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Abstract

Aims: Various cardiovascular risk prediction models have been developed for patients with type
2 diabetes mellitus. Yet few models have been validated externally. We perform a comprehensive
validation of existing risk models on a heterogeneous population of patients with type 2 diabetes
using secondary analysis of electronic health record data.

Methods: Electronic health records of 47,988 patients with type 2 diabetes between 2013 and
2017 were used to validate 16 cardiovascular risk models, including 5 that had not been compared
previously, to estimate the 1-year risk of various cardiovascular outcomes. Discrimination and
calibration were assessed by the c-statistic and the Hosmer-Lemeshow goodness-of-fit statistic,
respectively. Each model was also evaluated based on the missing measurement rate. Sub-analysis
was performed to determine the impact of race on discrimination performance.

Results: There was limited discrimination (c-statistics ranged from 0.51 to 0.67) across the
cardiovascular risk models. Discrimination generally improved when the model was tailored
towards the individual outcome. After recalibration of the models, the Hosmer-Lemeshow statistic
yielded p-values above 0.05. However, several of the models with the best discrimination relied on
measurements that were often imputed (up to 39% missing).
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Conclusion: No single prediction model achieved the best performance on a full range of
cardiovascular endpoints. Moreover, several of the highest-scoring models relied on variables with
high missingness frequencies such as HbAlc and cholesterol that necessitated data imputation and
may not be as useful in practice. An open-source version of our developed Python package, cvdm,
is available for comparisons using other data sources.

Type 2 diabetes; Cardiovascular disease; Electronic health records; Risk models

Introduction

Despite concerted efforts by the American Diabetes Association and the American Heart
Association to reduce its risk [1], cardiovascular disease (CVD) remains the most prevalent
cause of morbidity and mortality in individuals with diabetes. For patients with diabetes, the
identification of high CVD risk (CVDR) is crucial to early prevention, timely treatment, and
effective management for reducing CVDR. Risk prediction models can identify high-risk
patients with approaches ranging from simple equations with a small number of predictor
variables to more complex approaches that capture interactions between different variables.

Various CVDR prediction models have been developed for patients with type 2 diabetes
mellitus, or PT2DM [2]. However, the optimal algorithm for CVDR estimation and the
need for diabetes-specific CVDR models are debatable. Each guideline recommends a
different CVDR prediction model, despite limited evidence of external validation across
these prediction models. Among the few studies to evaluate various CVDR scores for
PT2DM on an external validation cohort [3-7], two studies [3,4] assessed 3-5 CVDR
models on small cohorts (n ranging from 453 to 1174), yet small sample sizes can yield
imprecise estimates of discrimination and calibration. Another study of 181,399 PT2DM
(70.8% Caucasian or White) used 6 CVDR models [5] but the homogenous population
can produce inaccurate risk estimates in multiethnic cohorts [8]. The last two studies
investigated 3 and 22 CVDR models on electronic health record (EHR) cohorts but either
had less missing measurements typically found in EHRs [6] or omitted several recently
developed CVDR scores [7]. Supplemental Table 2 contains more details about these
validation studies. Additionally, each risk model utilizes different outcome definitions which
can hinder the validation of the various models. This coupled with the changing patterns
of CVD presentation such as the higher prevalence of other CVD complications beyond
coronary heart disease (CHD) and stroke [9] suggests the need for an in-depth study of
various individual CVD endpoints. Therefore, a comprehensive evaluation of various risk
prediction models on a large, multiethnic cohort across the full range of CVD outcomes is
necessary to capture the contemporary presentation of CVD.

Another major limitation of the existing validation studies is the use of data from
longitudinal cohorts, where the risk factors were measured using well-established protocols.
In clinical practice, such factors are obtained from EHRs, in which data can be erroneous
or incomplete. For example, in the Longitudinal Epidemiologic Assessment of Diabetes
Risk (LEADR) study which captured EHR data from 1.4 M patients over six years, yet
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17%, 65%, and 83% of the patients have no measurements associated with blood pressure,
cholesterol, and HbAlc, respectively [10]. A recent study suggested that published CVDR
models can be successfully applied to EHRs [11], yet whether a similar conclusion can be
drawn for the CVDR scores developed for use among PT2DM is unclear.

Increasing availability of EHRs provides the opportunity to evaluate the performance of
existing risk scores in a large, multiethnic, contemporary population of PT2DM. The
individual-level nature of EHRs can also be used to understand performance differences
that arise from 5 different CVD events: CHD, congestive heart failure (CHF), myocardial
infarction (M), stroke, and a composite endpoint, thereby capturing the full range of

CVD presentation. We comprehensively evaluate the predictive performance of 13 diabetes-
specific CVDR scores including 5 models, ARIC [12], DIAL [13], DMCx [14], HKDR
[15-17], and UKPDS OM2 [18] that were not part of any previous validation study. Our
study also contains the most diabetes-specific CVDR scores with 4 more than a previous
study [7]. We are the largest heterogeneous study (7= 48,779) with more than 20% of the
patients identifying as African American or Black and the first to assess performance based
on ethnicity. Furthermore, we are the only study to assess the models on Ml even though

it is commonly found in existing CVD composite definitions. Finally, we developed an
open-source Python package that implements all the scores in a cohesive software package.

