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Dairy Streptococcus thermophilus
improves cell viability of
Lactobacillus brevis NPS-QW-145
‘and its ~-aminobutyric acid
~ " biosynthesis ability in milk

Qinglong Wu, Yee-Song Law & Nagendra P. Shah

: Most high ~-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may
. be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence

. of genes encoding extracellular proteinases in its genome. In the present study, two glutamic

. acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis

. NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to

- manufacture GABA-rich fermented milk. It was observed that all the selected strains of Streptococcus
thermophilus, but not Lactobacillus delbrueckii subsp. bulgaricus, improved the viability of L. brevis
NPS-QW-145 in milk. Only certain strains of S. thermophilus improved the gadA mRNA level in L.

© brevis NPS-QW-145, thus enhanced GABA biosynthesis by the latter. These results suggest that

. certain S. thermophilus strains are highly recommended to co-culture with high GABA producer for
. manufacturing GABA-rich fermented milk.

. ~N-Aminobutyric acid (GABA), a non-protein amino acid, is widely found in plants, microorganisms
. and vertebrates">. GABA-rich foods that are naturally produced have been popular for decades, and
: have shown anti-hypertensive effect as an important function*”. In general, GABA content in plant
. and animal products is very low for delivering any functional benefit in human. Thus, there has been
* an increasing interest in using high GABA-producing microorganisms for manufacturing GABA-rich
. fermented milk products such as yogurt and cheese.

: Currently, most high GABA producers belong to Lactobacillus species, and Lactobacillus brevis has
. been identified as a key species for producing GABA®. It has been well documented that glutamic acid
: decarboxylase (GAD) operon comprise a transcriptional regulator (gadR), glutamate decarboxylases
© (gadA or/and gadB) and a glutamate/ GABA antiporter (gadC) in GABA-producing microorganisms’.
. Moreover, high GABA-producing L. brevis of plant origin has been isolated from Korean kimchi or other
. fermented vegetables®. Genomic analysis indicated the absence of genes encoding extracellular or cell
. wall-anchored proteinases in the sequenced L. brevis ATCC 367 (a starter culture for beer, sourdough
. and silage) and L. brevis KB290 (an isolate from traditional Japanese fermented vegetable). This may
. suggest that L. brevis of plant origin may not able to survive in milk environments because of its poor
. proteolytic nature. It is known to us that mammalian milks contain lactose and casein as the major sugar
- and protein sources, but these are not ideal sources of nutrients for the growth of non-proteolytic lactic
© acid bacteria (LAB).

: GABA-producing LAB shows great promise for manufacturing GABA-rich fermented milk. For
. instance, milk fermented by L. casei Shirota and Lactococcus lactis YIT 2027 contained 10 to 12mg of
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Primers: DP1 & DP2 Primers: PGDG-2F & PGDG-4R Primers: s-Lbre-F & s-Lbre-R
Target: GAD gene in bacteria Target: GAD gene in L.brevis Target: 16S rRNA gene in L. brevis
Predicated product size: 408 bp Predicated product size: 1014 bp Predicated product size: 289 bp
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Figure 1. Amplification of GAD gene(s) and 16S rRNA gene from L. brevis 145 and eight dairy starters.
(a) detection of GAD gene using degenerate primers DP1 and DP2; (b) amplification of GAD gene(s) in

L. brevis 145 using degenerate primers PGDG-2F and PGDG-4R; (c¢) specificity of primers s-Lbre-F and
s-Lbre-R for amplifying 16S rRNA gene from L. brevis. Denotation: M, DNA ladders (Promega 1kb DNA
ladder in Fig. la; Invitrogen 1Kb Plus DNA Ladder in Fig. 1b and Fig. 1c); B, amplification without DNA;
Lane 1, L. brevis 145; Lane 2, S. thermophilus ASCC 1275; Lane 3, S. thermophilus ASCC 1303; Lane 4, S.
thermophilus YI-B1; Lane 5, S. thermophilus YI-N1; Lane 6, S. thermophilus YI-M1; Lane 7, L. bulgaricus
ASCC 756; Lane 8, L. bulgaricus ASCC 859; Lane 9, L. bulgaricus YI-B2.

GABA per 100mL of fermented milk, this functional food has shown the functionality of lowering the
blood pressure in mildly hypertensive patients®; L. helveticus NDO1 yielded 165.11 mg of GABA per 1kg
of fermented milk after 20h fermentation at 37°C'% Lactococcus lactis DIBCA1 and L. plantarum PU11
supplemented with 20 mmol/L of glutamic acid produced 144.5mg of GABA per 1kg of fermented milk
after 48h fermentation at 37°C'".. It is known to us that Streptococcus thermophilus and Lactobacillus
delbrueckii subsp. bulgaricus (hereafter L. bulgaricus) are important starter microorganisms required for
the manufacture of fermented dairy foods such as yogurt and certain cheese varieties'>'. In addition,
monosodium glutamate (MSG) is normally added to milk as the substrate for manufacturing GABA-rich
fermented milk because of low content of free glutamate in milk®.

