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Abstract: Coix seed (Coix lachryma-jobi L.) is an important nourishing food and traditional Chinese
medicine. The role of their bioactive constituents in physiology and pharmacology has received
considerable scientific attention. However, very little is known about the role of coix seed bioactive
components in the growth of Limosilactobacillus reuteri (L. reuteri). This study aimed to evaluate the
effects of coix seed extract (CSE) on the growth, acidifying activity, and metabolism of L. reuteri. The
results showed that CSE can increase the growth and acidifying activity of L. reuteri compared with
the control group. During the stationary phase, the viable bacteria in the medium supplemented
with coix seed oil (CSO, 13.72 Log10 CFU/mL), coix polysaccharide (CPO, 12.24 Log10 CFU/mL),
and coix protein (CPR, 11.91 Log10 CFU/mL) were significantly higher (p < 0.05) than the control
group (MRS, 9.16 Log10 CFU/mL). CSE also enhanced the biosynthesis of lactic acid and acetic acid
of L. reuteri. Untargeted metabolomics results indicated that the carbohydrate metabolism, amino
acid metabolism, and nucleotide metabolism activities of L. reuteri were increased after adding CSE.
Furthermore, CSE increased the accumulation of bioactive metabolites, such as phenyl lactic acid,
vitamins, and biotin. Overall, CSE may have prebiotic potential and can be used to culture L. reuteri
with high viable bacteria.

Keywords: coix seed extract; Limosilactobacillus reuteri; metabolomics; prebiotic

1. Introduction

Probiotics are live microorganisms that can promote host health [1]. Their role in
preventing chronic diseases and regulating intestinal flora has been confirmed [2,3]. At
present, probiotics have been used in commercial production mainly including Lactobacillus,
Bifidobacterium, Lactococus, Streptococcus, and Enterococcus. L. reuteri is one of the probiotics
that has attracted much attention due to its promotion of host health. It has been reported
that L. reuteri can metabolize glycerol to produce 3-hydroxypropanal with antibacterial
activity [4]. In addition, L. reuteri can inhibit Helicobacter pylori, rebuild the intestinal
microbial barrier, and relieve intestinal colic [5,6]. Therefore, L. reuteri is usually proposed
for the design of functional foods. To date, L. reuteri has been used in a variety of foods
including dairy products, fermented cereals, and bread [7–9].

In probiotic products, the amount of viable bacteria is an important factor to be
considered, because the complex gastrointestinal environment is a serious challenge for
probiotics. The high cell-density culture of probiotics contributes to increasing their survival
rate in the gastrointestinal tract. However, ordinary chemical media can hardly meet the
high cell-density cultivation requirements of probiotics. Therefore, various prebiotics had
been developed to promote the growth and vitality of probiotics. Fortunately, prebiotics
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such as oligosaccharides [10] and dietary fibers [11] have been confirmed to promote the
growth of probiotics. Among the prebiotics from many sources, plant-based prebiotics
are the most widely studied. Kun et al. [12] found that carrot juice significantly promoted
the growth and acid production capacity of bifidobacteria. Huang et al. [13] reported that
polysaccharides from longan pulp promoted the growth of probiotics, and the viable count
of bacteria reached 9.12 Log10 CFU/mL after 12-h fermentation. Pereira et al. [14] also
indicated that fruta-do-lobo starch could improve the growth rate of probiotics, and the
maximum number of viable bacteria was more than 11 Log10 CFU/mL. In addition, some
cereal extracts such as rye sprout extracts and wheat extracts promoted probiotic growth
and enhanced probiotics acid tolerance [15,16].

Coix seed is the seed of the perennial herbaceous plant coix (Coix lacryma-jobi L. var.
mayuen Stapf ) and has attracted wide attention from researchers in food and medicine fields
due to its beneficial effects on health. Studies have shown that coix seed is rich in starch [17],
proteins [18], free amino acids, dietary fibers [19], vitamins, minerals, phytosterols, and
flavonoids [20–22] and has a high nutritional value. Clinically, coix seed is also widely
applied in arthritis, diarrhea, diuretics, and pain relief [19,23]. In particular, the drug
Kanglaite Injection with the main component of coix seed oil had been approved for the
complementary treatment of non-small cell lung cancer [24]. Animal experiments showed
that coix seed polysaccharide could improve the serum insulin level of diabetic mice and
increase the abundance of Lactobacillus in mice [25]. Although the beneficial effects of
coix seed on health have received extensive scientific attention [26], very few studies have
concentrated on the growth-promoting effect of coix seed extract (CSE) for probiotics.

The objectives of the present study were mainly to evaluate the effects of CSE on
growth, acidifying activity, and metabolism of L. reuteri. We first assessed the effect of
adding CSE to MRS medium on the growth and acidifying activity of L. reuteri. Next, we
investigated the different metabolites of L. reuteri in the medium supplemented with CSE
using ultra-performance liquid chromatography coupled with time-of-flight mass spec-
trometry (UPLC-Q-TOF-MS/MS). The results would be helpful to elucidate the promoting
effect of CSE on the growth of L. reuteri and provide a reference for the development of
probiotic products with high viable counts.

