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Abstract

Aims: Various cardiovascular risk prediction models have been developed for patients with type 

2 diabetes mellitus. Yet few models have been validated externally. We perform a comprehensive 

validation of existing risk models on a heterogeneous population of patients with type 2 diabetes 

using secondary analysis of electronic health record data.

Methods: Electronic health records of 47,988 patients with type 2 diabetes between 2013 and 

2017 were used to validate 16 cardiovascular risk models, including 5 that had not been compared 

previously, to estimate the 1-year risk of various cardiovascular outcomes. Discrimination and 

calibration were assessed by the c-statistic and the Hosmer-Lemeshow goodness-of-fit statistic, 

respectively. Each model was also evaluated based on the missing measurement rate. Sub-analysis 

was performed to determine the impact of race on discrimination performance.

Results: There was limited discrimination (c-statistics ranged from 0.51 to 0.67) across the 

cardiovascular risk models. Discrimination generally improved when the model was tailored 

towards the individual outcome. After recalibration of the models, the Hosmer-Lemeshow statistic 

yielded p-values above 0.05. However, several of the models with the best discrimination relied on 

measurements that were often imputed (up to 39% missing).
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Conclusion: No single prediction model achieved the best performance on a full range of 

cardiovascular endpoints. Moreover, several of the highest-scoring models relied on variables with 

high missingness frequencies such as HbA1c and cholesterol that necessitated data imputation and 

may not be as useful in practice. An open-source version of our developed Python package, cvdm, 

is available for comparisons using other data sources.

Keywords

Type 2 diabetes; Cardiovascular disease; Electronic health records; Risk models

1. Introduction

Despite concerted efforts by the American Diabetes Association and the American Heart 

Association to reduce its risk [1], cardiovascular disease (CVD) remains the most prevalent 

cause of morbidity and mortality in individuals with diabetes. For patients with diabetes, the 

identification of high CVD risk (CVDR) is crucial to early prevention, timely treatment, and 

effective management for reducing CVDR. Risk prediction models can identify high-risk 

patients with approaches ranging from simple equations with a small number of predictor 

variables to more complex approaches that capture interactions between different variables.

Various CVDR prediction models have been developed for patients with type 2 diabetes 

mellitus, or PT2DM [2]. However, the optimal algorithm for CVDR estimation and the 

need for diabetes-specific CVDR models are debatable. Each guideline recommends a 

different CVDR prediction model, despite limited evidence of external validation across 

these prediction models. Among the few studies to evaluate various CVDR scores for 

PT2DM on an external validation cohort [3–7], two studies [3,4] assessed 3–5 CVDR 

models on small cohorts (n ranging from 453 to 1174), yet small sample sizes can yield 

imprecise estimates of discrimination and calibration. Another study of 181,399 PT2DM 

(70.8% Caucasian or White) used 6 CVDR models [5] but the homogenous population 

can produce inaccurate risk estimates in multiethnic cohorts [8]. The last two studies 

investigated 3 and 22 CVDR models on electronic health record (EHR) cohorts but either 

had less missing measurements typically found in EHRs [6] or omitted several recently 

developed CVDR scores [7]. Supplemental Table 2 contains more details about these 

validation studies. Additionally, each risk model utilizes different outcome definitions which 

can hinder the validation of the various models. This coupled with the changing patterns 

of CVD presentation such as the higher prevalence of other CVD complications beyond 

coronary heart disease (CHD) and stroke [9] suggests the need for an in-depth study of 

various individual CVD endpoints. Therefore, a comprehensive evaluation of various risk 

prediction models on a large, multiethnic cohort across the full range of CVD outcomes is 

necessary to capture the contemporary presentation of CVD.

Another major limitation of the existing validation studies is the use of data from 

longitudinal cohorts, where the risk factors were measured using well-established protocols. 

In clinical practice, such factors are obtained from EHRs, in which data can be erroneous 

or incomplete. For example, in the Longitudinal Epidemiologic Assessment of Diabetes 

Risk (LEADR) study which captured EHR data from 1.4 M patients over six years, yet 
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17%, 65%, and 83% of the patients have no measurements associated with blood pressure, 

cholesterol, and HbA1c, respectively [10]. A recent study suggested that published CVDR 

models can be successfully applied to EHRs [11], yet whether a similar conclusion can be 

drawn for the CVDR scores developed for use among PT2DM is unclear.

