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Abstract: The root of Gentiana straminea Maxim. (Gentianaceae), is officially listed as “Qin-Jiao” in the
Chinese Pharmacopoeia for the treatment of rheumatic arthritis, icteric hepatitis, constipation, pain,
and hypertension. To establish the geographical origin traceability in G. straminea, its chemical profiles
were determined by a UPLC-Q exactive mass spectrometer, from which 43 compounds were identified
by comparing retention times and mass spectrometry. Meanwhile, a pair of isomers (loganin and
secologanol) was identified by mass spectrometry based on their fragmentation pathway. A total of
42 samples from difference habitats were determined by an UPLC-Q exactive mass spectrometer and
the data were assayed with multivariate statistical analysis. Eight characteristic compounds were
identified to determine the geographical origin of the herb. To estimate the key characteristic markers
associated with pharmacological function, the inhibiting activities of nitric oxide (NO) production in
lipopolysaccharide (LPS)-induced macrophages were examined. This finding is crucial in realizing
the determination of botanical origin and evaluating the quality of G. straminea.

Keywords: Gentiana straminea; geographical origin; UPLC-Q exactive mass; metabolomics;
multivariate analysis

1. Introduction

The geographical origin and the authenticity of herbal material are often related to the safe
application of their preparations, since the authenticity and quality parameters are often associated
with a particular geographical origin and/or production area [1]. However, some herbal products
available for purchase do not come from a fixed origin, and could fall short of quality requirements.
Thus, the successful traceability of geographical origin attributes is necessary for ensuring efficacy
and biosafety [2]. Metabolites are the end product of the majority of cellular processes, and, as such,
are representative of the phenotype of an organism. The secondary metabolites of herbs with
different geographical origins exhibit certain differences, therefore, it has been speculated that different
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geographical origins of medicinal herbs may be identified according to their chemical characteristics
by a data mining method based on their chemical profiles [3].

The root of Gentiana straminea (G. straminea) Maxim. (Gentianaceae) is officially listed as “Qin-Jiao”
in the Chinese Pharmacopoeia [4] for the treatment of rheumatic arthritis, icteric hepatitis, constipation,
pain, and hypertension [5]. Phytochemical investigations have characterized the plant by the presence
of a wide range of compounds, such as iridoids, secoiridoids, flavonoids, triterpenoids, alkaloids,
and other types of secondary metabolites [6–8]. Some published methods have focused on the qualitative
and quantitative determination of iridoids and secoiridoids in the plant by liquid chromatography
or liquid chromatography-mass spectrometry [9,10]. Nevertheless, few of these methods have been
aimed at determining the geographical origin of G. straminea by characteristic marker components.

In recent years, the authors of this paper successfully identified the characteristic components in
different geographical origins of Lamiophlomis rotata by ultra-high performance liquid chromatography
coupled with time-of-flight mass spectrometry (UPLC-Q/TOF/MS) [11–13]. Here, a comprehensive
chemical composition analysis of 42 samples is proposed to evaluate the variability of G. straminea
from different geographical origins, with sensitive, selective, and accurate UPLC-Q exactive mass
spectrometer analysis. The UPLC-Q exactive mass spectrometer data was assayed to identify the
characteristic components in G. straminea from different geographical regions. Partial least-squares
discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA)
were employed with a metabolomic approach. To estimate the key characteristic marker associated with
pharmacological function, the inhibiting activities of nitric oxide (NO) production in lipopolysaccharide
(LPS)-induced macrophages were examined. In summary, the findings of this study imply that
the origin of the material should be considered when it is used in traditional prescriptions and
medicinal preparations.