2. Materials and methods

2.1. Study design and population

Our study was conducted using EHRs that did not contain identifiers, except for shifted
dates, from the Emory Healthcare clinical data warehouse (CDW), a large healthcare
delivery organization in the Southeast region of the United States. Secondary data analysis
was approved by the Emory University Institutional Review Board. Adult patients seen in
the clinic, outpatient, and inpatient settings aged 18 to 80 years old with type 2 diabetes
(T2DM) (ICD-9 code of ‘250.XX” or ICD-10 code of ‘E11.XX") between January 1, 2013
and December 31, 2017 were included. For data security, certain records were omitted based
on the date shifting logic. Patients who did not have at least one encounter after the initial
T2DM diagnosis (earliest recorded T2DM billing code) were excluded from this study.
Patients with a prior history of all outcomes of interest (CHD, CHF, MI, and Stroke) were
excluded from the study. Thus, our study population was comprised of 48,779 patients.

2.2. Endpoint definitions

We used the combination of ICD-9 and ICD-10 clinical codes to identify cases of CHD
(ICD-9 code of ‘414.XX” or ICD-10 code of ‘125. XX”), CHF (ICD-9 code of ‘428.XX’ or
ICD-10 code of ‘150.XX”), DCM (ICD-9 code of ‘425.XX’ or ICD-10 code of ‘142.XX"),
MI (ICD-9 code of “410.XX’, “411.1", “411.8’ or ICD-10 code of ‘121.XX"), and Stroke
(ICD-9 code of ‘430.XX-434.XX’ or ICD-10 code of “166.XX’). To ensure the patient

likely experienced the event, the code needed to be classified as an admitting diagnosis or
discharge diagnosis in the EHR. The CVD endpoint was defined as the presence of CHD,
CHF, Ml, or Stroke. The earliest recorded date in the EHR was used as the diagnosis date for
each of the endpoints.
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Due to limited follow-up in our cohort (full-scale EHR adoption occurred in 2012), we
posed event prediction as a binary classification problem: whether an individual experienced
a particular CVD endpoint in the next year. Although existing validation studies focused on
predicting time-to-event, a previous study of cardiovascular risk also used event prediction
[19]. For each outcome, the value 1 (i.e., positive) was assigned for any patient where there
was either an encounter or death of the endpoint within the next year. The value 0 was
assigned to subjects that either had an encounter or death at least one year in the future
without CHD, CHF, M, or stroke.

Each patient was limited to a single encounter, or index encounter, to avoid arbitrarily
inflating or deflating discrimination ability. For the positive samples, the index encounter
was the earliest recorded encounter within one year of the CVD endpoint. For the negative
samples, the index encounter was a randomly sampled encounter occurring at least one year
before the last recorded encounter.

2.3. Selected CVD risk models

A recent systematic reviews identified 19 CVDR prediction models specifically developed
for use in PT2DM [7]. We benchmarked 13 of the 19 models: Advance [20], ARIC [12],
DARTS [21], DCS [22], DIAL [13], DMCx [14], Fremantle [23], HKDR [15-17], NDR
[24], QDiabetes [25], RECODe [26], UKPDS [27], and UKPDS OM2 [18]. The remaining
6 CVDR scores were not considered as some of the predictors were not readily available in
our EHRs (e.g., exercise, years of formal education, alcohol consumption). We considered
3 general CVDR: ACC/AHA Pooled Cohort Equation (PCE) [28], the Framingham model
[29], and the SCORE model [30] as comparisons due to their success in existing PT2DM
validation studies. A short description of the model, the endpoints included in the outcome
definition, and the method for dealing with missing data are summarized in Table 1. A
comparison of the predictor variables used for each model can be found in the Supplemental
Material.

2.4. Definition of predictors in cohort

All types of patient encounter data (i.e., clinics, outpatient, and inpatient visits) within

one year prior to index encounter were considered for predictor value measurement. Data
included billing codes, medication lists, laboratory results, and structured notes such as
physiological measurements. Age, sex, and race were self-reported in the administrative
records. For vital signs and laboratory values, the most recent measurement was used.
Extreme values of vital signs were excluded (1st and 99th percentile measurements). For
medication-related predictors (i.e., treatment of hypertension, insulin, etc.), the value was set
to positive if there was any presence of the medication within the last year before the index
encounter. A table of the predictors used by each CVDR model is provided in Supplemental
Table 1.