High GABA producer of plant origin may not be able to survive in milk, or may not even ferment
milk. Although their viability in milk could be enhanced by adding particular nutrients to milk base, this
practice may not be of interest for dairy industry. Although some probiotics or novel LAB strains were
adopted as adjunct starters for milk fermentation, conventional dairy starters including S. thermophilus
and L. bulgaricus are required to add into the milk because of the regulations in most countries. Till now,
there is very little information on the synergistic effect of high GABA producers and dairy starters. In
the present study, we report a new strategy of manufacturing GABA-rich fermented milk by co-culturing
high GABA producer with dairy starter including S. thermophilus and L. bulgaricus in skimmed milk
supplemented with MSG, and provide new insights into the effects of dairy starters on the cell viability
of L. brevis NPS-QW-145 (a high GABA producer; hereafter L. brevis 145) and its GABA biosynthesis
ability in milk.

Results
Two GAD genes were detected in the genome of L. brevis 145. The amplification result of par-
tial GAD gene (~408bp) in the eight dairy starters and L. brevis 145 is shown in Fig. 1a. Normally, the
full length of GAD gene is ~1400bp. As shown in the Fig. 1a, this gene in all the selected dairy starters
including S. thermophilus and L. bulgaricus was not detected, while it existed in L. brevis 145. Moreover,
there was no GABA production from these dairy starters when cultured in milk and M17/MRS broth
(data not shown). Thus, it was concluded that the GABA was only produced by L. brevis 145.

The partial GAD gene from L. brevis 145 was successfully amplified and sequenced (Fig. 1b). The size
of PCR product was about 1014bp based on the alignment of amino acids sequence of GAD gene in L.
brevis (Fig. 2). Interestingly, two GAD genes, gadA and gadB, were found in L. brevis 145 after analyzing
the sequences of the PCR product. Excluding the length of degenerate primers PGDG-2R (35bp) and
PGDG-4R (32bp), the length of the amplified gadA and gadB was 948bp and 921bp, respectively. The
GenBank accession numbers for the partial gadA and gadB sequences of L. brevis 145 are KM875632.1
and KM875633.1, respectively. The nucleotides sequences of partial gadA and gadB showed a similarity
of 99% with GAD gene in other L. brevis strains (KB290, 877G, CGMCC 1306, ATCC 367, BH2 and
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Figure 2. Alignment of the amino acids of full-length glutamate decarboxylases from nine Lactobacillus
brevis strains. The conserved regions [NAIDKSEYPR(K)TA] and [GWQVPA(T)YPLPKN] were used to
design degenerate primers. This figure was generated from BioEdit (version 7.2.5) after ClustalW multiple
alignment.

IFO 12005). The predicated amino acids sequence of amplified gadA (316 aa) only have 164 aa in com-
mon with that of amplified gadB (307 aa) after ClustalW alignment. Besides the above genetic analysis,
we have confirmed high GABA production from this organism'. These sequences were further used to
design qPCR primers for quantifying the expression of GAD genes in L. brevis 145 as shown in Table 1.

The pH of fermented milks using mixed-cultures or mono-culture. The pH of the fermented
milks is shown in Fig. 3. As shown in the Figure, the pH in the milk fermented by L. brevis 145 alone was
similar to that of the blank milk suggesting that L. brevis 145 was not able to ferment milk. Co-culturing
of L. brevis 145 with S. thermophilus in milk after 24h fermentation at 37°C resulted in an average pH
of ~4.50, whereas co-culturing of L. brevis 145 with L. bulgaricus showed an average pH of ~3.70. The
pH of the milk fermented by three cultures of L. brevis 145, S. thermophilus YI-B1 and L. bulgaricus
YI-B2 was ~3.90. It was observed that the pH of the milk fermented by co-cultures of L. brevis 145 and
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Australian Starter Culture
ASCC 1275 Research Center
Australian Starter Culture
ASCC 1303 Research Center
Streptococcus thermophilus
YI-B1 Commercial yogurt isolate
YI-N1 Commercial yogurt isolate
YI-M1 Commercial yogurt isolate
Australian Starter Culture
ASCC 756 Research Center
Lactobacillus delbrueckii subsp. bulgaricus ASCC 859 Australian Starter Culture
Research Center
YI-B2 Commercial yogurt isolate
Lactobacillus brevis NPS-QW-145 High GABA produc'er isglated
from Korean kimchi
Primers for PCR amplification
Name Sequences (5’ to 3') Reference
PGDG-2F AAYGCSATYGATAAATCSGARTAYCCTMRGACCGC
This study
PGDG-4R TTYTTTGGYARKGGATAKGYSGGRACYTGCCA
DP1 ggtacatctacaattggttcttctgaRgcNtgYatg
25
DP2 aaaccaccagaagcagcRtcNacRtgNat
s-Lbre-F ATTTTGTTTGAAAGGTGGCTTCGG
26
s-Lbre-R ACCCTTGAACAGTTACTCTCAAAGG
gadA-757F CAGGTTACAAGACGATCATGC
This study
gadA-945R ATACTTAGCCAGCTCGGACTC
gadB-364F GGACAATACGACGACTTAGC
This study
gadB-499R CTTGAGCTCGGGTTCAATAA