2. Results

2.1. Identification of the Constituents in G. straminea by UPLC-Q Exactive Mass Spectrometer

The no. 3 sample from Sichuan province (SC-M-03-r3b) was selected for identification by UPLC-Q
mass assay as the sample showing the most peaks during 0–30 min. Forty-six peaks were detected
in G. straminea from MS and MSn in negative and positive ion mode by a UPLC-Q exactive mass
spectrometer (Figure 1). The mass accuracy for all assigned components was less than 5 ppm compared
with the molecular formulas of the published compounds in G. straminea. Gentiopicroside, swertiamarin,
6′-O-β-d-glucopyranosyl-gentiopicroside, sweroside, loganic acide and loganin were identified by
comparison with the retention time and mass fragmentation of reference standards. The SciFinder
Scholar and the PubChem databases were searched for the spectral data of other compounds reported
previously in the genus Gentiana and G. straminea to identify the constituents of the herb [14–20].
Forty-three of these were identified by comparing the retention times and mass spectrometry, which
has already been summarized [21], including 20 iridoids, 16 secoiridoids, 8 flavonoids, 2 triterpenoids,
2 lignins, 2 alkaloids, and 2 saccharides (Table 1).

Among these compounds, gentiopicroside (a type of secoiridoid) and loganin (a type of iridoid)
were officially listed in the Chinese Pharmacopoeia 2015 edition for quality control of the herb [22].
In positive ion mode, secoiridoids and iridoids all showed highly abundant proton and sodium ion
adducts, but a relatively lower proportion of potassium, and they also showed highly formate and
chlorine ion adducts in negative ion mode. Moreover, small peaks for [2M + Na]+, [2M + HCOOH −
H]− (Supplementary Figures S1 and S2), could be observed in the spectra for positive and negative
experiments. All of these mass signals were helpful in the identification of secoiridoid and iridoid
components [23,24].
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Figure 1. Total ion current chromatograms of substances in the extract of G. straminea (the no. 3 sample 
of Sichuan province) with positive and negative ion modes. 

Figure 1. Total ion current chromatograms of substances in the extract of G. straminea (the no. 3 sample
of Sichuan province) with positive and negative ion modes.

For the first time, a pair of isomers (loganin and secologanol) were identified by mass spectrometry
based on their fragmentation pathway. Loganin (a type of iridoid), eluted at 9.95 min, showed
fragment ions at m/z 413.14157 [M + Na]+ (Figure 2a) and m/z 803.29346 [2M + Na]+, with the elemental
composition of C17H26O10Na (calculated 413.14240) in positive ion mode. In MS2, the compound
formed product-characterized ions at m/z 285.09409 with the neutral loss of C6H8O3 (∆m = 128.04831
Da). It also showed ions at m/z 185.04211 Da as glucose residue adducts sodium ion, and ions at m/z
219.06264 Da indacted the compound with the neutral loss of a glucose and methanol. The proposed
fragmentation pathway of the loganin is shown in Figure 3a.
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Table 1. The identification of iridoid glycosides of G. straminea (the no. 3 sample of Sichuan province) by UPLC-Q exactive mass spectrometer.

Peak No. RT (min) Compound Formula Calculated (Da) Selected Ion Precursor Ion (Da) Mass Accuracy (ppm) Class

1 1.33 gentiobiose C12H22O11 342.11622 [M + Na]+ 365.10510 −0.25 sugars
2 1.91 gentianose C18H32O16 504.16904 [M + Na]+ 527.15784 −0.19 sugars
3 2.12 morroniside C17H26O11 406.14752 [M + H]+ 407.13815 −4.22 iridoids
4 2.41 eustomorusside C17H24O11 408.12678 [M + Na]+ 431.11603 −0.13 secoiridoids
5 2.66 miserotoxin C9H17O8N 267.09542 [M + Na]+ 290.08566 0.15 alkaloids
6 4.88 gladiatoside C1 C29H26O12 566.14243 [M + Na]+ 589.13708 0.82 flavanoids
7 5.85 kingsidic acide C16H22O11 390.11622 [M + Na]+ 413.10522 −0.19 iridoids
8 6.20 secologanic acide C16H24O10 374.12130 [M + Na]+ 397.11047 −0.16 secoiridoids
9 6.49 6′-O-β-d-glucopyranosyl loganic acide C22H34O15 538.18978 [M + Na]+ 561.17889 −0.12 iridoids

