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γ-Aminobutyric acid (GABA) transporter (GAT)-1, the major GABA transporter in
the brain, plays a key role in modulating GABA signaling and is involved in the
pathophysiology of several neuropsychiatric diseases, including epilepsy. The original
description of GAT-1 as a neuronal transporter has guided the interpretation of the
findings of all physiological, pharmacological, genetic, or clinical studies. However,
evidence published in the past few years, some of which is briefly reviewed herein,
does not seem to be consistent with a neurocentric view of GAT-1 function and calls for
more detailed analysis of its localization. We therefore performed a thorough systematic
assessment of GAT-1 localization in neocortex and subcortical white matter. In line with
earlier work, we found that GAT-1 was robustly expressed in axon terminals forming
symmetric synapses and in astrocytic processes, whereas its astrocytic expression
was more diffuse than expected and, even more surprisingly, immature and mature
oligodendrocytes and microglial cells also expressed the transporter. These data
indicate that the era of “neuronal” and “glial” GABA transporters has finally come
to a close and provide a wider perspective from which to view GABA-mediated
physiological phenomena. In addition, given the well-known involvement of astrocytes,
oligodendrocytes, and microglial cells in physiological as well as pathological conditions,
the demonstration of functional GAT-1 in these cells is expected to provide greater insight
into the phenomena occurring in the diseased brain as well as to prompt a reassessment
of earlier findings.
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INTRODUCTION

γ-Aminobutyric acid (GABA) transporter (GAT)-1 is a highly conserved molecule that is
encoded by SLC6A1 and transports GABA in a high-affinity, Na+- and Cl−-dependent manner
(Kanner, 1978; Guastella et al., 1990; Borden, 1996). As the major GABA transporter in
the brain, it plays a key role in modulating GABA signaling (Cherubini and Conti, 2001;
Scimemi, 2014). Besides being involved in a broad range of brain functions (Cherubini
and Conti, 2001; Bragina et al., 2008; Conti et al., 2011; Kinjo et al., 2013; Scimemi, 2014;
Savtchenko et al., 2015; Zafar and Jabeen, 2018), GAT-1 has also been implicated in the
pathophysiology of a number of neuropsychiatric disorders including anxiety, depression, epilepsy,
Alzheimer’s disease, and schizophrenia (Lai et al., 1998; Nägga et al., 1999; Pierri et al., 1999;
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Sundman-Eriksson and Allard, 2002; Conti et al., 2004; Lewis and
Gonzalez-Burgos, 2006; Cope et al., 2009; Bitanihirwe and Woo,
2014; Carvill et al., 2015; Gong et al., 2015; Fuhrer et al., 2017;
Mattison et al., 2018).

GABA uptake by GAT-1 is heavily inhibited by cis-3-
aminocyclohexane carboxylic acid (ACHC) and, to a lower
extent, by 2,4-diaminobutyric acid, but not by β-alanine
(Guastella et al., 1990; Keynan et al., 1992; Liu et al., 1993), two
features that have often been considered typical of ‘‘neuronal’’
transporters. This view has been bolstered by the demonstration
that GAT-1 is strongly expressed in axon terminals (Minelli
et al., 1995; Conti et al., 1998)—despite the fact that the same
studies also clearly documented an astrocytic localization—and
is still widely used to interpret physiological, pharmacological,
genetic, and clinical investigations. However, the findings of
several studies published in the past few years call for a more
detailed analysis of GAT-1 localization.