Table 1. Bacterial strains and primers used in this study.
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Figure 3. The pH of fermented milks after co-culturing of L. brevis 145 with S. thermophilus or/and L. bulg
aricus. ST, S. thermophilus; Lbu, L. bulgaricus; Lbre 145, L. brevis 145; Blank milk, 10% (w/v) skimmed milk.
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Figure 4. Cell viabilities of S. thermophilus and L. bulgaricus in fermented milks. ST, S. thermophilus;
Lbu, L. bulgaricus; Lbre 145, L. brevis 145.

S. thermophilus or L. bulgaricus was not significantly (P> 0.05) changed after the supplementation with
MSG. This suggests that the addition of MSG did not influence the pH of the milk. Additionally, the pH
(~4.50) of milk fermented by S. thermophilus and L. brevis 145 was similar to that of commercial yogurts.
This implies that using S. thermophilus and L. brevis 145 could be used to produce a yogurt-like product.

Cell viabilities of S. thermophilus and L. bulgaricus in milk. Cell viabilities of eight dairy starters
in fermented milks are shown in Fig. 4. As indicated in the figure, the viabilities of S. thermophilus and
L. bulgaricus co-cultured with L. brevis 145 in fermented milks were not significantly (P> 0.05) changed
after the supplementation with MSG. This suggests that MSG supplemented (2 g/L) to milk did not have
much influence on the viabilities of both S. thermophilus and L. bulgaricus cells. Also, the cell counts of
both dairy starters were above 8.5 Log,, CFU/mL in milk.

Cell viability of L. brevis 145 after co-culturing with dairy S. thermophilus or/and L. bulgaricus
in milk. The primers (s-Lbre-F and s-Lbre-R; Table 1) showed strong specificity for amplifying partial
16S rRNA gene in L. brevis 145 (Fig. 1c). The efficiency of this qPCR assay was 98.435%. This indicated
that this pair of primers was suitable for gPCR quantitation of L. brevis 145 cells and for further gene
expression experiments. The equation of standard curve is y = -4.1026x + 52.009 (R?>= 0.9851; y, C, value;
x, cell counts]. The standard curves showed a good correlation coefficient value (R? = 0.9851), suggesting
that the C, values were linear over the range of cell count tested (3.2 x 10*~3.2 x 10° CFU/mL). The
analysis of the melting curves did not show the formation of non-specific fragments or primer-dimers
indicating that the qPCR assay was accurate and reproducible.

The viability of L. brevis 145 in milk during co-culturing is shown in Fig. 5. Before the fermentation,
the initial counts of L. brevis 145 cells in milk were ~3 x 107 CFU/mL (~7.48 Log;, CFU/mL). However,
the counts of this strain decreased to ~6.50 Log,, CFU/mL after 24 h of fermentation (Fig. 5). This indi-
cates that viability of L. brevis 145 was not maintained in milk during fermentation. In general, it was
observed that the viability of L. brevis 145 decreased slightly but not significantly (P> 0.05) after supple-
mentation with MSG to milk, except the fermentation using co-cultures of L. brevis 145 and L. bulgaricus
ASCC 756. Interestingly, the average cell counts of L. brevis 145 after co-culturing with S. thermophilus
was ~7.90 Log,, CFU/mL, which was significantly (P < 0.01) higher than that of co-culturing with L.
bulgaricus, co-culturing with both S. thermophilus and L. bulgaricus, and the control fermentation with
only L. brevis 145. For co-culturing with L. bulgaricus, the viability of L. brevis 145 decreased significantly
(P<0.01) as compared with the control using only L. brevis 145. Thus, it was suggested that the presence
of L. bulgaricus in co-culture with L. brevis 145 had a negative effect on the viability of L. brevis 145.