10 6.59 6′-O-acetylgentiopicroside C16H24O12 398.12130 [M + Na]+ 431.15219 −0.76 iridoids
11 6.87 loganic acide C18H22O10 376.13695 [M + Na]+ 399.12595 −0.20 iridoids
12 7.10 kushenol I C16H24O10 454.19916 [M + Na]+ 477.17078 −3.81 flavanoids
13 7.29 1-O-β-d-gulcopyranosyl-4-epiamplexin C15H22O10 362.12130 [M + Na]+ 385.11685 1.49 secoiridoids
14 7.63 macrophylloside A C27H24O9 492.14204 [M + H]+ 493.14243 −1.50 secoiridoids
15 7.91 8-epi-kingsidic acide C16H22O11 390.11622 [M + Na]+ 413.10532 −0.17 iridoids
16 8.02 paederotoside C28H34O15 633.18252 [M + Na]+ 633.1796 0.46 iridoids
17 8.16 6′-O-β-d-glucopyranosyl gentiopicroside C22H30O14 518.16356 [M + Na]+ 541.15302 −0.06 secoiridoids
18 8.29 isovitexin-7-O-β-d-glucopyranoside C27H30O15 594.15848 [M + Na]+ 617.14746 −0.13 flavanoids
19 8.51 swertiamarin C16H20O10 374.12130 [M + Na]+ 397.11060 −0.13 secoiridoids
20 9.58 2′-acetylswertiamarin C18H24O11 416.13187 [M + Na]+ 439.12115 −0.12 secoiridoids
21 9.78 gentiopicroside C16H20O9 356.11074 [M + Na]+ 379.09982 −0.19 secoiridoids
22 9.95 loganin C17H26O10 390.15260 [M + Na]+ 413.14166 −0.18 iridoids
23 10.28 sweroside C16H22O9 358.12639 [M + Na]+ 381.11551 −0.18 secoiridoids
24 10.67 coniferin C16H22O8 342.13147 [M + Na]+ 365.11405 −1.98 lignin
25 10.85 Unknown C15H24ON2 248.18886 [M + Na]+ 271.17780 −0.32 alkaloids
26 11.85 Unknown C18H18O10 394.09000 [M + Na]+ 417.07639 −0.82 –
27 12.03 Homoorientin C21H20O11 448.10057 [M + Na]+ 471.08981 −0.12 flavanoids
28 12.35 Secologanol C17H26O10 390.15260 [M + Na]+ 413.14172 −0.16 secoiridoids
29 12.61 qinjiaoside A C17H24O11 404.13187 [M + Na]+ 427.12112 −0.13 secoiridoids
30 13.36 8-epikingisde/7-ketologanin C17H24O10 388.13695 [M + Na]+ 411.12610 −0.16 iridoids
31 14.54 vitexin/isovitexin C21H20O10 432.10565 [M + Na]+ 455.09482 −0.14 flavanoids
32 15.80 olivieroside A C25H26O11 502.14752 [M + H]+ 503.13646 −3.75 secoiridoids
33 16.20 pneumonanthoside C19H30O7 370.19916 [M + Na]+ 393.18814 −0.21 lignin
34 16.40 isoorientin-4′-O-glucoside C27H30O16 610.15339 [M + Na]+ 633.12128 −3.46 flavanoids
35 16.60 saprosmoside H C34H42O21S 818.19394 [M + Na]+ 841.21564 3.79 secoiridoids
36 17.17 6-p-coumaroy barlerin C28H34O14 594.19486 [M + Na]+ 617.16246 −3.60 iridoids
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Table 1. Cont.

