plasmid to be replicated, and the cloning and transfection techniques to gener-
ate these HEK293T cell lines have been previously described (15). Untransfected HEK293T cells expresses the 
four isoforms of human MYPT1 (15), and in the present experiments, the density of the ratio of CI+/CI- bands 
was 1.2–2x higher for the band containing the exogenous avian MYPT1 isoform, which is consistent with an 
overexpression of the exogenous avian MYPT1 isoform and our previous data (15). 

The sequences of the avian and mammalian MYPT1 are highly homologous and there are multiple regions 
of sequence identity (27). Rho kinase mediated MYPT1 phosphorylation occurs at Thr696 and Thr853 of the 
mammalian sequence, which corresponds to Thr695 and Thr850 of the avian sequence. For consistency, we 
will refer to the numbering of the mammalian sequence throughout the manuscript.

Cell culture
As previously described (15), HEK293T cells lines were grown in P100 plates using 1x Dulbecco’s Modi-

fied Eagle’s Media (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin 
and 0.004% zeocin at 37°C with 5% CO2, and cells were split at 80–100% confluence. To determine the time 
course of MYPT1 phosphorylation, cells were grown to 70–90% confluence, and then the HEK293T cells were 
starved for 24h in low serum media (1% FBS, 1% penicillin/streptomycin and 0.004% zeocin) at 37°C. As de-
scribed in previous publications (28), cells were placed in skinning solution (0.1% Triton X-100) for 10 min and 
then the solution was changed to a low Ca2+ solution and the cells were treated at 37°C with 0.1 mM guanosine 
5′-O-(3-thiotriphosphate) tetralithium (GTPγS). At 0 min, 1 min, 5 min and 30 min of GTPγS treatment, cells 
scraped off the plate, sonicated, spun and placed in fresh tubes, and stored at –80°C prior to immunoblotting.
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Immunoblotting
As we have described (15), MYPT1 phosphorylation was determined using phospho-specific antibodies 

and normalized to MYPT1 expression. Gels were run in pairs, one for MYPT1 and the other for phospho-
MYPT1. MYPT1 was detected using a polyclonal anti-MYPT1 antibody (Epitomics), while MYPT1 phos-
phorylation at Thr696 or Thr853 was detected using phospho-specific antibodies to either phospho-Thr696 or 
phospho-Thr853 (Cell Signaling). To determine relative Thr696 and Thr853 MYPT1 phosphorylation, images 
were scanned (Epson Perfection V750 PRO) and band density was determined using ImageQuant TL software 
(GE Healthcare). Relative phosphorylation was computed as the density of the phosphorylated signal (Thr696 
or Thr853) divided by the density of the MYPT1 protein band(s). The data for relative phosphorylation for 
both Thr696 and Thr853 were normalized. To normalize the data for each analysis, the density of the ratio 
of phospho-MYPT1/MYPT1 for the 30 min time point was averaged and all time points were subsequently 
normalized to this mean.

Data are presented as mean ± SEM with n representing the number of experiments. The Student’s t-test 
was used to determine the significance of the difference between the relative phosphorylation between the 0 
and 30 min time points, and P<0.05 was considered significant.

Results

MYPT1 phosphorylation at both Thr853 and Thr696 was detected prior to treatment with GTPγS. How-
ever, the signal representing phospho-Thr853 was faint. For the HEK293T cells over expressing CI+ MYPT1 
isoforms (CI+LZ+MYPT1 & CI+LZ-MYPT1), GTPγS did not increase relative MYPT1 phosphorylation at 
Thr853 (phospho-Thr853/MYPT1; Table 1, Fig. 1A). Similarly, for the HEK293T cells expressing CI- MYPT1 
isoforms, there was no significant increase in relative Thr853 MYPT1 phosphorylation with GTPγS treatment 
(Table 1, Fig. 1B).