GABA yield and residual MSG content in fermented milks. The content of GABA and residual
MSG in milk supplemented with or without MSG is shown in Table 2. As shown in the table, GABA was
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Figure 5. Cell counts of L. brevis 145 in fermented milks. ST, S. thermophilus; Lbu, L. bulgaricus; Lbre
145, L. brevis 145. Star (*P < 0.05) is for the comparison of data between fermentation with and without the
supplementation of MSG; Capital letters (A, B, C and D) are designated to indicate the significance of the
group data of L. brevis counts, the same letter among each group indicates no significance (P> 0.05). The
initial cell counts of L. brevis 145 after inoculation in milk was ~3 x 107 CFU/mL (7.48 Log,, CFU/mL).

not detected in the milk fermented by only L. brevis 145. This is mainly because the milk composition
was not able to support the growth of this organism (Fig. 3), which was also evidenced by the decreased
viability of this strain in milk grown alone (Fig. 5). However, after co-culturing with certain S. thermo-
philus strains (ASCC 1275, YI-B1 and YI-N1), GABA production was increased in milk supplemented
with MSG after 24h fermentation. Co-culturing of S. thermophilus YI-B1 and L. brevis 145 in milk
containing 2 g/L of MSG yielded the highest level (~314mg per 1kg of fermented milk) of GABA after
24h of fermentation. Till now, this may be the highest known amount of GABA content in fluid milk
products that were fermented by LAB>!*!1,

MSG content at a high level in milk may not be appreciated because of its flavor. In the present study,
it was found that GABA production did not correlate with the reduction in MSG level (Table 2). Hence,
the level of MSG supplemented to milk could be modified. In general, the level of residual MSG in milk
fermented by S. thermophilus and L. brevis 145 was lower than that by L. bulgaricus and L. brevis 145.
Because there was very limited GABA production converted from MSG, the high glutamate in milk
fermented by L. bulgaricus and L. brevis 145 may be due to the better extracellular proteolytic activity
of L. bulgaricus than that of S. thermophilus. This also suggests that L. bulgaricus may have obtained
sufficient glutamate from milk proteins after hydrolysis. In addition, MSG content in milk fermented by
S. thermophilus YI-N1 and L. brevis 145 was the lowest, which indicates that S. thermophilus YI-N1 may
have utilized more MSG than that by other selected dairy starters. Thus, S. thermophilus strains could be
used for reducing the MSG level in fermented milk.

GAD gene expression in L. brevis 145. 'We wanted to find a suitable housekeeping gene in L. brevis
for normalization; however, the expressed stable genes in L. brevis including tuf (elongation factor Tu)®,
proC (amino acid biosynthesis) and rpoB (RNA polymerase)' are not specific for L. brevis. These genes
also exist in S. thermophilus. Clear bands were observed in agarose gel after electrophoresis when ampli-
fication was carried out for five strains of S. thermophilus using the primers reported in above studies®’®.
Thus, 16S rRNA gene was used as a housekeeping gene for real-time qPCR assay using the primers
exhibited in Table 1 and its efficiency was assessed as well. The efficiencies of this qPCR assay using 16S
rRNA gene, gadA and gadB were 91.78%, 99.54% and 101.39%, respecitively.

The result of qPCR quantitation of gadA and gadB mRNA level in L. brevis 145 is shown in Fig. 6.
Interestingly, it was observed that only the gadA mRNA level in L. brevis 145 was significantly (P < 0.01)
up-regulated by certain S. thermophilus strains (ASCC 1275, YI-B1 and YI-N1) as compared with other
two S. thermophilus strains (ASCC 1303 and YI-M1), whereas the gadB mRNA level in L. brevis 145
was not regulated by all selected S. thermophilus strains. The improved gadA mRNA level may suggest
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0 43.90 +-4.48 N.D.
Blank milk
2 2094+ 49.71 N.D.
0 53.62+3.86 N.D.
Lbre 145
2 2023+ 100.52 N.D.
17.02+£1.26 N.D.
ST 1275+ Lbre 145
2 1208.46 +94.19 265.57 +34.13
0 8.93+2.76 N.D.
ST 1303 + Lbre 145
2 1628.134+10.75 25.67£2.00
0 17.27£1.07 N.D.
ST YI-B1 + Lbre 145
2 1156.70 4 69.52 314.97 + 14.45
14.84+1.51 N.D.
ST YI-N1+ Lbre 145
2 985.07 £12.33 230.53 £+ 34.05
0 26.92+5.86 N.D.
ST YI-M1 + Lbre 145
2 1426.62 1+ 22.97 26.234+0.83
0 330.35+27.62 6.58+0.62
Lbu 756 + Lbre 145
2 1987.70 +-48.85 9.79+0.79
0 235.75+3.12 13.53£0.06
Lbu 859 + Lbre 145
2 1881.44 4+ 126.07 11.00£ 1.26
0 276.23+38.16 10.53+5.22
Lbu YI-B2 + Lbre 145
2 1827.17 £139.44 10.32£2.30
0 130.76 £+ 5.68 14.84+1.19
ST YI-B1+ Lbu YI-B2+ Lbre 145
2 1366.79 4+ 53.32 19.52+1.45

Table 2. GABA production and residual MSG in fermented milks after fermentation at 37°C for 24h.
N.D., not detectable; ST, S. thermophilus; Lbu, L. bulgaricus; Lbre, L. brevis 145; Blank milk, 10% (w/v)
skimmed milk. All the glutamate detected in milk was calculated into residual MSG for comparision.

an enhanced GABA biosynthesis in L. brevis 145 resulting in an increased GABA production after
co-culturing with S. thermophilus ASCC 1275, YI-B1 and YI-N1 in milk supplemented with 2g/L of
MSG (Table 2).