Peak No. RT (min) Compound Formula Calculated (Da) Selected Ion Precursor Ion (Da) Mass Accuracy (ppm) Class

37 17.36 7-O-feruloylorientin C31H28O14 624.14791 [M + Na]+ 647.13690 −0.13 flavanoids
38 18.26 flavoconomelin C28H32O15 608.17413 [M + Na]+ 631.14191 −3.49 flavanoids
39 19.27 alboside III C22H32O15 536.17413 [M + Na]+ 559.1639 2.36 secoiridoids
40 19.99 rindoside C35H42O21 798.22187 [M + Na]+ 821.21045 −0.15 secoiridoids
41 20.40 unknown C20H30O5 350.20933 [M + Na]+ 373.19589 −0.87 –
42 20.70 triforoside C35H42O20 782.22695 [M + Na]+ 805.21564 −0.14 secoiridoids
43 21.29 oliveramine C20H20N2O4 352.14231 [M + Na]+ 375.12127 −2.89 alkaloids
44 22.15 2-methoxyanofinic acid C14H16O4 248.10486 [M + Na]+ 271.08786 −2.51 phenolic acides

45 23.53 1β,2α,3α,24-tetrahydroxyursa-12,20(30)-
dien-28-oic acid C30H46O6 502.32944 [M + H]+ 503.33640 −0.17 triterpenoids

46 23.81 1β,2α,3α,24-tetrahydroxyurs-
12-en-28-oic acid C30H48O6 504.34509 [M + H]+ 505.35211 −0.15 triterpenoids



Molecules 2019, 24, 4478 6 of 13

Notably, secoiridoids have always produced fragmentation by Retro–Diels–Alder (RDA) cleavage
of the aglycon moiety [24] and these fragmentations are quite different from that of iridoids. Secologanol
(a type of secoiridoid), eluted at 12.35 min, showed fragment ions at m/z 413.141172 [M + Na]+ (Figure 2b)
and m/z 803.29358 [2M + Na]+ (Supplementary Figure S1b), and after generated [M + Na − Glu]+ at
m/z 251.08833 Da, which was identical to the aglycone fragment corresponding to the neutral loss of
a glucose unit (∆m = 162 Da). The precursor ion produced characterized ions at m/z 181.04694 with
an RDA cleavage reaction of the base skeleton and showed the neutral loss of C4H6O (∆m = 70 Da).
The proposed fragmentation pathway of the secologanol is shown in Figure 3b.Molecules 2019, 24, x FOR PEER REVIEW 7 of 14 
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2.2. Multivariate Analysis of the Global Metabolomics Data

To globally evaluate the chemical consistency of G. straminea samples of different geographical
origins, the UPLC-Q exactive mass datasets were subjected to partial least-squares discriminant
analysis (PLS-DA) and orthogonal partial least squared discriminant analysis (OPLS-DA) to highlight
differences among the G. straminea samples. As shown in Figure 4a, the 42 samples were roughly
clustered into three groups by PLS-DA analysis. With OPLS-DA analysis, all of the samples were
clearly categorized into three groups in 3D space (Figure 4b), 10 samples (green dots) from Gansu
province were assigned to group I, 7 samples (blue dots) from Qinghai were assigned to group II,
and 25 samples (red dots) from Sichuan province were assigned to group III.
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Figure 4. (a) Partial least-squares discriminant analysis (PLS-DA) score plot of G. straminea from
three geographical origins. Green dots: samples from Gansu province, blue dots: samples from
Qinghai province, red dots: samples from Sichuan province. (b) Orthogonal partial least-squares
discriminant analysis (OPLS-DA) in 3D score plot of G. straminea from three rgeographical origins.
Green dots: samples from Gansu province, blue dots: samples from Qinghai province, red dots:
samples from Sichuan province. (c) Loading plot of OPLS-DA analysis of G. straminea. compound
a: gentiopicroside (tR 9.78 min, m/z 379.09982), compound b: vitexin (tR 14.54 min, m/z 411.12610),
compound c: swertiamarin (tR 8.51 min, m/z 397.11060), compound d: gentiobiose (tR 1.33 min, m/z
365.10510), compound e: sweroside (tR 10.28 min, m/z 381.11551), compound f: 2-methoxyanofinic acide
(tR 22.15 min, m/z 271.08786), compound g: loganic acide (tR 6.87 min, m/z 399.12595), and compound
h: 1β, α,3α,24-tetrahydroxyursa-12,20 (30)-dien-28-oic acid (tR 25.53 min, m/z 503.33640).