2.5. Statistical analysis

We developed cvdm, an open-source Python 3.7 package, to implement the CVDR scores
used here. Python is widely adopted by data analysts and researchers due to its ease of
interactive data analysis and utility as a general-purpose programming language [31]. Code
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is available as a GitHub repository (https://github.com/joyceho/cvdm) under a permissive
MIT license. Thus the CVDR scoring systems can be validated on many datasets, promoting
transparency of this work.

Pperformance of CVDR models was assessed both in terms of discrimination and
calibration. The C-statistic was used to assess model discrimination. For model calibration,
we used the Hosmer-Lemeshow XZ test, reliability-in-the-small, reliability-in-the-large, and
visual inspection [32]. Ten random samples (70%-30% train-test) were drawn using the
repeated random subsampling cross-validation method. We used CVDR scores from training
data to calibrate an isotonic regression model [33], a calibration mechanism that only
assumes the curve is monotonically increasing and is more general than the sigmoid method
provided there is sufficient calibration data. Discrimination and calibration performance
were calculated only on the test subjects for each random sample.

We imputed predictors that were missing for a subset of the patients using five different
mechanisms: mean, median, k-nearest neighbors, multivariate imputation by chained
equations (MICE), and stochastic regression imputation. The imputation methods were
performed using the impute module in scikit-learn or the autoimpute package. Imputation
parameters (e.g., mean values) were learned from the training data and applied to the test
data. The practicality of the models was measured as the average percentage of missing
measurements. Additional details regarding imputation and evaluation are available in the
Supplemental Material.

3. Results

3.1. Descriptive statistics

Overall, 5923 out of 39,187 (15.1%) subjects were diagnosed with CHD; 4355 out of 43,607
(10.0%) with CHF; 2304 out of 45,930 (5.0%) had an MI; and 2390 out of 45,510 (5.3%)
suffered a stroke; and 7840 out of 36,620 (21.4%) experienced a CVD endpoint in our study
population (7= 48,779). Baseline characteristics and subgroups of interest are reported in
Table 2. We reported descriptive statistics for the demographic and clinical data as means +
standard deviations, with percentages of missing values reported in parenthesis.

3.2. Discrimination

All CVDR scores had limited to moderate discrimination, the average C-statistic

ranging between 0.53 and 0.67. Imputation method for missing measurements had a
marginal impact on the resulting discrimination (shown in Supplemental Fig. 1). Mean
imputation consistently performed the best across the 16 CVDR models and 6 endpoints.
Discrimination results using mean imputation with the confidence intervals (Cls) for the
C-statistic are summarized in Table 3. Although no single CVDR model offered the best
performance across the five different endpoints, DMCx performed consistently well across
all the endpoints. For CHD, DMCx had the best discrimination by best point estimate (0.67
with 95% CI of 0.66-0.67). Advance offered comparable performance within the 95% CI.
DMCx also had the best discrimination for M1 with point estimate (0.65 with 95% CI

of 0.64-0.66) where HKDR, RECODE, and UKPDS OM?2 yielded similar performance.
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Similarly, the CHF variant of RECODe achieved the highest point estimate of discrimination
for detecting CHF (0.67 with 95% CI of 0.67-0.68) and CVD (0.66 with 95% CI of 0.66—
0.66). For CVD, Advance and DMCx offered comparable performance to RECODE. For
predicting stroke, the CVD-variant of DCS and Fremantle had the highest point estimated
C-statistic (0.63 with 95% Clof 0.62-0.63). Advance, DMCx, and HKDR also provided
similar CVD discrimination ability to Advance and DMCx.

For the four individual CVVD outcomes, Stroke was the most difficult endpoint to predict
(average C-statistic of 0.60) followed by MI and CHF (average C-statistic of 0.61).
Discriminating between patients who experienced CHD was the easiest of the outcomes
with an average C-statistic of 0.63. The results also suggest that discrimination generally
improves when the risk equation was tailored towards the individual outcome. For example,
the top performers for CHF included CHF-variants of RECODe and HKDR. A similar
pattern happened for MI with the MI-variants of UKPDS OM2 and RECODe and stroke
with stroke-variants of UKPDS OM2, RECODe, and HKDR. However, a tailored risk
equation for the event was not guaranteed to outperform other risk models, as evident with
the CHF-variant of UKPDS OM2 and the Ml-variant of DCS.

Comparison of the diabetes-specific CVDR equations and general-population CVDR
equations (i.e., Framingham, PCE, and SCORE) did not yield a significant difference
overall. For example, ARIC, DARTS, DIAL, and UKPDS were unable to distinguish
high-risk subjects compared to Framingham, PCE, and SCORE. Only Advance, DMCXx,
RECODe, and HKDR were able to achieve better discrimination than Framingham, PCE,
and SCORE across the 4 individual CVD endpoints.