Discussion

S. thermophilus and L. bulgaricus are two common dairy starters that are highly recommended for the
manufacture of yogurt and several type of cheeses. Thus, in this study the above starters were co-cultured
with L. brevis 145 for making GABA-rich fermented milk. Also, MSG was supplemented as the substrate
for GABA production. However, MSG is additional sodium salt in milk and its effects on milk fermen-
tation needs to be demonstrated. It was observed that MSG supplemented at the level of 2g/L did not
show much effect on the pH of milk (Fig. 3), cell viabilities of S. thermophilus and L. bulgaricus (Fig. 4),
and the viability of L. brevis 145 (Fig. 5). These results suggest that supplementation with MSG at 2g/L
or below this level to milk base may be an option for making functional fermented milk.

Without MSG supplementation, GABA production from L. brevis 145 was very low when co-cultured
with L. bulgaricus, whereas GABA was not detected when co-cultured with S. thermophilus (Table 2).
However, MSG supplemented at 2 g/L in milk improved the GABA production greatly from L. brevis 145
when only co-cultured with certain S. thermophilus strains, while its production was not significantly
increased during co-culturing with L. bulgaricus (Table 2). Thus, it appears that MSG supplementation
was necessary for an improved GABA production from L. brevis 145. However, further documenta-
tion on the flavor of this fermented milk is necessary because of the introduction of MSG in milk.
Interestingly, it was found that S. thermophilus could utilize more MSG than that of L. bulgaricus. This
may be of particular interest for dairy industry.

Use of L. bulgaricus for co-culturing with L. brevis 145 in milk may not be ideal because of the
generation of low counts of L. brevis 145 by this species (Fig. 5). This is possibly due to competition
and because they belong to the same Lactobacillus genus'’. However, use of S. thermophilus could be a
promising option due to its ability to maintain the viability of L. brevis 145 in milk. A previous study
revealed that formic acid, folic acid and fatty acids released from S. thermophilus supported the growth
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Figure 6. Relative gene expression of gadA and gadB in L. brevis 145 after co-cultured with S.
thermophilus in milk supplemented with 2 g/L of MSG. The levels of gadA and gadB mRNA from L. brevis
145 after co-cultured with S. thermophilus YI-M1 was used as a reference for comparision. Comparative
critical threshold method (R = 2-24¢") was carried out for data analysis of three indendent exeriments, a
positive value indicates up-regulation while a negative value indicates down-regulation. Lowercase letters (a
& b) are designated to indicate the significance of gadB and gadA mRNA levels, the same letter above/below
each bar indicates no significance (P> 0.01). ST, S. thermophilus; Lbre 145, L. brevis 145.

of Lactobacillus genus in milk'®. Moreover, dairy S. thermophilus possesses good extracellular proteo-
lytic property and could also supply L. brevis 145 with sufficient amino acids or peptides'®?. This may
explain that S. thermophilus was able to support the growth of L. brevis 145 in milk during co-culturing.
However, only certain strains of S. thermophilus (ASCC 1275, YI-B1 and YI-N1) improved the GABA
yield from L. brevis 145 (Table 2), which was closely associated with an increased gadA mRNA level in
L. brevis 145 when co-cultured with above strains (Fig. 6). This implies that the GABA biosynthesis in
L. brevis 145 could be up-regulated by certain S. thermophilus strains.

Interestingly, gadA and gadB were found to be independently conserved in L. brevis based on their
amino acids sequences, and some strains only possessed gadA (NCL912 and IFO12005) or gadB (BH2,
877G and OPK-3), while some strains (KB290, ATCC367, BSO 464, AG48, EW and DmCS_003) may
have both genes in their genomes. It has been demonstrated that gadA in previously studied L. brevis
strains (NCL912 and IFO12005) and gadB in L. brevis strains (BH2, 877G and OPK-3) have shown
their capability of producing high amount of GABA in their host. This indicates that both two glutamate
decarboxylases are functional, and may exhibit similar enzymatic activity because they may possess the
same core conformation. Moreover, certain S. thermophilus strains (ASCC 1275, YI-B1 and YI-N1) reg-
ulated the gadA expression in L. brevis 145, while the level of gadB mRNA transcripts was not affected
by the former. Other S. thermophilus strains (ASCC 1303 and YI-M1) were not able to influence the level
of both gadA and gadB transcripts. This may be related with the strain-specific interactions between S.
thermophilus and L. brevis 145 regarding to the metabolism of purine, amino acid and long-chain fatty
acid'®. It was found that the location of gadA and gadB in the genome of sequenced L. brevis strains
(KB290, ATCC367, BSO 464, AG48, EW and DmCS_003) was not close to each other, but only one GAD
gene (gadA or gadB) was found in the gad operon. This suggests that there may be different mechanism
for the regulation of gadA and gadB gene expression in their hosts. This merits further investigation on
the regulation by certain S. thermophilus strains.