Increasing availability of EHRs provides the opportunity to evaluate the performance of 

existing risk scores in a large, multiethnic, contemporary population of PT2DM. The 

individual-level nature of EHRs can also be used to understand performance differences 

that arise from 5 different CVD events: CHD, congestive heart failure (CHF), myocardial 

infarction (MI), stroke, and a composite endpoint, thereby capturing the full range of 

CVD presentation. We comprehensively evaluate the predictive performance of 13 diabetes-

specific CVDR scores including 5 models, ARIC [12], DIAL [13], DMCx [14], HKDR 

[15–17], and UKPDS OM2 [18] that were not part of any previous validation study. Our 

study also contains the most diabetes-specific CVDR scores with 4 more than a previous 

study [7]. We are the largest heterogeneous study (n = 48,779) with more than 20% of the 

patients identifying as African American or Black and the first to assess performance based 

on ethnicity. Furthermore, we are the only study to assess the models on MI even though 

it is commonly found in existing CVD composite definitions. Finally, we developed an 

open-source Python package that implements all the scores in a cohesive software package.

2. Materials and methods

2.1. Study design and population

Our study was conducted using EHRs that did not contain identifiers, except for shifted 

dates, from the Emory Healthcare clinical data warehouse (CDW), a large healthcare 

delivery organization in the Southeast region of the United States. Secondary data analysis 

was approved by the Emory University Institutional Review Board. Adult patients seen in 

the clinic, outpatient, and inpatient settings aged 18 to 80 years old with type 2 diabetes 

(T2DM) (ICD-9 code of ‘250.XX’ or ICD-10 code of ‘E11.XX’) between January 1, 2013 

and December 31, 2017 were included. For data security, certain records were omitted based 

on the date shifting logic. Patients who did not have at least one encounter after the initial 

T2DM diagnosis (earliest recorded T2DM billing code) were excluded from this study. 

Patients with a prior history of all outcomes of interest (CHD, CHF, MI, and Stroke) were 

excluded from the study. Thus, our study population was comprised of 48,779 patients.

2.2. Endpoint definitions

We used the combination of ICD-9 and ICD-10 clinical codes to identify cases of CHD 

(ICD-9 code of ‘414.XX’ or ICD-10 code of ‘I25. XX’), CHF (ICD-9 code of ‘428.XX’ or 

ICD-10 code of ‘I50.XX’), DCM (ICD-9 code of ‘425.XX’ or ICD-10 code of ‘I42.XX’), 

MI (ICD-9 code of ‘410.XX’, ‘411.1′, ‘411.8′ or ICD-10 code of ‘I21.XX’), and Stroke 

(ICD-9 code of ‘430.XX-434.XX’ or ICD-10 code of ‘I66.XX’). To ensure the patient 

likely experienced the event, the code needed to be classified as an admitting diagnosis or 

discharge diagnosis in the EHR. The CVD endpoint was defined as the presence of CHD, 

CHF, MI, or Stroke. The earliest recorded date in the EHR was used as the diagnosis date for 

each of the endpoints.
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Due to limited follow-up in our cohort (full-scale EHR adoption occurred in 2012), we 

posed event prediction as a binary classification problem: whether an individual experienced 

a particular CVD endpoint in the next year. Although existing validation studies focused on 

predicting time-to-event, a previous study of cardiovascular risk also used event prediction 

[19]. For each outcome, the value 1 (i.e., positive) was assigned for any patient where there 

was either an encounter or death of the endpoint within the next year. The value 0 was 

assigned to subjects that either had an encounter or death at least one year in the future 

without CHD, CHF, MI, or stroke.

Each patient was limited to a single encounter, or index encounter, to avoid arbitrarily 

inflating or deflating discrimination ability. For the positive samples, the index encounter 

was the earliest recorded encounter within one year of the CVD endpoint. For the negative 

samples, the index encounter was a randomly sampled encounter occurring at least one year 

before the last recorded encounter.