In order to identify the most significant discriminatory features between these regions that could
act as potential barcodes, an extended statistical analysis was used to provide loading score plots
of OPLS-DA (Figure 4c). In this plot, according to the importance of discriminating geographical
characteristics, the size and color of these points have been highlighted, as seen in Figure 4c. The eight
characteristic compounds were identified as: gentiopicroside (tR 9.78 min, m/z 379.09982); vitexin
(tR 14.54 min, m/z 411.12610); swertiamarin (tR 8.51 min, m/z 397.11060); gentiobiose (tR 1.33 min,
m/z 365.10510); sweroside (tR 10.28 min, m/z 381.11551); 2-methoxyanofinic acid (tR 22.15 min, m/z
271.08786); 1β,2α,3α,24-tetrahydroxyursa-12,20(30)-dien-28-oic acid (tR 25.53 min, m/z 503.33640); and
loganic acid (tR 6.87 min, m/z 399.12595).

In the loading score plot of OPLS-DA, it is also clearly shown that samples from Gansu province
are characterized by a high content of gentiopicroside, vitexin, and loganic acid, while samples from the
Sichuan habitat location had a higher relative concentration of swertiamarin, and the populations of the
Qinghai province were characterized by high contents of gentiobiose, sweroside, 2-methoxyanofinic
acid, and 1β,2α,3α,24-tetrahydroxyursa-12,20(30)-dien-28-oic acid.
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2.3. Anti-Inflammatory Effect of Characterize Components

With the aid of multivariate statistical analysis, gentiopicroside was confirmed as the most
characteristic marker to distinguish the geographical origin of G. straminea. Anti-inflammatory activity
is directly associated with therapeutic effects on arthritis, thus, to further evaluate the anti-inflammatory
pharmacological function of characteristic markers, the inhibiting activities of nitric oxide production
were evaluated in the macrophage cell line RAW 264.7 [25].

The cytotoxicity of gentiopicroside and LPS in RAW 264.7 cells were examined using CCK8 assay.
As shown in Figure 5a, no significant difference in the viability of RAW 264.7 cells were observed
among groups, suggesting that the concentrations of gentiopicroside and LPS used in the present
study did not show any significant cytotoxic effects on RAW 264.7 cells. The inhibition effect of
NO production induced by LPS in the macrophage-derived RAW 264.7 cells of the compound was
assayed. It was found that the level of NO gradually decreased in a concentration-dependent manner
in gentiopicroside. At a concentration of 100 µM, the compound significantly inhibited NO generation
(83.76 ± 0.57%), with IC50 values of 44.2 ± 6.4 µM (Figure 5b).