2. Materials and Methods
2.1. Raw Materials and Chemical Reagents

Coix seed was procured from Guizhou Renxin Agriculture Development Co., Ltd.
(Guizhou, China). MRS (De Man Rogosa Sharp) broth and MRS agar were purchased
from Shanghai Bio-way Technology Co., Ltd. (Shanghai, China). Acetonitrile (ACN) and
methanol were of HPLC grade and purchased from Sinopharm Chemical Reagent Co., Ltd.
(Suzhou, China). Other chemicals and reagents were of all analytical grade and purchased
from Suzhou Sinopharm Chemical Reagent Co., Ltd. (Suzhou, China).

2.2. Strains and Culture Conditions

The probiotic organism used in the study was L. reuteri BNCC186563 purchased from
BeNa Culture Collection (Suzhou, China). The strain was sub-cultured three times for 24 h
at 37 ◦C in MRS agar before the experiment. The starter culture was cultured for 16 h at
37 ◦C in MRS broth, then centrifuged at 3000 rpm for 5 min, washed with 0.9% saline, and
diluted to obtain a preparation with a concentration of about 7 Log10 CFU/mL.

2.3. Preparation of Coix Seed Extracts

Coix seed oil (CSO) was prepared based on the previous method with minor mod-
ifications [27]. Briefly, coix seeds were ground in an electric grinder and sieved with a
60-mesh sieve. Petroleum ether (boiling range 60–90 ◦C) was added to the coix seed flour at
a solid-liquid ratio of 1:8 (w/v) for 2-h extraction and the extraction solution was refluxed in
a water bath of 80 ◦C. After filtration, the filtrate was collected and then concentrated under
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reduced pressure to recover petroleum ether at 60 ◦C. After evaporating the remaining
petroleum ether, coix seed oil was obtained.

Coix seed polysaccharides (CPO) were extracted with ultrasound-assisted extraction
and the ethanol precipitation method. Distilled water was added to the flour after extracting
the CSO (solid-liquid ratio of 1:10 (w/v)). Ultrasonic extraction was carried out for 50 min
under the condition of ultrasonic power of 800 W, followed by reflux extraction at 95 ◦C
for 4 h. After extraction, the filtrate was collected and concentrated. Then, the filtrates
were precipitated by adding four times the volume of ethanol (95%) overnight at 4 ◦C. The
precipitates were centrifuged at 6500 rpm for 20 min and washed twice with ethanol and
diethyl ether to remove residual fat-soluble components [28].

Coix seed protein (CPR) was extracted by alkali extraction and acid precipitation.
Defatted coix seed flour was dispersed in distilled water (solid-liquid ratio of 1:40 (w/v)).
The pH of the mixture was adjusted to 13 with 0.5 mol/L NaOH and stirred intermittently
for 3 h at 40 ◦C. Then, the suspension was centrifuged at 6500 rpm for 15 min at 4 ◦C. The
supernatant was collected and the pH adjusted to 3.5 with 1 mol/L HCl. After the collected
supernatant stood for 30 min, precipitated proteins were collected by centrifugation at
6500 rpm for 15 min at 4 ◦C and washed 3 times with distilled water [29].

2.4. Inoculation and Fermentation

Coix seed extracts (CSO, CPR, and CPO) were added into MRS broth according to the
ratio of 1% (w/v). MRS broth without extracts was used as the control group. The prepared
substrate was steamed at 121 ◦C for 20 min and then cooled to room temperature. The
substrate was inoculated with 5% (v/v) of starter cultures with a bacterial count of 7 Log10
CFU/mL. All samples were incubated for 24 h under anaerobic conditions.

2.5. Determination of pH and Total Reducing Sugar (TRS)

The pH was evaluated every 4 h with a digital pH meter (Testo Instruments (Shenzhen)
Co., Ltd., Shenzhen, China). TRS was determined with the dinitrosalicylic acid method [30].
Fermentation samples obtained at different time points were centrifuged at 6000 rpm for
10 min to acquire the supernatant. Dinitrosalicylic acid reagent (700 µL) was added into
the supernatant (700 µL), thoroughly mixed, heated in a boiling water bath for 5 min,
and cooled to room temperature. The absorbance of samples was measured at 540 nm.
The standard curve was established with glucose standard (Beijing Solarbio Science and
Technology Co., Ltd., Beijing, China) and TRS in the sample was calculated according to
the standard curve. All experiments were performed in triplicate.

2.6. Viable Cell Counts

The absorbance of each experimental group at 600 nm (OD600nm) was measured with
a spectrophotometer to observe the growth of L. reuteri every 4 h within 24 h [31]. In the
stable period, viable cell counts of L. reuteri were obtained by counting the colony-forming
units (CFU) on MRS agar [32]. Briefly, the fermented sample (1 mL) was added into 9 mL
of sterile saline and serially diluted. The dilution was used for microbial enumeration with
MRS agar plates. These plates were cultured anaerobically for 48 h at 37 ◦C. Results were
expressed as Log10 CFU/mL. All experiments were performed in triplicate.