2.3. Selected CVD risk models

A recent systematic reviews identified 19 CVDR prediction models specifically developed 

for use in PT2DM [7]. We benchmarked 13 of the 19 models: Advance [20], ARIC [12], 

DARTS [21], DCS [22], DIAL [13], DMCx [14], Fremantle [23], HKDR [15–17], NDR 

[24], QDiabetes [25], RECODe [26], UKPDS [27], and UKPDS OM2 [18]. The remaining 

6 CVDR scores were not considered as some of the predictors were not readily available in 

our EHRs (e.g., exercise, years of formal education, alcohol consumption). We considered 

3 general CVDR: ACC/AHA Pooled Cohort Equation (PCE) [28], the Framingham model 

[29], and the SCORE model [30] as comparisons due to their success in existing PT2DM 

validation studies. A short description of the model, the endpoints included in the outcome 

definition, and the method for dealing with missing data are summarized in Table 1. A 

comparison of the predictor variables used for each model can be found in the Supplemental 

Material.

2.4. Definition of predictors in cohort

All types of patient encounter data (i.e., clinics, outpatient, and inpatient visits) within 

one year prior to index encounter were considered for predictor value measurement. Data 

included billing codes, medication lists, laboratory results, and structured notes such as 

physiological measurements. Age, sex, and race were self-reported in the administrative 

records. For vital signs and laboratory values, the most recent measurement was used. 

Extreme values of vital signs were excluded (1st and 99th percentile measurements). For 

medication-related predictors (i.e., treatment of hypertension, insulin, etc.), the value was set 

to positive if there was any presence of the medication within the last year before the index 

encounter. A table of the predictors used by each CVDR model is provided in Supplemental 

Table 1.

2.5. Statistical analysis

We developed cvdm, an open-source Python 3.7 package, to implement the CVDR scores 

used here. Python is widely adopted by data analysts and researchers due to its ease of 

interactive data analysis and utility as a general-purpose programming language [31]. Code 
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is available as a GitHub repository (https://github.com/joyceho/cvdm) under a permissive 

MIT license. Thus the CVDR scoring systems can be validated on many datasets, promoting 

transparency of this work.

Pperformance of CVDR models was assessed both in terms of discrimination and 

calibration. The C-statistic was used to assess model discrimination. For model calibration, 

we used the Hosmer-Lemeshow χ2 test, reliability-in-the-small, reliability-in-the-large, and 

visual inspection [32]. Ten random samples (70%-30% train-test) were drawn using the 

repeated random subsampling cross-validation method. We used CVDR scores from training 

data to calibrate an isotonic regression model [33], a calibration mechanism that only 

assumes the curve is monotonically increasing and is more general than the sigmoid method 

provided there is sufficient calibration data. Discrimination and calibration performance 

were calculated only on the test subjects for each random sample.

We imputed predictors that were missing for a subset of the patients using five different 

mechanisms: mean, median, k-nearest neighbors, multivariate imputation by chained 

equations (MICE), and stochastic regression imputation. The imputation methods were 

performed using the impute module in scikit-learn or the autoimpute package. Imputation 

parameters (e.g., mean values) were learned from the training data and applied to the test 

data. The practicality of the models was measured as the average percentage of missing 

measurements. Additional details regarding imputation and evaluation are available in the 

Supplemental Material.

3. Results

3.1. Descriptive statistics

Overall, 5923 out of 39,187 (15.1%) subjects were diagnosed with CHD; 4355 out of 43,607 

(10.0%) with CHF; 2304 out of 45,930 (5.0%) had an MI; and 2390 out of 45,510 (5.3%) 

suffered a stroke; and 7840 out of 36,620 (21.4%) experienced a CVD endpoint in our study 

population (n = 48,779). Baseline characteristics and subgroups of interest are reported in 

Table 2. We reported descriptive statistics for the demographic and clinical data as means ± 

standard deviations, with percentages of missing values reported in parenthesis.

3.2. Discrimination

All CVDR scores had limited to moderate discrimination, the average C-statistic 

ranging between 0.53 and 0.67. Imputation method for missing measurements had a 

marginal impact on the resulting discrimination (shown in Supplemental Fig. 1). Mean 

imputation consistently performed the best across the 16 CVDR models and 6 endpoints. 

Discrimination results using mean imputation with the confidence intervals (CIs) for the 

C-statistic are summarized in Table 3. Although no single CVDR model offered the best 

performance across the five different endpoints, DMCx performed consistently well across 

all the endpoints. For CHD, DMCx had the best discrimination by best point estimate (0.67 

with 95% CI of 0.66–0.67). Advance offered comparable performance within the 95% CI. 