In addition to gentiopicroside, nitric oxide production was also suppressed by loganic acid,
swertiamarin, and vitexin. These compounds possessed the most potent inhibitory activity against
NO production with IC50 values of 23.13 ± 5.4, 13.65 ± 7.1, and 15.71 ± 6.20 µM, respectively. All the
results showed that gentiopicroside, loganic acid, swertiamarin, and vitexin were able to effectively
inhibit NO production induced by LPS (1 µg/mL) in a dose-dependent manner in RAW 264.7 cells
(Supplementary Figure S3). Specifically, the inhibiting effect against NO production of sweroside
was also measured. However, the compound did not show inhibiting activities on LPS-induced NO
production in RAW 264.7 macrophages, as has been reported [26], because the cells were incubated
with sweroside for only 24 h in the experiment.
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Figure 5. Effects of gentiopicroside on lipopolysaccharide (LPS)-induced NO production in RAW 264.7
cells. (a) RAW 264.7 cells were exposed to different concentrations of gentiopicroside (0, 5, 10, 20, 40, 80,
and 100 µM) with or without LPS (1 µg/mL) for 24 h. Cell viability was determined by using the CCK-8
method. (b) RAW 264.7 cells were incubated with gentiopicroside (0, 5, 10, 20, 40, 80, and 100 µM)
with stimulated by LPS (1 µg/mL) for 24 h. Extracellular levels of NO in culture media were measured
using commercial Griess reagent. Data were folds of control and expressed as the mean ± SEM of
six independent experiments. ### p < 0.001 compared with the control group. * p < 0.05, ** p < 0.01,
*** p < 0.001, compared with the LPS alone.

3. Conclusions

In the present research, a selective and specificity approach was established to illustrate the
chemical composition of 42 samples in G. straminea with a UPLC-Q exactive mass spectrometer,
and an overall chemical profile of the herb was obtained. The significant differences in metabolite
compositions between three geographical origins have been identified with multivariate analyses.
The anti-inflammation effects of biomarkers on LPS-induced NO production in RAW264 macrophages
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were examined. The results suggested that samples from Gansu province have a higher content of
gentiopicroside and loganic acid, and showed better anti-inflammatory effects than others. From the
legal point of view [27], the result also confirmed that samples of Gansu province have better quality
than other samples. Altogether, this finding is crucial in realizing the discrimination of the botanical
origin of G. straminea, and evaluating the herb quality.

4. Discussion

The objective of the current study is the development of UPLC-Q exactive mass spectrometer
methodology to allow qualitative screening of geographical origin traceability in G. straminea. Firstly,
the chemical profiles of G. straminea were determined with a UPLC-Q exactive mass spectrometer,
from which 43 compounds were identified by comparing the retention times and mass spectrometry.
Meanwhile, a pair of isomers (loganin and secologanol) was identified by mass spectrometry based on
their fragmentation pathway. Although Wu, et al. had identified 30 constituents in G. straminea with
LC-MS [9], the result was also conducive to have a comprehensive understanding of the constituents
of G. straminea.

Secondly, 42 samples from different habitats were determined by a UPLC-Q exactive mass
spectrometer and the data were assayed with multivariate statistical analysis. Gentiopicroside, vitexin,
swertiamarin, gentiobiose, sweroside, 2-metho-xyanofinic acide, loganic acide, and 1β,2α,3α,24-
tetrahydroxyursa-12,20(30)-dien-28-oic acid were identified as characteristic compounds to identify the
geographical origin of the herb. Notably, according to the importance of these characteristic compounds,
gentiopicroside was explored as the most characteristic marker to distinguish the geographical origin of
G. straminea. Additionally, the result also confirmed the rationality of gentiopicroside as the biomarker
to determine the quality of G. straminea. Moreover, the result indicated that samples from Gansu
province would be the most suitable choice for traditional prescriptions and preparations.

It should be emphasized that, according to the Chinese Pharmacopoeia, samples from Gansu
province have been shown to have higher gentiopicroside and loganic acide amounts of some
compounds than others. However, samples from Sichuan province showed a higher content of
swertiamarin, and pharmacological research has revealed that this characteristic compound possesses
anti-diabetic and anti-hyperlipidemic effects [28], and inhibits liver fibrosis [29]. Additionally, samples
from Qinghai province have shown a higher content of sweroside, which exhibited a hepatoprotective
effect [30], protective effects on osteoporosis [31], and aconitine-induced cardiac toxicity effects [32].
In view of the above reasons, it remains a challenge to estimate the herb quality of different populations.
Since the herb exhibits various clinical uses in traditional prescriptions, further research should be
conducted to better understand its geographical origin and its associated the clinical uses.