In contrast to the results for Thr853 MYPT1 phosphorylation, the phospho-Thr696 bands were readily 
apparent. We first analyzed total relative MYPT1 phosphorylation (Fig. 2, both bands). In the HEK293T cells 
expressing CI+ MYPT1 isoforms (CI+LZ+MYPT1 & CI+LZ-MYPT1), there was a significant increase in total 
relative Thr696 MYPT1 phosphorylation following treatment with GTPγS (Table 2). However in the HEK293T 

Table 2.	 Relative Thr696 MYPT1 phosphorylation

MYPT1 Isoform 0 min 30 min

CI+LZ-MYPT1 0.2 ± 0.1 1.0 ± 0.3*
CI+LZ+MYPT1 0.6 ± 0.2 1.0 ± 0.3*
CI-LZ-MYPT1 0.5 ± 0.1 1.0 ± 0.2*
CI-LZ+MYPT1 0.8 ± 0.2 1.0 ± 0.2

Following treatment with GTPγS, relative Thr696 phos-
phorylation, computed as the density of both bands on 
the Western blot in Fig. 2 (total phospho-Thr696/total 
MYPT1) increased for every MYPT1 isoform, except 
CI-LZ+MYPT1 (*, P<0.05, n=4–6). Note, the data in 
this table represent the results for both bands in Fig. 2, 
while the time course of Thr696 MYPT1 phosphoryla-
tion in Fig. 3 is only for the single MYPT1 band express-
ing the exogenous MYPT1 isoform (CI+ or CI-), which 
is indicated by the arrowhead.

Table 1.	 Relative Thr853 MYPT1 phosphorylation

MYPT1 Isoform 0 min 30 min

CI+LZ-MYPT1 0.7 ± 0.3 1.0 ± 0.4
CI+LZ+MYPT1 0.7 ± 0.1 1.0 ± 0.3
CI-LZ-MYPT1 0.9 ± 0.1 1.0 ± 0.4
CI-LZ+MYPT1 0.7 ± 0.1 1.0 ± 0.3

Following treatment with GTPγS, relative Thr853 phos-
phorylation, computed as the density of both bands on 
the Western blot in Fig. 1 (total phospho-Thr853/total 
MYPT1) did not change (*, P<0.05, n=4–6).
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Fig. 1.	 GTPγS treatment does not increase MYPT1 phosphorylation at Thr853. (A) West-
ern blots demonstrating time course of Thr853 phosphorylation for CI+LZ-MYPT1 
and CI+LZ+MYPT1. (B) Western blots demonstrating time course of Thr853 
phosphorylation for the CI-LZ-MYPT1 and CI-LZ+MYPT1. The arrowhead de-
notes the MYPT1 band containing the overexpressed MYPT1 isoform. Relative 
total MYPT1 Thr853 phosphorylation (total phospho-Thr853/total MYPT1) did 
not significantly change after GTPγS for any MYPT1 isoform (Table 1).

Fig. 2.	 GTPγS increases MYPT1 isoforms at Thr696. (A) Western blots demonstrating 
time course of Thr696 phosphorylation for CI+LZ-MYPT1 and CI+LZ+MYPT1. 
(B) Western blots demonstrating time course of Thr696 phosphorylation for the 
CI-LZ-MYPT1 and CI-LZ+MYPT1. The arrowhead denotes the MYPT1 band 
containing the overexpressed MYPT1 isoform. Relative total MYPT1 Thr696 
phosphorylation (total phospho-Thr696/total MYPT1) increased after GTPγS for 
all MYPT1 isoforms, except CI-LZ+ MYPT1 (Table 2).
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cells expressing CI- MYPT1 isoforms, the results were variable; in HEK293T cells expressing CI-LZ-MYPT1, 
GTPγS stimulation increased total relative MYPT1 phosphorylation at Thr696, while in the HEK293T cells 
expressing CI-LZ+MYPT1, total relative Thr696 MYPT1 phosphorylation did not change (Table 2).