2.7. Analysis of Organic Acids by HPLC

A high-performance liquid chromatography (HPLC) system equipped with an ultra-
violet detector (Agilent, Santa Clara, CA, USA) was used to measure organic acids (lactic
acid, acetic acid, L-malic acid, and citric acid). Fermentation samples were centrifuged
at 10,000× g for 10 min to acquire the supernatants, which were then filtered through a
Millex-HA filter with a pore size of 0.22 µm. Mobile phase was 0.02 M KH2PO4 (pH = 2.7)
and the flow rate was 1.0 mL/min. An isocratic elution procedure was adopted. The
column temperature was set at 35 ◦C and the detection wavelength was set as 210 nm [33].
All the organic acids were determined with corresponding pure standards (purchased from
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Sinopharm Chemical Reagent Co., Ltd. (Suzhou, China)) at different concentrations (lactic
acid: 0.25–4.00 mg/mL; acetic acid: 0.25–4.00 mg/mL; L-malic acid: 0.25–4.00 mg/mL;
citric acid: 0.25–4.00 mg/mL). The HPLC results were qualitatively analyzed by peak reten-
tion time and quantified by peak area using the external standard method. All experiments
were performed in triplicate.

2.8. Measurement of LDH Activity

The enzyme activity of lactate dehydrogenase (LDH) was measured with a lactate
dehydrogenase Kit (Beijing Solarbio Science and Technology Co., Ltd., Beijing, China).
Fermentation samples were centrifuged (8000× g for 10 min at 4 ◦C) to collect bacteria.
Extracts were added to bacteria, which were disrupted by sonication with an ultrasonic
disruptor (Ningbo Scientzbiotechnology Co., Ltd., Ningbo, China). The suspension was
centrifuged (8000× g for 10 min at 4 ◦C) to remove cell debris and then the supernatant
was collected for enzyme assays. Enzyme activity was measured spectrophotometrically
at 450 nm. One unit of enzyme activity (U) of LDH was defined as every 10,000 bacteria
releasing 1 nmol of pyruvic acid per minute. All experiments were performed in triplicate.

2.9. UPLC-Q-TOF-MS/MS Analysis

The samples (100 µL) were transferred to a 2-mL Eppendorf tube, resuspended in
400 µL of extraction solvent (acetonitrile-methanol, 1:1) by vortexing, and then sonicated for
10 min. The samples were incubated at −20 ◦C for 1 h and centrifuged at 13,000 rpm and
4 ◦C for 15 min. The supernatant (350 µL) was transferred to a 1.5-mL Eppendorf tube and
dried in a vacuum concentrator. The metabolites were redissolved in the extraction solvent
(acetonitrile-water, 1:1), vortexed for 30 s, sonicated for 10 min, and then centrifuged at
13,000 rpm and 4 ◦C for 15 min. Finally, the supernatant (50 µL) was transferred to LC vials
for subsequent liquid chromatography-mass spectrometry (LC-MS) analysis.

Ultra-high-performance liquid chromatography (UPLC) chromatographic separa-
tion was performed with a SCIEX UPLC system (Exion LC, SCIEX, Concord, NH, USA)
equipped with a Waters UPLC column (ACQUITY UPLC BEH Amide 1.7 µm, 2.1 × 100 mm,
Waters, Milford, MA, USA). Mobile phase A was composed of 25 mM ammonium acetate
and 25 mM ammonium hydroxide in water and Mobile phase B was composed of 100%
ACN. The gradient solution program was set as follows: 95% B, 0.5 min; 95–65% B, 0.5
to 7 min; 65% to 40% B, 7 to 8 min; 40% B, 9 min; 40% to 95% B, 9 to 9.1 min; and 95% B,
12 min. The flow rate was set at 0.5 mL/min. The injection volume was 2 µL and the
sample temperature in the autosampler was maintained at 4 ◦C.

The UPLC system was coupled to a quadrupole-time-of-flight mass spectrometer
(QTOF MS; Triple TOF 5600+, SCIEX, Concord, NH, USA) system via an electrospray ion-
ization (ESI) source operated in positive (5500 V) and negative ionization modes (−4500 V).
The MS conditions were set as follows: the ion gas temperature at 650 ◦C, the ion gas pres-
sure at 60 psi, the curtain gas at 30 psi, and the declustering potential at 60 V. TOF MS data
were acquired in the m/z range of 60 to 1200 at 0.15 s/spectra with collision energy 10 eV
and 12 most abundant mass peaks in TOF MS were selected to perform data-dependent
acquisition scanning. MS/MS data were recorded over the m/z range of 25 to 1200 at
0.03 s/spectra with a collision energy of 30 eV.

2.10. Data Processing

To ensure the stability and reliability of metabolomics data, five biological replicates
were arranged for each experimental group. The raw data were firstly converted into
mzXML formats by ProteoWizard software. Then XCMS was used for retention time
correction, peak identification, peak extraction, peak integration, peak alignment, etc.
The minfrac was set to 0.5 and the cutoff was set to 0.6. The quantitative results of each
sample were used for normalization and the normalized data were analyzed by principal
component analysis (PCA) and orthogonal partial least squares discriminant analysis
(OPLS-DA) to distinguish variables between groups with calculated variable importance in
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projection (VIP) value. A VIP value indicates the contribution of each variable to the model.
The metabolites with VIP > 1 and p < 0.05 (student’s t-test) were considered as significantly
changed metabolites. In addition, commercial databases including KEGG (http://www.
kegg.jp, accessed on 14 August 2021) and MetaboAnalyst (http://www.metaboanalyst.ca/,
accessed on 14 August 2021) were utilized to search for the pathways of metabolites.