RECENT STUDIES SUGGEST A LESS
SIMPLISTIC SCENARIO

After reports of SLC6A1 variants in patients with myoclonic
atonic epilepsy (Dikow et al., 2014; Carvill et al., 2015; Mattison
et al., 2018; Cai et al., 2019; Posar and Visconti, 2019), clinical,
neurophysiological, and genetic examination of a relatively
large cohort of subjects (n = 34) bearing SLC6A1 mutations
demonstrated that 97% of them exhibited varying degrees of
intellectual disability (ID) and that 91% had been diagnosed with
epilepsy (absence, myoclonic, or atonic) based on EEG patterns
characterized by irregular, high, ample, generalized spikes, and
wave discharges (Johannesen et al., 2018). Notably, more than
60% of these subjects had suffered from moderate or significant
ID before epilepsy onset, whereas in a limited number of cases,
the ID was not accompanied by epilepsy. Although genetic
analysis of the SLC6A1 variants suggested that the probable
disease mechanism was loss of GAT-1 function, assessment of
the clinical characteristics associated to them disclosed a wide
phenotypic spectrum where the dominant sign, ID, is not quite
a ‘‘pure’’ neuronal disorder (Di Marco et al., 2016; Iwase et al.,
2017; Maglorius Renkilaraj et al., 2017).

Earlier this year, Inaba et al. (2019) used a model of
chronic brain hypoperfusion to assess the protective effects
conferred by the anticonvulsant levetiracetam (LEV) on the
white matter of mice subjected to bilateral common carotid
artery stenosis (BCAS). They found that LEV: (i) did confer
protection against learning and memory impairment and
white matter injury; (ii) induced PKA/CREB activation;
(iii) raised the number of (GFAP-labeled) astrocytes in a
time-dependent manner; (iv) reduced Iba-1-positive (+)
microglial cells; and (v) increased oligodendrocytes and
their precursor cells (Inaba et al., 2019). According to the
evidence published to date, synaptic vesicle protein SV2A
is the sole receptor for LEV (Lynch et al., 2004). However,
an earlier report that LEV increases GAT-1 expression
(Ueda et al., 2007), presumably through protein–protein
interactions—as recently shown for other vesicular proteins
(Marcotulli et al., 2017)—suggests that at least some of the

effects described by Inaba et al. (2019) might be mediated
through GAT-1.

In 1990, Braestrup and colleagues reported that tiagabine
[(3R)-1-[4,4-bis(3-methylthiophen-2-yl)but-3-en-1-yl]piperidin
e-3-carboxylic acid] nipecotic acid] binds GAT-1 with high
affinity (Braestrup et al., 1990). Subsequently, after GAT-1
cloning and functional characterization (Guastella et al., 1990),
tiagabine was demonstrated to interact specifically with it
(Borden et al., 1994; Borden, 1996) and to be a clinically effective
antiepileptic drug (Suzdak and Jansen, 1995; Schousboe and
White, 2009; Froestl, 2011). The selectivity of tiagabine for
GAT-1 confines its action to those regions of the central nervous
system where the transporter plays a large role (neocortex,
cerebellum, and hippocampus; Jasmin et al., 2004). Tiagabine
has also been found to exert antinociceptive, anxiolytic-like,
sedative, and antidepressant-like actions (Jasmin et al., 2004;
Sałat et al., 2015). Finally, tiagabine monotherapy appears to
improve the performance of epilepsy patients on a number of
neuropsychological tests (Dodrill et al., 1998), an effect that
seems to relate to the report that heterozygous mice show greater
learning and memory compared to wild-type and homozygous
GAT-1−/− mice (Shi et al., 2012).

In 2015, two articles revived the interest in the effects of
tiagabine. In a study of cerebellar GABA signaling using a
mouse model of diffuse white matter injury (DWMI), a severe
neurological syndrome characterized by hypomyelination
and disruption of subcortical white matter development and
involving behavioral, cognitive, and motor deficits, Zonouzi et al.
(2015) demonstrated that tiagabine enhances the progression
of NG2 (oligodendrocyte precursor) cells and promotes
oligodendrogenesis and myelination. The same year, Liu and
coworkers documented that in a methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) mouse model of Parkinson’s
disease, tiagabine pretreatment attenuates microglial activation,
it confers partial protection on the nigrostriatal axis, and it
alleviates motor deficits, but its protective function is abolished
in GAT-1 knockout mice challenged with MPTP. The authors
also found that tiagabine suppresses microglial activation in mice
treated by intranigral lipopolysaccharide infusion, an alternative
model of Parkinson’s disease (Liu et al., 2015). Although neither
study clarified the mechanism(s) underlying tiagabine’s action,
it is conceivable that the effects described by Zonouzi et al.
(2015) and Liu et al. (2015) depend on a direct action on
GAT-1 expression by microglial cells and oligodendrocytes,
which may go some way toward explaining the findings of the
two groups.