To further define isoform specific MYPT1 phosphorylation in response to GTPγS, we examined the time 
course of Thr696 phosphorylation for only the single MYPT1 band containing the exogenous MYPT1 isoform 
(indicated by the arrowhead in Fig. 2). For both LZ- MYPT1 isoforms (CI+LZ- & CI-LZ-), GTPγS produced a 
significant increase in relative Thr696 MYPT1 phosphorylation (Fig. 3). For the CI+LZ+ MYPT1, the increase 

Fig. 3.	 GTPγS treatment results in differential phosphorylation of MYPT1 isoforms at 
Thr696. The time course of relative Thr696 MYPT1 phosphorylation was comput-
ed for only the single band containing the exogenous MYPT1 isoform (CI+ or CI-), 
which is indicated by the arrowhead in Fig 2. (A) Time course of relative Thr696 
phosphorylation for CI+LZ-MYPT1 ( , n=4) and CI+LZ+MYPT1 ( , n=4). The 
increase in Thr696 phosphorylation was significant for CI+LZ- MYPT1 (P<0.05), 
but not the CI+LZ+MYPT1 isoform. (B) Time course of relative Thr696 phos-
phorylation of CI-LZ-MYPT1 ( , n=6) and CI-LZ+MYPT1 ( , n=4). There is a 
significant increase in Thr696 phosphorylation for CI-LZ- MYPT1 (P<0.05) and a 
significant decrease (P<0.05) in Thr696 phosphorylation for CI-LZ+ MYPT1. The 
solid lines represent a single exponential fit of the time course of phosphorylation.
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in relative Thr696 phosphorylation was not significant (Fig. 3A, P>0.05), while for the CI-LZ+ MYPT1 iso-
form, relative Thr696 phosphorylation decreased (P<0.05) following GTPγS (Fig. 3B).

Discussion

In smooth muscle, in addition to MLC kinase (1) and RhoA/Rho kinase (21, 24), there are multiple other 
signaling pathways that modulate force including PKC (29–31), Zip kinase (32), integrin-linked kinase (33) 
and Rac1 (34), and further, the physiologically important signaling pathways that mediate Ca2+ sensitization 
are both agonist as well as tissue specific (4, 35). The Rho kinase inhibitor fasudil reduces blood pressure in 
animal models of hypertension (36–38) and in humans, is effective in treating both cerebral vasospasm (39, 40) 
and pulmonary hypertension (41, 42), which suggests that Rho kinase mediated signaling is important in both 
health and disease. Rho kinase has been demonstrated to phosphorylate both MYPT1 as well as CPI-17 (43, 
44), and similar to the other signaling pathways which influence MLC phosphatase activity, the importance of 
each of these proteins for Ca2+ sensitization is tissue specific (44). In the present study, we examined whether 
GTPγS treatment results in isoform specific MYPT1 phosphorylation.

Others have demonstrated Rho kinase is expressed in HEK293T cells (45, 46) and additionally, in 
HEK293T cells, GTPγS stimulates Rho (47, 48). Further, Rho has been demonstrated to activate Rho kinase, 
PKN and PIP5 kinase (49). Therefore, the GTPγS stimulated increase in MYPT1 phosphorylation could be me-
diated by Rho kinase, PKN, PIP5-kinase or another unknown kinase. However, only Rho kinase and ILK have 
been demonstrated to phosphorylate MYPT1 at Thr696 and Thr853 (50), and ILK is not activated by Rho ki-
nase, PKN or PIP5 kinase (51). These data strongly suggest that following GTPγS treatment of HEK293T cells, 
MYPT1 phosphorylation at Thr696 and/or Thr853 is mediated by a GTPγS induced activation of Rho kinase. 