2.11. Statistical Analysis

All the data were expressed as mean values ± standard deviation. Data analyses were
conducted with SPSS Version 19.0 software package for Windows. Analysis of variance
was conducted through an ANOVA Tukey’s test to determine any significant difference
between samples (p < 0.05).

3. Results and Discussion
3.1. Changes in pH and TRS during the Growth of L. reuteri

As shown in Figure 1a, the pH values gradually decreased during the fermentation
progresses. At the beginning of fermentation (0 h), the pH value of each group was close to
6.0. At the first 12 h of fermentation, the pH value had dropped significantly. After that,
the rate of decline decelerated. To the end of fermentation (24 h), except that the pH in the
CSO group was 4.3, the other groups were stabilized at about 4.4. It was reported that the
optimal pH for the growth of L. reuteri was 4.5 to 6.8 [34], which was close to the pH range
in this study. Lactic acid, acetic acid, and CO2 produced by the fermentation of L. reuteri
were the main reasons for the decrease in pH.

Figure 1. Changes of pH (a) and total reducing sugar (TRS) (b) during the growth of L. reuteri. Values
are presented as mean ± standard deviation (n = 3).

Sugar is an important source of energy in the growth and metabolism of microor-
ganisms [35]. Sugar consumption during fermentation can indirectly reflect the growth
condition of microorganisms. We analyzed the changes of total reducing sugar (TRS) in
four experimental groups (Figure 1b). TRS was significantly reduced after fermentation
(p < 0.05). In the logarithmic phase, a large amount of TRS was consumed for the rapid
proliferation of L. reuteri. At the end of the logarithmic phase, the content of TRS increased
slightly due to the L. reuteri-produced exopolysaccharides [36]. The changes of TRS in the
CPO, CPR, and MRS groups were similar. However, the addition of CSO reduced the
consumption of reducing the sugar by L. reuteri, indicating that CSO might be involved in
energy supply, but the mechanism remained to be further explored.

http://www.kegg.jp
http://www.kegg.jp
http://www.metaboanalyst.ca/
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3.2. Effect of CSE on the Growth of L. reuteri

Figure 2a shows the growth of L. reuteri in all substrates. In the first 12 h, L. reuteri
increased rapidly and then remained at a relatively stable level. Under the same in-
oculation concentration, the cell density in the medium supplemented with CSE was
significantly higher than in the control group (p < 0.05). After 24 h of fermentation, the
cell density in the group with CSO was the highest. In addition, we analyzed the number
of viable cells in the stationary phase (24 h) (Figure 2b). The number of viable bacteria
in the CSO group was 13.72 Log10 CFU/mL, which was significantly higher than that in
CPO (12.24 Log10 CFU/mL), CPR (11.91 Log10 CFU/mL), and MRS (9.16 Log10 CFU/mL).
After fermentation, the numbers of viable bacteria in CSO, CPO, and CPR groups were
increased by 6 Log10 CFU/mL, 5 Log10 CFU/mL, and 4 Log10 CFU/mL, respectively.
The growth-promoting effect of cereal extracts for probiotics has been confirmed [15,37].
Nsogning et al. [38] have shown that wort buffering can promote the growth and via-
bility of probiotics. Chavan et al. [39] confirmed that viable bacteria were more than
11 Log10 CFU/mL in probiotic drinks containing cereals. Similar or even better results
were observed in our study, indicating that CSE has a good prebiotic effect on L. reuteri.

Figure 2. The effect of coix seed extract (CSE) on the growth of L. reuteri (a) and the count of viable
bacteria in the stable phase (b). Values are presented as mean ± standard deviation (n = 3). Different
letters indicate statistical differences between groups (p < 0.05).

CSO mainly contains oleic acid, linoleic acid, and glycerate. Although some researchers
reported that linoleic acid could inhibit the growth of lactic acid bacteria (LAB) [40], many
LAB have linoleic acid isomerase, which could convert linoleic acid into conjugated linoleic
acid [41]. Other researchers believed that the conversion of free linoleic acid into fatty acid
metabolites by LAB might be a detoxification mechanism for enhancing the tolerance to free
linoleic acid [42]. Therefore, CSO did not inhibit the proliferation of L. reuteri. CPO is mainly
composed of arabinose, galactose, mannose, rhamnose, xylose, and glucose [43]. L. reuteri
has β-galactosidase and can utilize lactose as a carbon source to support growth [44].
Zhao et al. [45] also reported that L. reuteri could utilize raffinose and sucrose as carbon
sources, the utilization of these carbon sources was not inhibited in the presence of glucose.
However, L. reuteri lacks a complete proteolytic system and has a low utilization rate of
proteins [44], so CPR showed a weak effect on the proliferation of L. reuteri among the
three extracts.