DMCx also had the best discrimination for MI with point estimate (0.65 with 95% CI 

of 0.64–0.66) where HKDR, RECODE, and UKPDS OM2 yielded similar performance. 
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Similarly, the CHF variant of RECODe achieved the highest point estimate of discrimination 

for detecting CHF (0.67 with 95% CI of 0.67–0.68) and CVD (0.66 with 95% CI of 0.66–

0.66). For CVD, Advance and DMCx offered comparable performance to RECODE. For 

predicting stroke, the CVD-variant of DCS and Fremantle had the highest point estimated 

C-statistic (0.63 with 95% CIof 0.62–0.63). Advance, DMCx, and HKDR also provided 

similar CVD discrimination ability to Advance and DMCx.

For the four individual CVD outcomes, Stroke was the most difficult endpoint to predict 

(average C-statistic of 0.60) followed by MI and CHF (average C-statistic of 0.61). 

Discriminating between patients who experienced CHD was the easiest of the outcomes 

with an average C-statistic of 0.63. The results also suggest that discrimination generally 

improves when the risk equation was tailored towards the individual outcome. For example, 

the top performers for CHF included CHF-variants of RECODe and HKDR. A similar 

pattern happened for MI with the MI-variants of UKPDS OM2 and RECODe and stroke 

with stroke-variants of UKPDS OM2, RECODe, and HKDR. However, a tailored risk 

equation for the event was not guaranteed to outperform other risk models, as evident with 

the CHF-variant of UKPDS OM2 and the MI-variant of DCS.

Comparison of the diabetes-specific CVDR equations and general-population CVDR 

equations (i.e., Framingham, PCE, and SCORE) did not yield a significant difference 

overall. For example, ARIC, DARTS, DIAL, and UKPDS were unable to distinguish 

high-risk subjects compared to Framingham, PCE, and SCORE. Only Advance, DMCx, 

RECODe, and HKDR were able to achieve better discrimination than Framingham, PCE, 

and SCORE across the 4 individual CVD endpoints.

3.3. Impact of missing values

Certain CVDR models relied on predictors that had a higher percentage of missing values. 

As shown in Table 2 Fig. 1, 68–73% of our study population did not have an HbA1c 

measurement in the year before the encounter date. Even the most available measurement, 

systolic blood pressure (SBP), was unobserved in 16–34% of our population. To assess 

the potential impact of missing measurements, the models were assessed on two subgroups 

of our study population: those with both diastolic (DBP) and SBP measurements, and 

those with SBP, body mass index (BMI), and smoking status available. For the CVD 

endpoint, this resulted in patient cohorts of 24,720 and 6753, respectively. There was no 

noticeable difference in discriminatory performance even with fewer missing measurement 

levels across the various models (results summarized in Supplemental Table 3).

Models with higher percentages required more data imputation and thus may be less 

practical when the discrimination performance is similar. Fig. 1 illustrates the summary 

statistics for the percentages of missing values across the 16 CVDR models for the CVD 

endpoint. Framingham and PCE required the least amount of data imputation, with 21.3% 

and 23.2% of the entries missing on average across the entire cohort. DIAL consistently 

had the highest missing percentage of the predictor values (39.4%), followed by NDR 

(38.3%), HKDR (34.8%), and DMCx (33.0%). Thus, three of the highest scoring models 

(DMCx, HKDR, and RECODe) relied on data that were often imputed. Moreover, the 
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diabetes-specific CVDR models also generally relied on measurements that were often not 

available.

3.4. Impact of ethnicity

Existing prediction models can yield inaccurate risk estimates on multiethnic cohorts [8]. As 

shown in Table 2, almost 44% of our population identified as African American or Black. 

We performed a sub-analysis to assess the impact of race on the results. We focused on 

two subgroups: Caucasian or White and African American or Black. Supplemental Table 

4 summarizes the discrimination performance on the two subgroups across the 16 risk 

prediction models. Across the five different outcomes, the discrimination performance was 

generally better on the Caucasian or White population as opposed to the African American 

or Black. This was true even for models where race was a predictor value (i.e., ARIC, 

DCS, Fremantle, QDiabetes, RECODE, UKPDS, UKPDS OM2). The lone outlier was 

DIAL, which had better performance on African American or Black patients across the five 

outcomes. More surprisingly, all models except RECODE offered better performance for the 

African American or Black population on the MI endpoint.