Impact of missing values

Certain CVDR models relied on predictors that had a higher percentage of missing values.
As shown in Table 2 Fig. 1, 68-73% of our study population did not have an HbAlc
measurement in the year before the encounter date. Even the most available measurement,
systolic blood pressure (SBP), was unobserved in 16-34% of our population. To assess

the potential impact of missing measurements, the models were assessed on two subgroups
of our study population: those with both diastolic (DBP) and SBP measurements, and
those with SBP, body mass index (BMI), and smoking status available. For the C\VD
endpoint, this resulted in patient cohorts of 24,720 and 6753, respectively. There was no
noticeable difference in discriminatory performance even with fewer missing measurement
levels across the various models (results summarized in Supplemental Table 3).

Models with higher percentages required more data imputation and thus may be less
practical when the discrimination performance is similar. Fig. 1 illustrates the summary
statistics for the percentages of missing values across the 16 CVDR models for the CVD
endpoint. Framingham and PCE required the least amount of data imputation, with 21.3%
and 23.2% of the entries missing on average across the entire cohort. DIAL consistently
had the highest missing percentage of the predictor values (39.4%), followed by NDR
(38.3%), HKDR (34.8%), and DMCx (33.0%). Thus, three of the highest scoring models
(DMCx, HKDR, and RECODe) relied on data that were often imputed. Moreover, the
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diabetes-specific CVDR models also generally relied on measurements that were often not
available.

3.4. Impact of ethnicity

Existing prediction models can yield inaccurate risk estimates on multiethnic cohorts [8]. As
shown in Table 2, almost 44% of our population identified as African American or Black.
We performed a sub-analysis to assess the impact of race on the results. We focused on

two subgroups: Caucasian or White and African American or Black. Supplemental Table

4 summarizes the discrimination performance on the two subgroups across the 16 risk
prediction models. Across the five different outcomes, the discrimination performance was
generally better on the Caucasian or White population as opposed to the African American
or Black. This was true even for models where race was a predictor value (i.e., ARIC,

DCS, Fremantle, QDiabetes, RECODE, UKPDS, UKPDS OM2). The lone outlier was
DIAL, which had better performance on African American or Black patients across the five
outcomes. More surprisingly, all models except RECODE offered better performance for the
African American or Black population on the MI endpoint.

3.5. Impact of prediction time

The existing prediction models are predominately designed for 5- or 10-year risk, and

thus may have limited discrimination power due to the short time frame. We performed a
sensitivity analysis to evaluate the impact of the time frame. Due to the limited follow-up

of the cohort, we were only able to extend the time frame to 3 years. Supplemental Table

5 summarizes the discrimination performance across the 16 prediction models for 1-, 2-,
and 3-year CVD prediction. There was no noticeable performance improvement between the
1-year endpoint and the 3-year endpoint.

3.6. Calibration

Prior to recalibration using isotonic regression, the calibration of all the scores was

poor with p values below 0.05 (shown in Supplemental Fig. 2). After recalibration,
Hosmer-Lemeshow Xz statistics improved and yielded p-values above 0.1 (summarized

in Supplemental Table 3). For reliability-in-the-large and reliability-in-the-small, the value
was almost 0 for many of the scores, suggesting slight differences between expected and
observed risk. This is supported by the calibration plots shown in Fig. 2 as the predicted
risk and observed risk were comparable across the various scores. However, the recalibrated
models failed to generate predictions for higher-risk groups. We also assessed impact of
calibration method by comparing isotonic regression and Platt’s scaling. Isotonic regression
provided noticeably better calibration results without impacting discrimination (shown in
Supplemental Table 4).

4. Discussion

In this study, we conducted a comprehensive external validation of 16 CVDR models for
PT2DM. We also performed the first validation of various diabetes-specific risk scores using
only EHR data. Furthermore, we assessed predictive performance of the models for the full
range of CVD outcomes to capture the contemporary presentation of CVD.

Comput Methods Programs Biomed Update. Author manuscript; available in PMC 2023 June 16.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ho et al.

4.1.

Page 8

Across all CVDR scores, the ability to discriminate between patients who will and will not
get any of the four individual CVD endpoints (i.e., CHD, CHF, Ml, and Stroke) using EHRs
in the next year was comparable, with the C-statistics < 0.68. After recalibration, there was a
good agreement between predicted and observed risks for most models.

Findings from other studies

A previous study has suggested that diabetes-specific CVDR prediction models provide
slightly better discriminative performance than general-population risk prediction models
[34]. This discriminatory advantage is posited to arise from use of diabetes as a binary

risk factor, ignoring the heterogeneity in diabetes. In contrast, diabetes-specific CVDR
models include several diabetes-related predictors such as diabetes duration and HbAlc
measurements. Our results suggest that model performance depends on the model itself

as not all diabetes-specific models improved discriminative performance. A potential
explanation is differences in outcome definitions, as the general population-derived scores
included 3 or 4 of the five individual endpoints, whereas several of the diabetes-specific risk
models only included 2 or 3 endpoints, as indicated in Table 1.