5. Materials and Methods

5.1. Plant Materials, Reagents, and Chemicals

Forty-two wild herbs of G. straminea were collected around the Qinghai-Tibet plateau in Qinghai,
Sichuan, and Gansu provinces during the flowering period (the locations of the samples are provided
in Table 2), individuals 10 m apart from each other were sampled randomly throughout the entire
range of each location. The herbs were authenticated by Professor Yi Zhang (Chengdu University
of Traditional Chinese Medicine, Chengdu, China). The samples were carefully divided into roots,
leaves, and inflorescences parts, and dried in the shade. The voucher samples were deposited in the
College of Ethnic Medicine (Chengdu University of Traditional Chinese Medicine, Chengdu, China)
and the Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources (Northwest Onstitute
of Plateau Biology, Chinese Academy of Science, Xining, China).
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Table 2. Populations of G. straminea from different geographical origin.

Location Longitude (E) Latitude (N) Altitude (m) No. of Samples

Gansu 101.9308–104.7733 33.36501–34.526 2905–3572 10
Qinghai 96.6487–101.7353 33.7805–33. 9361 3516–3789 7
Sichuan 98.7732–100.5236 31.0219–33.2510 3400–3796 25

Gentiopicrin (CAS:20831-76-9), loganic acid (CAS: 22255-40-9), swertamarin (CAS: 1738839-5);
loganin (CAS: 18524-94-2), vitexin (CAS: 3681-93-4), sweroside (CAS: 14215-86-2), and 6′-O-β-d-
glucopyranosylgentiopicroside (CAS: 115713-06-9) were purchased from Biopurify Phytochemicals
Ltd. (Chengdu, China). The purity of all of the standards is higher than 98% (determined by HPLC),
and were confirmed by the 1H-NMR spectra to those in the literature [14–20].

HPLC-grade methanol and formic acid were purchased from Merck (Darmstadt, Germany)
and Tedia (Fairfield, OH, USA). Deionized water was prepared using a Millipore water treatment
system (Bedford, MA, USA). Lipopolysaccharide (LPS, Escherichia coli 055: B5) was purchased from
Sigma-Aldrich (St. Louis, MO, USA). The Cell Counting Kit-8 was purchased from Dojindo (Kyushu
Japan). Griess reagents and dimethyl sulfoxide (DMSO) were purchased from Beyotime (Shanghai,
China). All other reagents were of analytical grade.

5.2. Sample Preparation

The dried samples (100 mg of powder each) were made to the same concentration by resuspending
in 5 mL of 70% aqueous methanol in an ultrasonic bath for 30 min and cooled at room temperature.
The tubes were centrifuged twice at 12,000 rpm at room temperature for 5 min each time. The extraction
was repeated three times using fresh aliquots of the solvent. The extracts were transferred to a 5 mL
volumetric flask, which was then filled up to the final volume with extraction solvent. The sample
solutions were filtered through a 0.22-µm pore size nylon membrane filter before injection into the
UPLC. All samples were stored in a refrigerator at a temperature of 4 ◦C until analysis.

5.3. LC-MS/MS Analysis

The mass spectrometer Thermo Q-Exactive Plus (Thermo Scientific, San Jose, CA, USA) was
equipped with heated electrospray ionization (HESI) source. Capillary temperature and vaporizer
temperature were set at 330 and 280 ◦C, respectively, while the electrospray voltage was adjusted at
3.50 kV (operating in both positive and negative mode). Sheath and auxiliary gas were 35 and 15
arbitrary units, with an S lens RF level of 60.

The mass spectrometer was controlled by the Xcalibur 3.0 software (Thermo Fisher Scientific, San
Jose, CA, USA). The exact masses of the compounds were calculated using Qualbrowser in Xcalibur
3.0 software. The mass scan range was set in the range of m/z 100–1000.