Concluding remarks. In this study, two glutamate decarboxylase gene, gadA and gadB, were found
in high GABA-producing L. brevis 145. However, this organism was not able to ferment milk. It was
observed that all the selected dairy S. thermophilus strains, but not L. bulgaricus, improved the viability of
L. brevis 145 when co-cultured in milk. Only certain S. thermophilus strains improved GABA production
from L. brevis 145, which was evidenced by the increased gadA mRNA transcripts in the latter. Moreover,
co-cultures of S. thermophilus and L. brevis 145 utilized more MSG than co-cultures of L. bulgaricus and
L. brevis 145 suggesting the use of S. thermophilus for reducing MSG content if supplemented in milk.
This study provides a new insight of using S. thermophilus for co-culturing with high GABA producer of
plant origin for manufacturing GABA-rich fermented milk.
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Methods

Bacterial strains and culture conditions. Non-dairy starter L. brevis NPS-QW-145, a high GABA-
producing strain isolated from Korean kimchi, was used in this study as a model of high GABA pro-
ducer'. Eight dairy starters (Table 1) were used for co-culturing with this organism. Lactobacillus strains
were activated in Difco™ lactobacilli MRS broth (BD Company, MD, USA), while S. thermophilus strains
were cultivated in M17 broth (BD Company). Working cultures were propagated three times consecu-
tively using 1% inoculation in the above medium (MRS or M17) at 37°C for 18h.

Alignment of the amino acids of glutamic acid decarboxylase (GAD) from L. brevis. In order
to amplify the GAD gene from L. brevis 145, degenerated primers were designed according to the con-
served regions of this enzyme from the species of L. brevis. The full-length sequences of amino acids of
GAD from L. brevis strains were downloaded from the database of the National Center for Biotechnology
Information (NCBI), and were aligned using BioEdit software (version 7.2.5). The conserved region
[NAIDKSEYPR(K)TA] was used for designing the forward primer, whereas another conserved sequence
[GWQVPA(T)YPLPKN] was for designing the reverse primer (Fig. 2). The degenerate primers, PGDG-2F
and PGDG-4R, are shown in Table 1.

Amplification of GAD gene in selected dairy starters and L. brevis 145. After growing the
selected bacteria in the respective medium (MRS or M17), genomic DNAs from eight dairy starters and
L. brevis 145 were isolated and purified by using ChargeSwitch® gDNA Mini Bacteria Kit (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions. One pair of degenerate primers DP1
and DP2, PGDG-2F and PGDG-4R (Table 1) was applied for amplification of partial GAD gene using
AmpliTaq® Gold 360 master mix (Applied Biosystems, Foster, CA, USA). Based on the manufacturer’s
instruction, the PCR reaction volume (25pL) included 12.5pL of master mix, 0.5pL of each primer
(10pM), 2L (~1ng) of DNA template and 8.5pL of DNase-free water. The amplification was carried
out in a GeneAmp® PCR system 2700 (Applied Biosystems) with 35 cycles (94 °C for 30s, 60°C for 305,
and 72°C for 90s) for partial GAD gene. Agarose gel (1%; w/v) electrophoresis was carried out for all
PCR products. The size of the PCR products was ~1014 bp.

Sequencing of GAD gene in L. brevis 145. After amplification of partial GAD gene from L. brevis
145, the PCR products from agarose gel were excised and purified according to the manufacture’s instruc-
tion of S.N.A.P.™ Gel Purification Kit (Invitrogen). The purified DNAs were ligated with pCR™4-TOPO®
TA vector based on the manufacturer’s instructions of the TOPO® TA Cloning® Kit (Invitrogen), and the
ligated plasmids were further transformed into One Shot® TOP10 Chemically Competent Escherichia coli
(Invitrogen). After white/blue agar screening and colony-PCR amplification, the plasmids from positive
colony were extracted and the amplification of inserted sequence was carried out using M13 primers.
Then, PCR products were purified and sequenced in 3130x] Genetic Analyzer (Applied Biosystems)
using BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Sequence reads were further
assembled and aligned. The sequence of partial GAD gene was used for designing qPCR primers for
quantifying the expression of GAD gene in L. brevis 145.