There have only been five previous validation studies that assessed performance of several
CVDR scores on PT2DM. One validation study found similar discriminative ability with
C-statistics of 0.54-0.69, with variability in performance arising from the cohort itself and
not the risk model [3]. Two validation studies found higher discriminative performance on
their respective cohorts with C-statistics ranging from 0.619 to 0.674 and no discriminatory
advantage in using a diabetes-specific CVDR model [5,7]. However, the general population
score was less well-calibrated as it overestimated the risk and may result in unnecessary
interventions. A study that included an EHR cohort obtained C-statistics from 0.58 to 0.62
with estimates comparable between EHRs and population-based cohorts even though EHR
cohorts tend to be sicker [6].

4.2. Strengths/limitations

There are several strengths to this study. First is inclusion of 13 published CVDR models
designed for PT2DM. Previous validation studies only assessed the performance of 5-9
diabetes-specific risk scores [3-7]. Thus, our study serves as the most comprehensive and
extensive external validation of existing CVDR scores. Moreover, our study evaluated the
differences between diabetes-specific and general population-specific models for individual
CVD complications. Two previous validation studies only compared against a single general
population model [5] or only CHD [7] while another was a meta-analysis of existing
published articles [34]. Finally, our study used EHR data from a diverse, heterogeneous
population from a large healthcare system. By performing a secondary analysis of EHRs,
our study cohort serves as one of the larger validation populations and offers a practical
setting for assessing risk.

There are several limitations to our study that need to be addressed. The first limitation is
the validation of prediction models for 5- or 10-year risk to predict short-term (1-year to
3-year) risk. Given the limited follow-up time for our study population, it was infeasible
to predict 5-year or 10-year using EHR data. A follow-up study can be conducted after 7
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years to better understand differences in short-term prediction. A second limitation is that
not all predictors were commonly collected in our cohort. More than two-thirds of the cohort
had missing measurements for one or more of the cholesterol values, smoking, eGFR, and
HbA1c. We addressed this issue by exploring several common imputation methods using
other risk predictors. In addition, we analyzed the amount of data imputation required to use
each risk prediction model (see Fig. 1). However, data imputation itself could have resulted
in some loss of discriminatory power. One remedy is to pool data across multiple healthcare
sites to construct a sufficiently large and diverse cohort with less missing measurements for
future work. A third issue is related to measurement quality. Unlike traditional cohort studies
where the measurement of predictor values is performed using a standardized protocol,

EHR data is filled with noisy measurements. Extreme measurement errors such as a height
of 200 inches were excluded, but other measurement errors were not as readily detected.
Recent development of data quality indicators [35] can potentially be incorporated into

the assessment of measurement quality for future studies. There are also some concerns
regarding the recording accuracy of the individual CVVD events and patient history related to
atrial fibrillation, CHF, hypertension. Outcomes and predictor variables were assessed using
billing codes which can have low precision. Thus, the risk scores may not be an accurate
assessment of the subject.

CVDR model predictive performance was slightly lower than the original C-statistic
reported in the studies (0.68-0.85) and the C-statistics of the externally validated studies
(0.59-0.86) [2]. This might be explained by the ethnicity differences in our study
population, with 44% of the subjects identifying as African American or Black. Many
CVDR scores had substantially less population diversity. Additional differences may also
arise from using EHR-collected data which may be noisier and have a higher percentage of
missingness [36]. Another explanation might be that many CVDR scores were developed
on populations observed between 170 and 2000, and thus not be well-adjusted to changes
in treatment and interventions of the last two decades. As observed from Table 2, our

study population generally had good control of their blood pressure (SBP <140 mmHg),
cholesterol (total cholesterol <4.5 mmol/L), and HbAlc (% <8). This is contrasted with

the ARIC cohort, where the median cholesterol level was between 5.18 and 6.21 mmol/L
[12], and the DARTS cohort, where the average HbA1C was 8% and SBP was 144 mmHg
[21]. This explanation is also supported by slightly better discrimination power of Advance,
DCS, DMCx, HKDR, RECODe, and UKPDS OM2, which were developed on more recent
cohorts.

Ability to differentiate between different CVD complications can help guide treatment and
inform patients of their risks. However, to be useful in practice, CVDR models should
provide accurate and well-calibrated estimates of risk. While discrimination ability is
moderate, several of the common predictor variables were missing for our study population,
thus making them less practical. Future studies can focus on replicating results in other
healthcare systems to determine viability of implementing risk calculations on EHR systems
for real-time use by clinical providers.
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4.3. Conclusions

This extensive study showed a comparable and moderate ability to discriminate between
PT2DM who will experience a specific CVD complication in the following year based

on EHR data. Simple recalibration of CVDR models to our study population resulted in
improved estimates of actual risk. However, there was not a single existing prediction model
that outperformed all others on all CVD endpoints. The results also suggest that detailed
sub-analysis of risk scores should be performed to determine impact arising from the race as
it yielded unexpected results for the M1 outcome. Models that relied on less data imputation
such as Advance, Framingham, and PCE can potentially be used by healthcare providers

in a clinic setting to identify patients who are at low or high risk of developing CVD
complications. In addition, multiple CVDR scores can be used simultaneously as they offer
different performance across the individual outcomes. Moreover, the calculation can be
performed in real-time from the current measurements collected during the subject’s clinic
visit, as the cvdm package can integrate to existing EHR systems. However, to improve

risk estimates and develop more accurate prediction models, practitioners should collect
measurements that are commonly used in these models to better assess CVDR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
A boxplot of the missing predictor variables across the 16 risk prediction models for the

CVD endpoint.
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Fig. 2.