3.5. Impact of prediction time

The existing prediction models are predominately designed for 5- or 10-year risk, and 

thus may have limited discrimination power due to the short time frame. We performed a 

sensitivity analysis to evaluate the impact of the time frame. Due to the limited follow-up 

of the cohort, we were only able to extend the time frame to 3 years. Supplemental Table 

5 summarizes the discrimination performance across the 16 prediction models for 1-, 2-, 

and 3-year CVD prediction. There was no noticeable performance improvement between the 

1-year endpoint and the 3-year endpoint.

3.6. Calibration

Prior to recalibration using isotonic regression, the calibration of all the scores was 

poor with p values below 0.05 (shown in Supplemental Fig. 2). After recalibration, 

Hosmer-Lemeshow χ2 statistics improved and yielded p-values above 0.1 (summarized 

in Supplemental Table 3). For reliability-in-the-large and reliability-in-the-small, the value 

was almost 0 for many of the scores, suggesting slight differences between expected and 

observed risk. This is supported by the calibration plots shown in Fig. 2 as the predicted 

risk and observed risk were comparable across the various scores. However, the recalibrated 

models failed to generate predictions for higher-risk groups. We also assessed impact of 

calibration method by comparing isotonic regression and Platt’s scaling. Isotonic regression 

provided noticeably better calibration results without impacting discrimination (shown in 

Supplemental Table 4).

4. Discussion

In this study, we conducted a comprehensive external validation of 16 CVDR models for 

PT2DM. We also performed the first validation of various diabetes-specific risk scores using 

only EHR data. Furthermore, we assessed predictive performance of the models for the full 

range of CVD outcomes to capture the contemporary presentation of CVD.
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Across all CVDR scores, the ability to discriminate between patients who will and will not 

get any of the four individual CVD endpoints (i.e., CHD, CHF, MI, and Stroke) using EHRs 

in the next year was comparable, with the C-statistics < 0.68. After recalibration, there was a 

good agreement between predicted and observed risks for most models.

4.1. Findings from other studies

A previous study has suggested that diabetes-specific CVDR prediction models provide 

slightly better discriminative performance than general-population risk prediction models 

[34]. This discriminatory advantage is posited to arise from use of diabetes as a binary 

risk factor, ignoring the heterogeneity in diabetes. In contrast, diabetes-specific CVDR 

models include several diabetes-related predictors such as diabetes duration and HbA1c 

measurements. Our results suggest that model performance depends on the model itself 

as not all diabetes-specific models improved discriminative performance. A potential 

explanation is differences in outcome definitions, as the general population-derived scores 

included 3 or 4 of the five individual endpoints, whereas several of the diabetes-specific risk 

models only included 2 or 3 endpoints, as indicated in Table 1.

There have only been five previous validation studies that assessed performance of several 

CVDR scores on PT2DM. One validation study found similar discriminative ability with 

C-statistics of 0.54–0.69, with variability in performance arising from the cohort itself and 

not the risk model [3]. Two validation studies found higher discriminative performance on 

their respective cohorts with C-statistics ranging from 0.619 to 0.674 and no discriminatory 

advantage in using a diabetes-specific CVDR model [5,7]. However, the general population 

score was less well-calibrated as it overestimated the risk and may result in unnecessary 

interventions. A study that included an EHR cohort obtained C-statistics from 0.58 to 0.62 

with estimates comparable between EHRs and population-based cohorts even though EHR 

cohorts tend to be sicker [6].

4.2. Strengths/limitations

There are several strengths to this study. First is inclusion of 13 published CVDR models 

designed for PT2DM. Previous validation studies only assessed the performance of 5–9 

diabetes-specific risk scores [3–7]. Thus, our study serves as the most comprehensive and 

extensive external validation of existing CVDR scores. Moreover, our study evaluated the 

differences between diabetes-specific and general population-specific models for individual 

CVD complications. Two previous validation studies only compared against a single general 

population model [5] or only CHD [7] while another was a meta-analysis of existing 

published articles [34]. Finally, our study used EHR data from a diverse, heterogeneous 

population from a large healthcare system. By performing a secondary analysis of EHRs, 

our study cohort serves as one of the larger validation populations and offers a practical 

setting for assessing risk.