Mixed cultures and culture conditions for skimmed milk fermentation. The cell counts of the
working cultures were enumerated on MRS or M17 agar plates using plate counting method prior to
inoculation in skimmed milk. The initial cell count for L. brevis 145 was ~1 x 10° CFU/mL, while the cell
counts for S. thermophilus and L. bulgaricus were ~1 x 10° CFU/mL and ~1 x 10® CFU/mL, respectively.

Milk fermentation using cultures with L. brevis alone, or in co-culture with single dairy starter or
in co-culture with both S. thermophilus YI-B1 and L. bulgaricus YI-B2 were performed. Monoculture
fermentation of L. brevis 145 was carried out in 10% (w/v) skimmed milk supplemented with or without
2g/L of MSG at 3% (v/v) inoculation level. For co-culturing of L. brevis 145 with one dairy starter in
skimmed milk with or without MSG, the inoculation level of L. brevis 145 was 3% (v/v) and that of the
dairy starter was 1% (v/v). For co-culturing of L. brevis 145 with two different dairy starters, S. thermo-
philus YI-B1 and L. bulgaricus YI-B2 were used as conventional starters, while L. brevis 145 was used as
an adjunct culture. The inoculation level of each of the S. thermophilus YI-B1 and L. bulgaricus YI-B2 was
0.5% (v/v), while the inoculation level of L. brevis 145 was 3% (v/v). All the fermentation experiments
were carried out at three occasions under static condition at 37°C for 24h.

Measurement of the pH of fermented milks. The pH of the fermented milk was measured using
Orion Model 250A portable pH Meter (Thermo Scientific, Wilmington, DE, USA).

Selective enumeration of S. thermophilus and L. bulgaricus in milk. After milk fermentation,
enumeration of S. thermophilus and L. bulgaricus was carried out using selective medium as previously
described?!. Briefly, the viable counts of above two species were enumerated by plating aliquots of serial
dilutions on M17 agar and MRS agar (pH 5.2) plates, respectively. The M17 agar plates for S. thermophilus
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were incubated aerobically at 37°C for 24 h, while MRS agar (pH 5.2) plates for enumerating L. bulgari-
cus were anaerobically kept at 45°C for 48h, followed by counting colonies.

Real-time qPCR assay for measuring the cell counts of L. brevis 145 in milk. Since there was
no available selective medium for enumeration of L. brevis cells, real-time qPCR was used for assessing
the cell count of L. brevis 145 after co-culturing with dairy starters in skimmed milk. Genomic DNA
was extracted using the bead-beating extraction method as previously described®. Briefly, 200pL of
fermented milk, 0.40g of glass beads (0.1 mm diameter; BioSpec Products, Bartlesville, OK, USA) and
600 L of extraction solution [500mM of NaCl, 50mM of Tris, 50mM of EDTA, 4% SDS (w/v), pH
8.0], and 200 pL of phenol/chloroform/isoamyl alcohol (25:24:1) were added into 2-mL microcentrifuge
tubes, followed by disrupting the cells in a BR-2000 Vortexer (Bio-Rad, Hercules, CA, USA) at the highest
speed for 5min. Then, the mixture was separated by centrifugation (12,000 x g; 15min; 4°C), and upper
aqueous phase containing DNAs was transferred to a new tube. The aqueous phase was washed twice
with 600L of phenol/chloroform/isoamyl alcohol (25:24:1), and the DNAs were precipitated by adding
sodium acetate and isopropanol followed by centrifugation (12,000 x g; 15min; 4°C). The DNA pellet
was washed with pre-cooled 75% ethanol. Finally, the precipitated DNAs were dissolved in 30 L of TE
buffer and stored at —30°C for further analysis.

The amplification was carried out in a StepOnePlus™ Real-Time PCR system (Applied Biosystem).
For amplification, 25pL reaction mixture contained 12.5pL of SYBR Green master mix, 1pL of 10mM
of each primer - s-Lbre-F and s-Lbre-R (Table 1), and 2L of template DNA. Real-time qPCR was per-
formed with initial denaturation at 95 °C for 5 min, followed by 40 cycles of denaturation at 95°C for 10s,
primer annealing 55°C for 30s, and extension at 72°C for 30s. At the end of PCR run, melting curve
analysis was carried out from 60°C to 95°C (0.5°C/s) for detection of primer-dimers. The efficiency
of this gPCR assay using primers s-Lbre-F and s-Lbre-R was examined by 10-fold serially diluting the
genomic DNA from L. brevis 145 cultures and 5 dilutions were used for qPCR assay. The standard curve
generated from threshold cycle (C,) value and viable cell counts of L. brevis ranging from 3.2 x 10* CFU/
mL to 3.2 x 10° CFU/mL was prepared in milk as well. The bead-beating extraction procedure was also
carried out for isolating the DNA from L. brevis 145 diluted in skimmed milk. Real-time gPCR amplifi-
cation was carried out in duplicates for each sample and three independent experiments were carried out.