3.3. Effects of CSE on Organic Acids

Organic acids were determined by HPLC in the fermentation process, including
lactic acid, acetic acid, L-malic acid, and citric acid (Figure 3). Compared with MRS, CSE
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significantly promoted the biosynthesis of lactic acid and acetic acid (p < 0.05). The change
of lactic acid was shown in Figure 3a, the concentration of lactic acid increased sharply in
the early stages (from 4 to 8 h) of fermentation. In the first 4 h, there was no significant
difference in lactic acid content among groups (p > 0.05). Except for the MRS group, the
content of lactic acid reached a maximum in CSO (13.03 mg/mL), CPO (12.87 mg/mL),
and CPR (11.26 mg/mL) at 8 h. After that, the lactic acid concentration decreased slightly,
and it is possibly involved in the formation of other substances, such as ethyl lactate and
ethyl acetate [46]. At the end of fermentation (24 h), the content of lactic acid in CSO was
11.92 mg/mL significantly higher than that in CPO (11.63 mg/mL), CPR (11.45 mg/mL),
and MRS (10.72 mg/mL). The analysis of acetic acid showed that CSO and CPO significantly
promoted the production of acetic acid in L. reuteri (Figure 3b). However, there was no
significant difference in acetic acid content between CPR and MRS (p > 0.05). During the
fermentation process, the changing trend of acetic acid was similar to lactic acid. At 8 h,
the content of acetic acid in CSO, CPO, CPR, and MRS were 6.93 mg/mL, 6.29 mg/mL,
5.58 mg/mL, and 5.75 mg/mL, respectively. After 24 h, the content of acetic acid in CSO,
CPO, CPR, and MRS were 4.90 mg/mL, 4.64 mg/mL, 4.31 mg/mL, and 4.32 mg/mL,
respectively. Salmerón et al. [47] reported the content of lactic acid (2.57 mg/mL) and acetic
acid (0.13 mg/mL) fermented with L. reuteri in malt beverages, which were significantly
lower than our research results. Notably, a higher concentration of lactic acid and acetic
acid can inhibit the growth of L. reuteri. Under this condition, L. reuteri modifies pyruvate
metabolism, increasing the synthesis of basic compounds to protect cells against acid
stress [48]. Thus, the growth of L. reuteri was not inhibited by acid stress.

As shown in Figure 3c, a lower concentration of L-malic acid was detected in the
fermented medium. Similar to the change of lactic acid, the content of L-malic acid in each
group reached the maximum at 8 h. From 8 to 24 h, the content of L-malic acid was reduced,
which might be related to the formation of lactic acid [49]. After 24 h of fermentation, the
content of L-malic acid (0.31 mg/mL) was the highest in the medium supplementation
with CPO, which was similar to the result reported by Nsogning et al. [38]. In addition,
there was no significant difference of L-malic acid in the medium supplementation with
CSO, CPR, and MRS (p > 0.05).

Figure 3d shows the change of citric acid in the fermentation process. Citric acid
detected before fermentation (0 h) might originate from the hydrolysis of citrate. As an
important precursor in the tricarboxylic acid cycle, citric acid is eventually metabolized
into acetic acid and succinic acid and produces ATP to provide energy for the growth of
microorganisms [50]. Therefore, citric acid in each group was decreased in the logarithmic
phase. On the contrary, the content of citric acid increased in the later stages of fermentation,
indicating that L. reuteri might produce citric acid during the fermentation. This finding is
in accordance with the Zalán study [51].

To sum up, lactic acid and acetic acid were the main organic acids produced by
L. reuteri. The acidifying activity of L. reuter was increased in the medium supplementation
with CSE.
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Figure 3. Effects of CSE on organic acids during the growth of L. reuteri. Including lactic acid (a),
acetic acid (b), l-malic acid (c), and citric acid (d). The Values are presented as mean ± standard
deviation (n = 3). Different letters indicate statistical differences between groups (p < 0.05).

3.4. Effect of CSE on LDH Activity during the Growth of L. reuteri

Lactate dehydrogenase (LDH) is a key enzyme in LAB, which can catalyze the re-
versible reduction of pyruvate to lactic acid [52]. To further clarify the effect of CSE on the
acidification activity, LDH activity was measured during the growth of L. reuteri (Figure 4).
Throughout the fermentation process, the activity of LDH in the CSO group was higher
than that in other experimental groups. In the first 8 h of fermentation, the LDH activity of
L. reuteri rapidly increased in the medium supplemented with CSO, and reached maximum
(2.44 U/104 cell) at 20 h. In the CPO and CPR groups, the LDH activity increased at 8 to
12 h. Different from the other groups, the activity of LDH in the MRS increased at 8 to
16 h, and reached a maximum (2.05 U/104 cell) at 16 h. Notably, LDH activity in the MRS
was higher than that in the CPO and CPR groups from 12 h to 16 h, which may be related
to intracellular pyruvate content [53]. LDH activity of all the experimental groups has a
decreasing trend at the late fermentation stage. According to Busto et al. [54], nucleotides
(ATP and AMP) competitively occupied the binding sites of pyruvate under the acidic
environment, thus inhibiting the activity of LDH. This may be the reason for the decrease
of LDH activity in the late fermentation stage. Overall, the acidification activity of L. reuteri
was significantly increased in the MRS medium Supplemented with CSE.
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Figure 4. Effect of CSE on lactate dehydrogenase (LDH) activity during the growth of L. reuteri.
Values are presented as mean ± standard deviation (n = 3).