Calibration plots for the recalibrated risk score models on the CVD outcome. The dashed
gray line reflects perfect agreement between observed and predicted risk.

Comput Methods Programs Biomed Update. Author manuscript; available in PMC 2023 June 16.



Page 16

Ho et al.

Comput Methods Programs Biomed Update. Author manuscript; available in PMC 2023 June 16.

[eli1 pajjonuod wopbury
papnjox3 pauodal J0N z)adwos a|qeLlen  T66T-LL6T paziwopuey paNuN ay) wouy s1alans oSy [22] sadyn
Apms sa1pn)s 11o0yod ueadoin3
pauiodal 10N ¥8'0-TL°0 1INGISAA 0T 88611961 1104092 [euoienlssqo 2T woyy suosiad 8/T°502 [oe] 39008
suolrenba paureyd
Um uotyeinduwi [elL pajjoauod Apms
a|dmnIN GL'0-69°0 X0D 0T  6002-T00C paziwopuey aY¥0D0V woly sjusned GE96 [9z] saa003y
suolrenba paureyd
yum uoneindwi Apms aonoeud
s|dniniy 8,090 X0D 0T  ¥102-866T 1104092 [euoienlssqo [eJauab ui susied 908° /€y [s2] sa1eqe1ad
Apnis SaIpNIS 1oYy09 SareIs
papodal 10N 18'0-0L°0 X0Q 0T/S  €66T-896T 10y0d [eUOIBAISSGO  PaNUN t Wouy s)alans 929've [8¢] 30d
Ansibay
pauodal 10N [AN] X0D S 1002-200¢ s319qeIQ [euoclieN uspams ut sjuaired 88z'vz [vzl yan
suolrenba paureyd
yum uoneindwi Ansibay Buoy
adnniA §8'0—0L°0 X0D S G00Z—G66T s319qeIQ [euoclieN BuoH ur syusied 6022/290L [21-gT] YaMH
Apms eljeSNY
pauodai 10N 080 X0D S 966T-€66T 110409 [euoienlssqo UJa1SaM Loy spualred ovZT [ez] spuewa.y
Apnis VI ‘weybuiwel
papnjox3 6,090 X0D 0T  /861-8961 110409 |euoeAIssqo woly swalred T6v8 [62] weybuiwely
suolrenba paureyd
yum uoneindwi Apnis
a|dniniy 2L0-TL0 x00 S 0T0z  Hoyod annoadsonay  Buoyl BuoH ul siusited 6g6'2€T [v1]1xowa
Buiyorew Ansibay
UB3W 3ADIpald €80 X0D 0T/T  Z102-2002 se1aqeIq [eUOEN  USIpaMS wioly siuaned 120262 [eT] via
Apnis puejesaz
papnjox3 890 X0D S 6002-000¢ 1104092 [euoienlssqo M3N wioly siuaned /2T'9€ [czl soa
Ansibay
papnjox3 1.0 1INgIspA S 1002-G66T se1aqe!q [euolbey puef109s wouy sjuaned 6961 [tz]l siuva
Apnis SaNIUNWWIOI SaJeIS
papnjox3 8L°0-9L°0 X0D 0T 68611861 110yo9 [euoneAIssqo pauuN ¥ woyy syusired £/¢7 [zT] 19w
epeue) pue adoing
[eli1 pajjonuod ‘eIseleisny ‘elSy Ul SaLIJUNod
pauodal 10N 0.0 X0D ¥ ¥102-0T0C paziwopuey 0c WoJy s1o8lgns 89T, [0z] souenpy
aIsies (s 1e9k)
ereq bussi -0 feuku| adAl ppo N awWwooINO  auwreiawWl| adA1 1104yoD uondiiosaq 110yoD RN 2.00S
‘S|apouwl co_uo__uw\_a ASIE dAD 9T 9yl Jo sanstisldeleyd
T 3|qeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript



Page 17

Ho et al.

papnjox3 pauiodal 10N X
o1sIeIs
ereq bussiy -D [eURBIU|  3MOUIS

X X [TLe[ETVY 3|qelen

(sTeak)
IN 4HD QaHO @adAyppoiN awooINO

T661-L.6T

awreyawi]

[elLL pa]jonuod

wopbury

paziwopuey  pauun ay) wodj s1oslgns ZoTs

adA1 1104yoD

uondiosaq 11o0yod

[sT] 2O sadyn

awreN 81003

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Comput Methods Programs Biomed Update. Author manuscript; available in PMC 2023 June 16.