EVIDENCE FOR A WIDESPREAD
CELLULAR EXPRESSION OF GAT-1

Some years ago, while investigating GAT-1 immunoreactivity
in subcortical white matter, we detected GAT-1 cells of
different sizes and morphologies (Figure 1). Some were
small and round with small processes (Figure 1A), and
others were medium-sized, rounded or oval with regular
profiles; some medium-sized cells had a pyramidal shape
with long and intensely stained processes, whereas other
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FIGURE 1 | (A) GAT-1 immunoreactivity in the subcortical white matter reveals the presence of numerous cells of small and medium size (arrows) and of different
morphology. (B) Frequency and (C) cumulative frequency distribution of the diameter of GAT-1-positive cells. Bar: 20 µm (modified from Fattorini et al., 2017).

cells were large and elongated. The frequency distribution
of their diameter is reported in Figure 1B. The broad
difference in the size and morphology of these subcortical
white matter cells suggested to us that they might belong to
different types. We therefore set up a study to examine them
in detail.

In line with earlier work (Minelli et al., 1995; Conti et al.,
1998), electron microscopic (EM) observation demonstrated
that GAT-1 was robustly expressed in axon terminals forming
symmetric synapses and in astrocytic processes. However, its
astrocytic expression was more diffuse than expected and, even
more surprisingly, immature and mature oligodendrocytes and
microglial cells also expressed the transporter (Figure 2).

Astrocytes
Recently, quantitative EM analysis, performed in our laboratory,
disclosed hitherto unknown features of astrocytic GAT-1
localization in rat cerebral cortex; in particular, we found that: (i)
approximately 43% of GAT-1+ profiles in the cortical neuropil
are astrocytic processes; (ii) at synaptic loci, GAT-1+ astrocytic
processes lie close to the pre- and postsynaptic elements of
symmetric as well as asymmetric synapses; and (iii) astrocytic
GAT-1 expression at symmetric synapses is not homogeneous,
since in ∼15% of cases it is associated to GAT-1+ axon terminals
and in ∼22% of cases it is exclusively localized in astrocytic
processes associated to symmetric synapses (i.e., not expressing
GAT-1 in axon terminals). The latter fraction of astrocytic
GAT-1 increases to up to ∼38% in GABAergic synapses
targeting distal dendrites and spines, where GAT-1+ axon
terminals are less numerous (Melone et al., 2014). Immunogold
EM demonstrated that the density of GAT-1 molecules in
astrocytic process membranes was ∼3.5 times higher than

in axon terminals and displayed a continuous distribution
from perisynaptic to extrasynaptic regions (respectively within
and over 300 nm from the borders of the symmetric synapse
specializations), with peaks of concentration at ∼950 nm;
in contrast, GAT-1 molecules in the membranes of axon
terminals showed a preferential perisynaptic localization
(Melone et al., 2015).

Oligodendrocytes
EM analysis revealed GAT-1 immunoreactivity in immature
and mature oligodendrocytes both in gray matter and in
subcortical white matter. Co-localization studies of GAT-1 and
specific oligodendrocyte markers (NG2 and RIP) demonstrated
that approximately 12% of GAT-1+ cells in white matter
were immature oligodendrocytes and that about 15% were
mature oligodendrocytes. Studies of radiolabeled GABA
uptake, performed to establish whether GAT-1 localized in
oligodendrocytes was functional, demonstrated significant
inhibition of Na+-dependent GABA uptake in the presence of
tiagabine, indicating that GABA uptake in oligodendrocytes is
driven by GAT-1 (Fattorini et al., 2017).