3.5. Results of Principal Component Analysis (PCA) and Orthogonal Partial Least Squares
Discriminant Analysis (OPLS-DA) of Cultured Samples from Different Extracts

Unsupervised principal component analysis was performed to explore the different
metabolites of L. reuteri in the medium supplemented with CSE. The results are shown
in Figure 5, the cumulative variance contribution of PC1 and PC2 were 54.7% and 21.5%
respectively in positive ion mode (Figure 5a), and the cumulative variance contribution
of PC1 and PC2 were 97% and 1.1% respectively in negative ion mode (Figure 5b). The
results indicated that there were more similar metabolites between different extracts
in the negative ion mode, but there were differences with the control group. In the
positive ion mode, there was an obvious discrete phenomenon between groups, without
intersection or overlap, indicating that there were significant differences in metabolites
among groups. The results of the groups of different extracts and the control group were
analyzed (Supplementary Figure S1).

The metabolic differences among the groups of different extracts were further detected
by OPLS-DA. In the OPLS-DA score graph (Figure 5c,d), there was a high degree of differ-
entiation among different groups, and metabolic differences existed among the samples.
The values of R2Y and Q2 positive ionization mode were respectively 0.994 and 0.91 and
the values of R2Y and Q2 negative ionization mode were respectively 0.956 and 0.817. The
data indicated that the model was reliable and had a good predictive ability. The results of
OPLS-DA between the groups of different extracts and the control group were analyzed
(Supplementary Figure S2).
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Figure 5. Principal component analysis (PCA) and orthogonal partial least square discriminant
analysis (OPLS-DA) of L. reuteri metabolites adding CSE in positive mode ion and negative ion mode.
(a,b) are the PCA score plot in positive ion mode and negative ion mode, respectively. (c,d) are the
OPLS-DA score plot in positive ion mode and negative ion mode, respectively.

3.6. KEGG Annotation and Metabolic Pathway Analysis

The KEGG database can link metabolites with specific metabolic pathways based on
the variation rules of differential metabolites and can be used to explore the metabolic
mechanism in vivo and the dynamic changes of organisms [55]. We analyzed the metabolic
pathways that were significantly different between the experimental groups and the control
group (Figure 6). These metabolic pathways mainly included carbohydrate metabolism,
amino acid metabolism, nucleotide metabolism, and membrane transport. Carbohy-
drate metabolism pathways mainly included galactose metabolism, fructose and mannose
metabolism, and starch and sucrose metabolism. Amino acid metabolism pathways mainly
include arginine and proline metabolism, alanine, aspartic acid and glutamate metabolism,
cysteine and methionine metabolism, valine, leucine, and isoleucine metabolism, and
glycine, serine, and threonine metabolism. In addition, related pathways such as aminoacyl-
tRNA synthesis, ABC transporter, biotin metabolism, and vitamin metabolism were signifi-
cantly enriched in experimental groups.
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Figure 6. Metabolite enrichment pathway analysis of L. reuteri in the medium supplemented with
CSE under positive ion mode and negative ion mode. Positive ion mode: (a) (CSO vs. MRS), (c) (CPO
vs. MRS), (e) (CPR vs. MRS). Negative ion mode: (b) (CSO vs. MRS), (d) (CPO vs. MRS), (f) (CPR vs.
MRS). CSO: coix seed oil; CPO: coix seed polysaccharides; CPR: coix seed protein.
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3.7. Identification of Different Metabolites

The metabolites in all experimental groups were identified by UPLC-Q-TOF/MS
under positive and negative ionization modes. These metabolites mainly included organic
acids, esters, sugars, nucleosides, amino acids, peptides, and alcohols. OPLS-DA was used
to analyze the variables of compounds identified by positive and negative ionization modes
and the variable importance in projection (VIP) values and t-test was combined together to
select characteristic metabolites. The metabolites with VIP > 1 and p < 0.05 were considered
as differential metabolites. Based on the comparison results between experimental groups
and the control group, we identified 153, 145, and 109 differential metabolites respectively
in CSO (Table S1), CPO (Table S2), and CPR (Table S3) groups. The differential metabolite
volcanic map (Figure 7) shows the metabolite changes between the experimental group and
the control group. Figure 7a,b shows the changes of different metabolites in the CSO group,
including 120 up-regulated metabolites (red dots) and 41 down-regulated metabolites
(green dots). In the CPO group, 83 metabolites were up-regulated and 76 metabolites were
down-regulated (Figure 7c,d). In the CPR group, 74 metabolites were up-regulated and
44 metabolites were down-regulated (Figure 7e,f). Hierarchical clustering analysis between
different experimental groups and control groups was performed to explore the changes of
the same metabolites (Figure 8). Our results showed that the contents of some metabolites
such as organic acids, alcohols, vitamins, and nucleotides in experimental groups were
significantly higher than those in the control group (p < 0.05). The contents of amino acids,
polypeptides, and pyrimidines were significantly reduced (p < 0.05). Cell proliferation
required a lot of amino acids, peptides, and nucleosides during the proliferation process
of L. reuteri. Notably, the abundance of the same metabolite varied significantly among
different experimental groups, indicating that the extracts of coix seed led to different
proliferative activities of L. reuteri.