There are several limitations to our study that need to be addressed. The first limitation is 

the validation of prediction models for 5- or 10-year risk to predict short-term (1-year to 

3-year) risk. Given the limited follow-up time for our study population, it was infeasible 

to predict 5-year or 10-year using EHR data. A follow-up study can be conducted after 7 
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years to better understand differences in short-term prediction. A second limitation is that 

not all predictors were commonly collected in our cohort. More than two-thirds of the cohort 

had missing measurements for one or more of the cholesterol values, smoking, eGFR, and 

HbA1c. We addressed this issue by exploring several common imputation methods using 

other risk predictors. In addition, we analyzed the amount of data imputation required to use 

each risk prediction model (see Fig. 1). However, data imputation itself could have resulted 

in some loss of discriminatory power. One remedy is to pool data across multiple healthcare 

sites to construct a sufficiently large and diverse cohort with less missing measurements for 

future work. A third issue is related to measurement quality. Unlike traditional cohort studies 

where the measurement of predictor values is performed using a standardized protocol, 

EHR data is filled with noisy measurements. Extreme measurement errors such as a height 

of 200 inches were excluded, but other measurement errors were not as readily detected. 

Recent development of data quality indicators [35] can potentially be incorporated into 

the assessment of measurement quality for future studies. There are also some concerns 

regarding the recording accuracy of the individual CVD events and patient history related to 

atrial fibrillation, CHF, hypertension. Outcomes and predictor variables were assessed using 

billing codes which can have low precision. Thus, the risk scores may not be an accurate 

assessment of the subject.

CVDR model predictive performance was slightly lower than the original C-statistic 

reported in the studies (0.68–0.85) and the C-statistics of the externally validated studies 

(0.59–0.86) [2]. This might be explained by the ethnicity differences in our study 

population, with 44% of the subjects identifying as African American or Black. Many 

CVDR scores had substantially less population diversity. Additional differences may also 

arise from using EHR-collected data which may be noisier and have a higher percentage of 

missingness [36]. Another explanation might be that many CVDR scores were developed 

on populations observed between 170 and 2000, and thus not be well-adjusted to changes 

in treatment and interventions of the last two decades. As observed from Table 2, our 

study population generally had good control of their blood pressure (SBP <140 mmHg), 

cholesterol (total cholesterol <4.5 mmol/L), and HbA1c (% <8). This is contrasted with 

the ARIC cohort, where the median cholesterol level was between 5.18 and 6.21 mmol/L 

[12], and the DARTS cohort, where the average HbA1C was 8% and SBP was 144 mmHg 

[21]. This explanation is also supported by slightly better discrimination power of Advance, 

DCS, DMCx, HKDR, RECODe, and UKPDS OM2, which were developed on more recent 

cohorts.

Ability to differentiate between different CVD complications can help guide treatment and 

inform patients of their risks. However, to be useful in practice, CVDR models should 

provide accurate and well-calibrated estimates of risk. While discrimination ability is 

moderate, several of the common predictor variables were missing for our study population, 

thus making them less practical. Future studies can focus on replicating results in other 

healthcare systems to determine viability of implementing risk calculations on EHR systems 

for real-time use by clinical providers.
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4.3. Conclusions

This extensive study showed a comparable and moderate ability to discriminate between 

PT2DM who will experience a specific CVD complication in the following year based 

on EHR data. Simple recalibration of CVDR models to our study population resulted in 

improved estimates of actual risk. However, there was not a single existing prediction model 

that outperformed all others on all CVD endpoints. The results also suggest that detailed 

sub-analysis of risk scores should be performed to determine impact arising from the race as 

it yielded unexpected results for the MI outcome. Models that relied on less data imputation 

such as Advance, Framingham, and PCE can potentially be used by healthcare providers 

in a clinic setting to identify patients who are at low or high risk of developing CVD 

complications. In addition, multiple CVDR scores can be used simultaneously as they offer 

different performance across the individual outcomes. Moreover, the calculation can be 

performed in real-time from the current measurements collected during the subject’s clinic 

visit, as the cvdm package can integrate to existing EHR systems. However, to improve 

risk estimates and develop more accurate prediction models, practitioners should collect 

measurements that are commonly used in these models to better assess CVDR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A boxplot of the missing predictor variables across the 16 risk prediction models for the 

CVD endpoint.
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Fig. 2. 
Calibration plots for the recalibrated risk score models on the CVD outcome. The dashed 

gray line reflects perfect agreement between observed and predicted risk.
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