Microglial Cells
EM analysis also demonstrated GAT-1 immunoreactivity in the
soma of microglial cells in subcortical white matter and cortical
gray matter as well as in microglial processes, where GAT-1 was
localized predominantly in the proximal portion. To quantify
GAT-1 protein in microglial cells, we measured the volume of
the cells containing the GAT-1 protein signal (in cx3cr1+/gfp
animals) and found that it was ∼3% in subcortical white matter
and ∼8% in cortical gray matter. We also established that
Na+-dependent GABA uptake was significantly inhibited by
NNC-711, a potent GABA uptake inhibitor with high affinity
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FIGURE 2 | (A–D) Four low-magnification electron microscopic (EM) fields showing GAT-1 immunoreactivity in cerebral neocortex (layers II–III of rat parietal cortex).
Colored profiles code for different GAT-1-positive cell types and/or profiles: blue, axon terminals, axon, and neuron; yellow, astrocyte and astrocytic processes;
green, oligodendrocyte; red, microglial cell. Framed regions in (A–D) are reproduced and enlarged, in the lowest portion of the figure. Bar: 2.5 µm for (A–D); 0.8 and
1 µm for enlarged frames of (A) and (B–D), respectively (modified from Melone et al., 2015; Fattorini et al., 2017, 2020).

and selectivity for GAT-1 (Borden et al., 1994). In addition, we
documented that, like neurons, microglial cells can regulate
the membrane expression of GAT-1 in a syntaxin1A-dependent
manner (Deken et al., 2000), since syntaxin1A-specific cleavage
by botulin toxin C1 (Schiavo et al., 1995; Deken et al., 2000)
completely blocks GAT-1-dependent modulation of GABA
uptake (Fattorini et al., 2020).

DISCUSSION

The notion that GAT-1 is not an exclusively ‘‘neuronal’’
transporter appears to be gaining momentum. Indeed,
quantitative analysis of GAT-1 in the cerebral cortex, performed
in our laboratory, showed that 54% of GAT-1 + profiles were
neuronal and that no less than 42% were astrocytic (Melone
et al., 2015). More recently, we reported significant GAT-1
expression in oligodendrocytes and microglia (Fattorini et al.,
2017, 2020; Figure 2). In this connection, it is worth noting that

GAT-3, a putative ‘‘glial’’ transporter (see Minelli et al., 1996
for the neocortex), also seems to be expressed in brainstem and
cortical neurons, at least in certain experimental conditions
(Clark et al., 1992; Melone et al., 2003, 2005, 2015), and that
GAT-2, another putative ‘‘glial’’ transporter, is expressed
in epithelial cells and, although at a very low level, also in
neurons (Conti et al., 1999). It therefore seems that the era of
‘‘neuronal’’ and ‘‘glial’’ GABA transporters has finally come
to a close.

The demonstration that all major brain cells express GAT-1
will conceivably contribute to generate a wider framework
through which to assess (and indeed reassess) numerous
cerebral GABA-mediated phenomena that occur in physiological
conditions. This requires tackling first the issue of the
physiological role of GAT-1 in oligodendrocytes and microglial
cells. Given the well-established involvement of astrocytes,
oligodendrocytes, and microglial cells in pathophysiological
conditions (Verkhratsky and Butt, 2013), the demonstration
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of functional GAT-1 in these cells is expected to provide
greater insight into the phenomena occurring in the diseased
brain and to prompt a reappraisal of earlier findings. Notably,
one of the studies that stimulated the present reassessment
(Zonouzi et al., 2015) can now be interpreted as showing
that the contribution of GAT-1 to the pathophysiology
of DWMI may be mediated by oligodendrocytes, and a
similar situation may well arise for the ID seen in some
forms of epilepsy. Also, the findings reported by Liu et al.
(2015) could simply be interpreted as indicating that GAT-1
expression by microglia may be the direct mechanism by
which the transporter contributes to the pathophysiology of
Parkinson’s disease.
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