Figure 7. Cont.
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Figure 7. Volcanic plot of differential metabolites of L. reuteri in the medium supplemented with
CSE under positive ion mode and negative ion mode. Positive ion mode: (a) (CSO vs. MRS),
(c) (CPO vs. MRS), (e) (CPR vs. MRS). Negative ion mode: (b) (CSO vs. MRS), (d) (CPO vs. MRS),
(f) (CPR vs. MRS).
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Figure 8. Cont.
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Figure 8. Heatmap of hierarchical clustering analysis of differential metabolites of L. reuteri in the
medium supplemented with CSE. (a) Negative ion mode, (b) Positive ion mode.



Foods 2022, 11, 187 16 of 21

3.7.1. Carbohydrate Metabolism

Carbohydrates are an important source of energy for the growth of LAB. LAB can
metabolize carbohydrates into lactic acid, acetic acid, carbon dioxide, ethanol, etc. Carbohy-
drate transport is mediated by the members of the ATP-binding cassette (ABC) superfamily
of ABC-transporters, secondary transporters of the Major Facilitator Superfamily (MFS), or
phospho-transferase systems (PTS) in bacteria [45]. Therefore, ABC transporters and phos-
photransferase system-related metabolic pathways were significantly upregulated in exper-
imental groups (Figure 6). Monosaccharides and oligosaccharides are preferentially used in
the fermentation process of LAB. In this study, galactose metabolism, sucrose metabolism,
and starch metabolism were significantly enriched in carbohydrate-related metabolic path-
ways. Tagatose, sucrose, and D-glucose were significantly upregulated in CSO and CPO
groups. It was reported that L-arabinose isomerase (L-AI) and D-xylose isomerase (D-XI)
were found in L. reuteri. L-AI is also known as D-galactose isomerase and can convert
D-galactose to D-tagatose [56]. Tagatose was catalyzed by tagatose-6-phosphokinase and
tagatose-1, 6-diphosphate aldolase to generate glyceraldehyde 3-phosphate, which is in-
volved in the glycolysis pathway [57]. Leite et al. [58] showed that tagatose can promote the
growth of Bifidobacterium infantis NRRL B-41661. Therefore, tagatose may also promote
the growth of L. reuteri. D-XI isomerized D-glucose to D-fructose, which reacted with
glucose to form sucrose under the action of enzymes, thus leading to the upregulation of
sucrose. Mannose was significantly upregulated in the CSO and CPR groups. Wongsiri-
detchai et al. [59] found that mannose could promote the growth of LAB and enhance the
survival rate of LAB under gastrointestinal conditions. Here, mannose may promote the
growth of L. reuteri. In conclusion, compared with CPO and CPR, more fermentable sugars
were detected in medium supplemented with CSO, which might be one of the reasons for
the higher viable count in CSO.

3.7.2. Amino Acid and Peptide Metabolism

Amino acids play an important role in the growth of LAB [60]. After 24 h of fermenta-
tion, the contents of some amino acids decreased significantly (Figure 8), including methio-
nine, arginine, valine, threonine, citrulline, isoleucine, and aspartic acid. Safari et al. [61]
reported that LAB consumed a lot of alanine, arginine, leucine, and isoleucine for growth,
and similar results were observed in this study. Other researchers reported that leucine
and isoleucine could increase the biomass of Lactobacillus and promote the growth of pro-
biotics [62]. Among these amino acids, arginine produced ornithine through the arginine
deiminase pathway (ADI) and released ATP to provide cell energy [63]. Rollan et al. [64]
found that L. reuteri could metabolize arginine through the ADI pathway. The ADI sys-
tem is highly resistant to acids, thus enabling L. reuteri to grow in an acidic environment.
As a sulfur-containing essential amino acid, methionine plays an indispensable role in
protein synthesis, modification, and catalytic regulation [65]. In addition, methionine
has an antioxidant capacity [66] and can enhance the tolerance of L. reuteri to oxygen.
N-formylmethionine is an important derivative of methionine in the initial stage of protein
synthesis and was significantly upregulated in experimental groups with extracts. Aspartic
acid is the precursor of some essential amino acids such as lysine, threonine, methionine,
and isoleucine [67]. Aspartic acid can provide essential amino acids for cell growth when
essential amino acids for cell growth are limited. Aspartic acid is also involved in the
synthesis of purines and pyrimidines [68]. In addition to these down-regulated amino
acids, phenylalanine was significantly up-regulated in experimental groups. During the
fermentation process, phenylalanine shares a metabolic pathway with lactic acid. Under the
action of lactate dehydrogenase, phenylalanine is metabolized into phenyl lactic acid [69].
Phenyl lactic acid has a strong antifungal activity [70]. The metabolism of phenylalanine by
L. reuteri produces phenyl lactic acid [71]. Gánzle pointed out that the intracellular amino
acid level and amination were important factors affecting the accumulation of phenyl lactic
acid, which was stimulated by adding peptides, citric acid, and α-ketoglutaric acid [72].
In our study, the contents of phenylalanine, polypeptide, and citric acid in experimental
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groups were significantly higher than those in the control group, indicating that the content
of phenyl lactic acid accumulated in the experimental groups was higher than that in the
control group. Besides amino acids, some peptides mainly including short peptides were
also involved in the growth and metabolism of L. reuteri. These peptides were hydrolyzed
to produce amino acids associated with the growth of L. reuteri, such as arginine, threonine,
and alanine. According to our results, L. reuteri prefers utilizing free amino acids as the
carbon source for growth, but it seldom utilizes peptides, especially large polypeptides.
This might be related to the lack of enzymes to hydrolyze larger peptides in some LAB [73].