Page 18

(%0) €2 (%0) 80T (%0) 'L (%0) 50T (%0) €€ (%0)z'L (%0) 0'S (%0) T°€T (%0) 0'g (%0) 7'6 (%) g14v
(%6°99) (%6°69) (%€°29) (%0°02) (%L°89) (%9°€2) (%8°29) (%0°02) (%089) (%z'zL) (@Talel )}
ZI-FvY STFVY TIFVY STFEY ZTFSY STFVY ZTFSY STFCV ZTFSY STFEY JOHD TVLOL
(%%'82) (%8°02) (%8°82) (%60°9T) (%Tve) (%5°'92) (%9°0€) (%%°8T) (%6°1€) (%z'S2)
CFLET SZFIVT 2CFLET 9z F OVt T2 F /6T YZF VT TCF 16T SZF T CFLET vz F ot (9HWIN) dgS
(960°05) (%T9%) (%1°09) (%66'81) (%6'29) (968°95) (%6'1S) (%¥'19) (%8°09) (%2°29) (eneLt
98T FT'65 8TZF8'7S GBTFT6S ECETFL6Y 6STFTZ9 0€2F2TS 69TFO0T9 GETFVo6Y VITFO09  922FTZS  /NIW/N) 4493
(%69°69) (%5°89) (%9°69) (%€°69) (%e2L) (%1€L) (%eTL) (%1°02) (%e0L) (%6'T2)
0CFVL T2F9) 6TFVL 6TFVL 2TFSL 0ZFVvL 0ZFVL TC¢FG. 0ZFVL 0ZF¥L (%) OTvaH
(%z's2) (%%°02) (%6°52) (%z'29) (%0°28) (%6°22) (%9°82) (%%'29) (%0°62) (%z'92)

ZITFL2E T21%072¢€ 9TTFLCE G6FLTE YN AEINA L'8FLTE 90T¥22e GTITFETE 62T F0EE 06F6TE (zwrox) 1na
AV 7'se S0€ 6'6T 8'Ge 0Ze z'ee 8'€Z gee Z'0¢ NMONMNN
gey 6% 6y STy v'ey 0Ty ey g'ey 9vh oy Y3IAIN

€9 g z9 L'6 LS 69 €9 gl 09 L AIN3IHHND

6'6T v'ze 7’67 6'12 T'ST 102 €8T 152 6'ST vz SNOIATYd

(%) ONIMONS

0€ 54 1€ 1 ge 82 ze Lz ze LT NMONMNN

80 80 L0 60 80 80 80 90 80 80 Y3H10

vz 6T vz L2 4 A4 g v'T vz gz NVISY

eey ey (0847 vy vy 414 e 98y Tl 62 Movg

G'0S 928 8'6Y €18 8Ly 0'6Y €15 L9y vy 118 NVISYONYD

(%)30vy

6Ly Ty Tl §'6q L'y 108 Tl €08 vy 195 IV

128 828 8'2S Sy €15 £'6Y 82§ L'6Y g'lG 6y ERN/LEE]

(%) X3S
0T 980T €e'TT 92°0T

GEZTFET09  OTTIF0Z+%9 6€2T ¥ G209 ¥66'€9 €/°2T ¥80'85 ¥22°€9 LE7T F€6'85 2089 69°ZT F €585 ¥78°€9 (SEEINEDR
(ozt'er = (06€2 (9z9'ey = (rogz = ) (08282 = (ov8L (caz'6e = (gger = u) (Poz'ee = (265
u) T04.1LNOD =u)3SVYD  u) TO04.LNOD 3ISVO 1IN u) TOYINOD =Uu)3SVYD  U) TOYINOOD 3ISVOH4HO  U) TOHINOD  =U)3ISVO
IM0YIS and aHo

Ho et al.

*31e] UOIIRI|IS Jejniawo]f parewnss ‘4499 0TV ulqojBowsH ‘OTvgH ‘Xapul ssew Apog ‘|G ‘ainssaid poojq 91j01sAs
‘d9S ‘uone|juquy [eLe ‘qidy ‘ainjiey Leay aAnsabuod ‘4HD ‘aseasip Leay Aleuolod ‘aHD ‘uoisuauadAy ‘N1H "sanjea Jooipaid Buissiw yum sjusied
10 abeuaaiad ayy serouap (94X) sisayiuated ayy ul Jaquinu ayl ‘subis [e1IA ay1 104 “1saia)ul Jo sdnoibgns pue uonendod Apnis Jo sonsiiaoeIeYD auljaseg

¢ dlqeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Comput Methods Programs Biomed Update. Author manuscript; available in PMC 2023 June 16.



Page 19

Ho et al.