Reversed-phase HPLC analysis of glutamate and GABA. Carrez solutions were used to remove
milk proteins before reversed phase HPLC analysis for glutamate and GABA®. Briefly, one gram of
fermented milk was added into 4.0mL of distilled water, followed by addition of 0.25mL of Carrez I
solution (0.25M potassium ferocyanide) and 0.25mL of Carrez solution II (0.50 M zinc acetate). Then,
the mixture was thoroughly mixed, and kept for 30 min at room temperature until the complex forma-
tion and precipitation of milk proteins, followed by centrifugation at 25°C and 5,000 x g for 30 min.
Supernatants were collected and filtered through 0.20 pm millipore filter. Filtrates were then freeze-dried,
followed by re-dissolving in double distilled water and removing residues by centrifugation at 4°C and
5,000 x g for 30 min. The clear supernatants with free amino acids were again filtered through 0.20 pm
millipore filter. Dansyl derivatization of free amino acids including MSG and GABA was carried out,
followed by HPLC analysis of dansyl amino acids as previously described'.

RNA isolation and cDNA synthesis. A modified hot SDS/hot phenol extraction method was used
to obtain high quality RNA from Gram-positive bacteria**. Approximately 4mL of fermented milk was
re-suspended in 36 mL of ice-cold sterile water containing 1% (v/v) 3-mercaptoethanol, followed by
addition of 4mL of ice-cold ethanol and vortexing for 1 min. Milk proteins were removed by centrifuga-
tion at 4°C and 233 x g for 5min, and supernatants were collected and centrifuged at 4°C and 5,000 x g
for another 10min. The harvested bacterial pellet was resuspended thoroughly in 1 mL of RNAlater™
buffer (Qiagen, Limburg, The Netherlands) and incubated at room temperature for 5min. Then, the
bacterial suspension was centrifuged again and the cell pellet was washed with ice-cold sterile water con-
taining 1% (v/v) B-mercaptoethanol to remove residual salts. Cell pellets were resuspended in 600pL of
lysis buffer consisting of 1% (v/v) 3-mercaptoethanol and 0.5 mg/mL lysozyme (Sigma-Aldrich, St. Louis,
MO) in TE buffer, and 200 mg of glass beads (0.1 mm diameter; BioSpec Products) was added into the
suspension. Then, the suspension was vortexed in a BR-2000 Vortexer (Bio-Rad) at the highest speed for
5min. After that, 60pL of 10% (w/v) SDS solution and 66 L of 1M sodium acetate (pH 5.2) was mixed
with the lysate. Additionally, 600 uL of phenol:chloroform:isoamyl alcohol (25:24:1) was added, mixed
and incubated at 64°C for 10 min. The tubes were inverted several times every 2 min. The mixture was
chilled in an ice bath for 5min and centrifuged at 4°C and 21,000 x g for 10 min. The aqueous layer was
transferred and washed with equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) twice and
centrifuged at 4°C and 21,000 x g for 5min. The aqueous layer was transferred to 1.5mL Eppendorf
tubes, and RNA was precipitated with ethanol by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and
2 volume of cold ethanol to each tube. The samples were mixed and incubated at —30°C overnight. The
RNA was pelleted by centrifuging at 4°C and 21,000 x g for 25min followed by washing with ice-cold
75% ethanol. The pellet was re-suspended in 20pL of RNase-free water. RNAs isolated after DNase I
(Invitrogen) treatment were further converted into cDNAs by reverse transcription according to the
manufacture’s instruction of High-Capacity RNA-to-cDNA™ Kit (Applied Biosystems).
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Real-time qPCR quantitation of gadA and gadB mRNA transcripts in L. brevis 145. The
amplification was also carried out in a StepOnePlus™ Real-Time PCR system (Applied Biosystem). The
25uL reaction mixture contained 12.5pL of SYBR Green master mix, 1pL of 10mM of each primer
for 16S rRNA gene (reference gene) and GAD genes (Table 1), and 2L of template cDNA. Real-time
qPCR was carried out with initial denaturation at 95°C for 10 min, followed by 40 cycles of denaturation
at 95°C for 15s, and annealing and extension at 60°C for 60s. The efficiency of this qPCR assay using
three pair of primers including s-Lbre-F and s-Lbre-R, gadA-757F and —945R, gadB-364F and —499R
(Table 1) was also examined by 10-fold serially diluting the genomic DNA from L. brevis 145 cultures and
5 dilutions were used for the qPCR assay. RT-qPCR analysis was carried out for each sample in duplicate
and all the experiments were replicated three times.

Statistical analysis. All presented data in the bar charts and tables correspond to means + standard
deviation. Significant difference (P < 0.05 or P<0.01) among the groups was carried out by one-way
analysis of variance (ANOVA) using IBM SPSS Statistics 20.0 version.
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