We have previously demonstrated that an overexpressed exogenous MYPT1 isoform replaces the endo-
genous isoform in the MLC phosphatase holoenzyme (17) and alters the activity of MLC phosphatase (15, 
17). Similar to previous reports (15, 17), in the present experiments, the ratio of CI+/CI- changed consistent 
with overexpression of the exogenous MYPT1. These data suggest that MYPT1 phosphorylation determined 
in these HEK293T cell lines reflects the phosphorylation of the exogenous MYPT1 isoform (15). However 
compared to our prior results, the expression of the exogenous avian MYPT1 isoform is lower in the present 
study, which could result in an underestimation of the magnitude of the changes in MYPT1 phosphorylation. 

In the present study, MYPT1 phosphorylation at Thr696 increased after treatment with GTPγS for the 
CI+LZ-MYPT1 and CI-LZ-MYPT1 isoforms (Fig. 3). Others have demonstrated that activation of PKG in-
creases MYPT1 phosphorylation at both Ser695 and Ser852, which then inhibits Rho kinase mediated MYPT1 
phosphorylation at Thr696 and Thr853 (52, 53). The LZ domain is hypothesized to mediate the interaction 
of MYPT1 and PKG (16) and is required for PKG mediated MYPT1 phosphorylation (14, 15, 17). These data 
could suggest that LZ- MYPT1 isoforms, but not LZ+ MYPT1 isoforms, are phosphorylated by Rho kinase, 
which is consistent with our results. For the CI+LZ+ MYPT1 isoform, GTPγS treatment increased Thr696 
phosphorylation, but the increase did not reach statistical significance (Fig. 3), which could suggest the CI 
domain modulates Rho kinase phosphorylation. For the CI-LZ+MYPT1 isoform, it is unclear why relative 
Thr696 phosphorylation decreased with GTPγS stimulation (Fig. 3). One possibility is that Rho kinase cannot 
access Thr696 due to differences in the three-dimensional structure of CI-LZ+MYPT1 and the other MYPT1 
isoforms, and thus for CI-LZ+ MYPT1, Thr696 is only subject to autodephosphorylation (54). Alternatively, 
this may be due to an interaction of CI-LZ+MYPT1 and another protein, such as M-RIP (55) or prostate apop-
tosis response 4 (56), which could alter the kinetics of Rho kinase mediated MYPT1 phosphorylation. 
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In contrast to the signal for Thr696 phosphorylation, the signal for phospho-Thr853 MYPT1 was low, and 
we could not detect a significant increase in relative Thr853 MYPT1 phosphorylation after GTPγS treatment 
(Table 1, Fig. 1). These results contrast to the significant increase in MYPT1 Thr853 phosphorylation observed 
in smooth muscle (44, 57). The mechanism to explain the lack of Thr853 phosphorylation in the HEK293T cells 
expressing avian MYPT1 isoforms is beyond the scope of the present study. In our HEK293T cells, GTPγS 
could have activated a G-protein pathway that inactivated Rho or even activated a kinase other than Rho ki-
nase. Since GTPγS treatment increased phosphorylation at Thr696, a well documented MYPT1 residue for 
Rho kinase (4), this possibility is unlikely. In isolated 500 aa MYPT1 protein fragments, we have demonstrated 
that Rho kinase does not phosphorylate Thr853 (14). However, in untransfected control HEK293T cells, we 
have previously demonstrated that the phosphorylation of the endogenous human CI+ MYPT1 at both Thr696 
and Thr853 (15), which differs from the present results. These data could also suggest that for avian MYPT1, 
phospho-Thr853 is poorly recognized by the anti-phosphoThr853 antibody. However, there is a high degree of 
identity between the aa sequences of avian and mammalian MYPT1 (27); 85% identity for the 60 aa flanking 
the Thr850/Thr853 phosphorylation site and we also detected a phospho-Thr853 signal, albeit faint (Fig. 1), 
which suggests that this possibility is unlikely.