3.7.3. Nucleotide Metabolism

Nucleotides are substrates for RNA and DNA synthesis and the material basis for cell
division. L. reuteri also requires a large amount of nucleotides to maintain cell proliferation.
After 24 h of fermentation, the content of uracil in the experimental groups was lower
than that in the control group. Pyrimidine is one of the abundant metabolites in cells
and plays an important role in cell energy production and cell signal transduction [74].
Many LAB are auxotrophic to purines and pyrimidines and cannot reduce ribonucleotides
to the corresponding deoxyribonucleotide for DNA synthesis. However, they possess
a special salvage system based on a trans-N-deoxyribosylase and the system requires
deoxynucleoside in combination with pyrimidine and purine bases [75]. The increased
demand for uracil indicated that coix seed extracts might enhance the proliferation ability
of L. reuteri. In addition, 3,5–cyclic guanosine monophosphate (cGMP), a cellular second
messenger signaling molecule, was decreased in the CSO and CPR groups. Another second
messenger signaling molecule, adenosine 3,5–cyclic phosphate (cAMP), was increased
in the CPO group. cGMP and cAMP are second messenger signaling molecules widely
presented in bacteria, especially in biofilms [76]. Under anaerobic conditions, intracellular
guanosine had a higher concentration and was easily absorbed [77], thus, cGMP was
decreased in experimental groups. Adenosine and guanosine could also significantly
stimulate probiotic growth under anaerobic conditions [78]. In addition, the contents of
5-methylcytosine, 2-O-methyladenosine, adenine nucleotides, and other substances in the
experimental groups were also higher than those in the control group.

3.7.4. Other Metabolism Pathways

In addition to carbohydrates, nucleotides, and amino acids for growth, other growth
factors of L.reuteri are also required, such as vitamins and biotin. Vitamins are involved in
many functions of the body, including cell metabolism and nucleic acid synthesis [79]. We
observed that the content of vitamin B6 (VB6) in the experimental groups was significantly
higher than that in the control group (Figure 8). It is reported that VB6 can promote the
growth of LAB [80]. The up-regulation of VB6 might contribute to the proliferation of
L.reuteri. In addition, another vitamin complex (choline) was also significantly upregulated.
Baliarda et al. [81] found that choline could alleviate the inhibition of the salt stress on
the growth of LAB because choline is a positively charged compound and can effectively
balance counter ions in cells and play a protective role under salt stress [82]. In addition,
choline is also a component of lecithin, which is of great significance to the formation of
cell membranes. The lack of choline can cause cell apoptosis. The biomass of L. reuteri in
experimental groups was higher than that in the control group probably due to the presence
of choline. Notably, inositol was accumulated in the CSO group. Inositol is a precursor
to phosphatidylinositol and can enhance cell tolerance to the environment, especially the
ethanol stress [83]. Ethanol is one of the by-products in L. reuteri fermentation. The presence
of inositol might enhance the tolerance of L. reuteri to ethanol. Interestingly, besides the
normal metabolites of LAB, imatinib was also detected after fermentation. Imatinib is
widely used in the treatment of chronic myeloid leukemia [84]. However, whether imatinib
is produced by L. reuteri fermentation needs further experimental confirmation.
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4. Conclusions

This study demonstrated that CSE could promote acid production and the growth of
L. reuteri. Meanwhile, CSE also significantly affected several metabolic pathways of L. reuteri,
including carbohydrate metabolism, amino acid metabolism, nucleotide metabolism, and
vitamin metabolism. These findings suggest that CSE may have prebiotic potential and can
be used to culture L. reuteri with high viable bacteria. However, further studies are needed
using CSE as a single carbon or nitrogen source to determine the growth-promoting effect
of CSE on L. reuteri. Additionally, more research is needed to confirm the prebiotic effects of
CSE on other probiotics. If its prebiotic activity is proven, CSE could be used as a functional
food, giving products a healthy appeal.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11020187/s1, Table S1: The differential metabolites of
L. reuteri in CSO were determined by UPLC-Q-TOF-MS/MS, based on VIP > 1, p < 0.05. Table S2:
The differential metabolites of L. reuteri in CPO were determined by UPLC-Q-TOF-MS/MS, based
on VIP > 1, p < 0.05. Table S3: The differential metabolites of L. reuteri in CPR were determined
by UPLC-Q-TOF-MS/MS, based on VIP > 1, p < 0.05. Figure S1: Principal component analysis of
differential metabolites in different extracts of L. reuteri under positive ion mode and negative ion
mode. Positive ion mode: A (CSO vs. MRS), C (CPO vs. MRS), E (CPR vs. MRS). Negative ion mode:
B (CSO vs. MRS), D (CPO vs. MRS), F (CPR vs. MRS). Figure S2: Orthogonal partial least square
discriminant analysis of differential metabolites in different extracts of L. reuteri under positive ion
mode and negative ion mode. Positive ion mode: A (CSO vs. MRS), C (CPO vs. MRS), E (CPR vs.
MRS). Negative ion mode: B (CSO vs. MRS), D (CPO vs. MRS), F (CPR vs. MRS).
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