The column was a Waters Acquity UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 µm particle
size). The mobile phases were (a) water with 0.1% (v/v) formic acid and (b) methanol with 0.1% (v/v)
formic acid. The optimized elution conditions were as follows: holding at 10% B for 2 min, a linear
gradient from 10% to 13% B (all v/v) (2 to 4 min), 13% to 15% B (4 to 10 min), 15% to 17% B (10 to
15 min), 17% to 21% B (15 to 19 min), 21% to 29% B (19 to 24 min), 29% to 53% B (24 to 29 min), 53% to
75% B (29 to 35 min), 75% to 100% B (35 to 36 min), isocratic 100% B for 1 min, and then back to 7% B
in 1 min. The flow rate was 0.3 mL/min. The column temperature was 35 ◦C. The injection volume
was 2 µL.

5.4. Data Processing and Statistical Analysis

The data were processed according to the method described in the references [33]. The MS
chromatograms spectra of 42 samples were processed for alignment, data reduction, and normalization
by Xcalibur 3.0 software (Thermo Fisher Scientific, San Jose, CA, USA), the data were imported into
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Microsoft Excel to carry out peak area normalization after being processed by Compound Discoverer
2.0, and the processed data were exported to SIMCA-P software (ver. 13.0; Umetrics, Umeå, Sweden)
for data analysis. A list of the intensities of detected peaks was generated using the retention time (tR)
and the mass data (m/z) pairs to identify each peak. An arbitrary ID was assigned to each tR–m/z pair
in the order of their UPLC elution to facilitate data alignment. This procedure was repeated for each
run. Ions from different samples were considered to be identical when they had the same tR (tolerance
within 0.01 min) and m/z (tolerance within 0.01 Da). If a peak was not detected in a particular sample,
that ion intensity was recorded as zero.

5.5. Cell Culture and Cell Viability Measurement

Murine macrophage cell line RAW 264.7 were cultured in Dulbecco’s Modified Eagle Medium
(DMEM, Hyclone Florida, USA) supplemented with 10% fetal bovine serum (FBS, ExCell Bio Shanghai,
China), 1% Penicillin Streptomycin (Gibico California, USA) at 37 ◦C in a humidified atmosphere of
95% air and 5% CO2. After spreading at 80–90% confluence, cells were washed with PBS, scraped with
fresh culture, and subcultured into 96-well plates at a density of 5.0 × 103 cells/well and incubated
with or without LPS (1 µg/mL). The cells were exposed to different concentrations of gentiopicroside,
loganic acid, swertiamarin, and vitexin (0, 1, 5, 10, 20, 40, and 50 µM) with or without LPS (1 µg/mL)
for 24 h. The optical density was measured at 450 nm using a multi-plate reader (BioTek, Winooski,
VT, USA).

5.6. Nitric Oxide (NO) Assay

NO analysis was performed to evaluate inflammatory response and to measure NO release by
macrophages. RAW 264.7 cells (1× 105 cells/well) were seeded in 96-well cell culture plates and allowed
to adhere for 12 h. The cells were incubated on swertiamarin and loganic acid (0, 5, 10, 20, 40, 80,
and 100 µM), or swertiamarin and vitexin (0, 5, 10, 20, 40, and 50 µM), respectively, with stimulation by
LPS (1 µg/mL) for 24 h [34]. NO secretion by LPS-stimulated macrophages was determined by Griess
reagents (Beyotime, Shanghai, China) according to the instructions of manufacturer [35]. Absorbance
was measured at 540 nm and NO concentration was determined using sodium nitrite as a standard.
Three replicates were carried out for each of the different treatments.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/24/4478/s1,
Figure S1: the mass spectra of loganin and secologanol in positive ion mode by UPLC-Q Exactive mass spectrometer
([2M + Na]+). Figure S2. the mass spectra of loganin and secologanol in negative ion mode by UPLC-Q Exactive
mass spectrometer ([2M + HCOOH-H]−). Figure S3. Effects of loganic acid, swertiamarin, and vitexin on
LPS-induced NO production in RAW 264.7 cells.
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