(%0) 0'TT (%0) 0°8T (%0) T'TT

(%0) '€ (%0) 29 (%0) 5'S

0%0) 8'2T (%0) 2z (%0) z'2T

(%0) z'T2 (%0) L2e (9%0) 6T

(ozt'er = (06e2 (9z9'er =

u) TO4LNOD =Uu)3SVYD  U) TO4INOD
IMOHIS

(%0) z'8T

(%0) €8
(%0) 0'22
(%0) L'6v

(Pogz = u)
ISV IN

(%0) L'9
(%0) 0
(%0) 0
(%0) 0

(08L'82 =
u) TO4LNOD

(%0) €'¢T
(%0) 0
(%0) 0
(%0) 0

(ov8L

=U) 3SVO
and

(%0) 9'8
(%0) 0°'S
(%0) 0'0
(%0) 8'2T

(ese'ee =
u) TO4LNOD

(%0) 0'8T (%0) 2’6
(%0) 52 (%0) 8°€
(%0) 00 (%0) 6'2

(%0) 0'Ge (%0) 0'0

(ssev = u) (roz'ee =

ISVOH4HO  U) TOYINOD

(%0) G€T
(%0) 2’5
(%0) v'9T
(%0) 00
(€265

=U) 3SV0
aHo

(%) NLH
(%) IM0YLS
(%) 4HD
(%) aHD

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Comput Methods Programs Biomed Update. Author manuscript; available in PMC 2023 June 16.



Page 20

fons=,

_S_uh

u_IoHu

dHO=
q

Q>onmv

suoirenba ajdiynw Yyim sa103s 104

Ho et al.

Author Manuscript

5(19°0-T9°0) T9°0

p(§9°0-€9°0) #9°0

2(29:0-19°0) 190

5(09°0-65°0) 09°0

5(65°0-85°0) 850

ZNO Saddin
(550650550  (650-260)850  (09°0-090) 090  (S50-v50) S50  (29°0-19°0) 290 sadxn
(090-6500090  (090-850) 650  (€90-290) 290  (650-850)850  (¥9'0-€9°0) €9'0 3400S

2(19°0-090) 190 p(S9'0-€9°0) Y90  5(99'0-99°0) 990  5(89'0-29°0) 190  5(59'0-¥9'0) S9°0 300034
(090-090) 090  (290-090) 190  (¥90-¥90) ¥90  (29°0-29'0) 290  (S9°0-¥9°0) S9'0 $313avIad
(09°0-6500650  (09°0-650) 090  (€9'0-29'0) €90  (650-650) 650  (¥9'0-€9°0) ¥9'0 30d
(190-090) 790  (290-090) 190  (¥90-%90) ¥90  (290-19°0) 190  (59°0-G9°0) G9°0 danN

22902901290 p(S90-€90) Y90 ,H(¥90-¥90) ¥90 5(99°0-590) 590  4(S9°0-59°0) 590 HASH
(09°0-090) 090  (290-190) 190  (¥90-€90)€90  (190-090) 090  (S9°0-9'0) 90 NVHONINVYS
(€90-2900€90  (190-090) 090  (€90-€90) €90  (29°0-19'0) 290  (¥9'0-€9°0) €9'0 IT1LNVINTES
(€90-290)290  (990-¥90) G590  (99'0-69'0) 990  (99'0-G9'0) 590  (29'0-99°0) £9'0 XOWda
(865°0-260) 260  (190-090) 090  (650-650)650  (09°0-650) 650  (650-650) 650 via

2(€9°0-290) €90  p(29'0-09°0) 190  p(¥9'0-v9'0) Y90  p(€9'0-29°0) 290  p(G9'0-+¥9°0) ¥9°0 s0a
(090650650  (090-650)090  (€90-290) €90  (650-850)850  (¥9°0-€9°0) ¥9°0 si¥va
(r5'0-€50) €50  (850-250) .60  (650-850) 650  (950-G5'0) G50  (T9'0-T9°0) T9'0 o1V
(z90-1900290  (€90-290) 290 (990-690)G90  (¥9'0-€9'0) €90  (29'0-99°0) 99'0 JONVAQY

IoYIS IN ano 4HD aHo 13aow

‘uoneINdw UBaW PUB 1D %G6 8L pue d1SeIS- 8yl Uo paseq uoskiedwod uone|nojed ysiy

€ 9lqeL

Author Manuscript

Author Manuscript

Author Manuscript

Comput Methods Programs Biomed Update. Author manuscript; available in PMC 2023 June 16.



	Abstract
	Introduction
	Materials and methods
	Study design and population
	Endpoint definitions
	Selected CVD risk models
	Definition of predictors in cohort
	Statistical analysis

	Results
	Descriptive statistics
	Discrimination
	Impact of missing values
	Impact of ethnicity
	Impact of prediction time
	Calibration

	Discussion
	Findings from other studies
	Strengths/limitations
	Conclusions

	References
	Fig. 1.
	Fig. 2.
	Table 1
	Table 2
	Table 3