Similar to our results, there is also considerable variability in Thr696 vs. Thr853 MYPT1 phosphorylation 
in mammalian smooth muscle; MYPT1 phosphorylation is both tissue and agonist dependent. Studies have 
demonstrated that 1) a Rho kinase mediated MYPT1 phosphorylation at Thr853, but not Thr696, is respon-
sible for the sustained phase of the force response in rat uterine smooth muscle (58), 2) a Rho kinase mediated 
increase in both Thr696 and Thr853 MYPT1 phosphorylation occurs during serotonin induced vasoconstric-
tion of cerebral arteries (59), 3) a Rho kinase mediated increase in MYPT1 phosphorylation at Thr853, but not 
Thr696, contributes to the myogenic response of cerebral vessels (60), 4) a Rho kinase mediated increase in 
Thr696 MYPT1 phosphorylation occurs during Ca2+ sensitization of rat ileal smooth muscle (61) and 5) a Rho 
kinase mediated increase in Thr696 MYPT1 phosphorylation is responsible for PGF2α induced Ca2+ sensitiza-
tion in rabbit aorta (62). Additionally, during activation of mouse bladder smooth muscle, MYPT1 phosphory-
lation at Thr853 is mediated predominantly by Rho kinase, while phosphorylation at Thr696 did not change 
(63). Using MYPT1 Ala mutants, these investigators demonstrated that the increase in Thr853 phosphorylation 
did not contribute to the force response, while the force maintenance was reduced in the Ala696Thr MYPT1 
mutant, suggesting that MYPT1 phosphorylation at Thr696 is important for the regulation of force mainte-
nance (63).

Our current results demonstrate that GTPγS treatment of HEK293T cells increased Thr696 phosphoryla-
tion of CI+LZ- and CI-LZ-, but not CI+LZ+ and CI-LZ+, MYPT1 isoforms. These data suggest that following 
agonist activation, Rho kinase will differentially phosphorylate MYPT1 isoforms. We have previously dem-
onstrated that MYPT1 isoform expression determines the sensitivity of NO mediated vasodilatation (14, 15, 
17); our previous results show that smooth muscle tissues expressing LZ- MYPT1 isoforms (CI+LZ-, CI-LZ-) 
are not phosphorylated by PKG (14, 15). Taken together, these results suggest that the LZ MYPT1 domain is 
an important determinant for the regulation of MLC phosphatase; LZ+ MYPT1 isoforms are phosphorylated 
by PKG (14, 15), but poor substrates for Rho kinase (Fig. 3), while LZ- MYPT1 isoforms are phosphorylated 
by Rho kinase (Fig. 3), but not PKG (14, 15). The CI domain appears to modulate Rho kinase phosphorylation 
of LZ+ MYPT1 isoforms; following GTPγS treatment MYPT1 phosphorylation decreased for CI-LZ+MYPT1, 
but did not change for CI+LZ+MYPT1 (Fig. 3), which provides another mechanism to tune the vasculature’s re-
sponse to vasoactive agents. These data demonstrate that alternative splicing to produce CI+/CI- and LZ+/LZ- 
MYPT1 isoforms could contribute to the molecular mechanism producing the variable sensitivity of smooth 
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muscle to signaling pathways for both Ca2+ sensitization (RhoA/Rho kinase) and desensitization (NO/cGMP/
PKG). MYPT1 isoform expression is both developmentally regulated and tissue specific (6–8). Changes in 
relative CI+/CI- MYPT1 isoform expression have only been examined in an animal model of portal hyperten-
sion (10), but relative LZ+/LZ- MYPT1 isoform expression is well documented to decrease in a number of 
diseases including heart failure (9, 11, 64, 65) and pulmonary hypertension (13, 66). Therefore, modulation of 
MYPT1 isoform expression may represent a mechanism to tune the vasculature’s response to both NO/PKG 
and G-protein coupled agonists/Rho kinase signaling, which will influence vascular tone and/or resistance in 
both health and disease.
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