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Abstract

Immunotherapy with high-dose interleukin-2 (HDIL-2) is an effective treatment for patients with metastatic melanoma and
renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular
leak syndrome (VLS). In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer
properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy
of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells
followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice
received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly
inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells
from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and
HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis
and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1+CD11b+ myeloid-derived suppressor
cells (MDSC) and FoxP3+CD4+ regulatory T cells (Treg). We found that resveratrol induced expansion and suppressive
function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the
HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the
cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results
suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time,
that MDSC is the dominant suppressor cell than regulatory T cell in the development of VLS.
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Introduction

High-dose interleukin-2 (HDIL-2) therapy which produces

overall response rates of 15% to 23% remains an effective and

long-lasting treatment for metastatic renal cell carcinoma and

melanoma [1,2]. However, it is associated with significant systemic

toxicity, mainly, vascular leak syndrome (VLS), characterized by

increased vascular permeability and decreased microcirculatory

perfusion that causes extensive fluid retention in multiple organs

and can lead to pulmonary and cardiovascular failure [3,4,5]

Although it is dose-dependent and reversible with therapy

discontinuation, there is no specific and effective treatment

regimen. The endothelial cell damage is the major feature of the

vascular pathology. Direct effects of IL-2 on endothelial cells [6,7],

or through induction of inflammatory cytokines such as TNF-a,

IL-1 and IFN-c [3], have been previously reported. Otherwise, the

cytotoxic effects by lymphokine-activated killer cells (LAK) are the

main cause of vascular injury [8,9,10,11].

Immunoregulation associated with the development of IL-2-

induced VLS is not known. Our lab has reported that T regulatory

cells (Treg) were amplified in vivo by IL-2 treatment; they suppress

the cytolytic killing of endothelial cells by LAK cells in the in vitro

experiments, thereby suggesting that Treg play a role in the

negative regulation on the development of HDIL-2-induced VLS

[12]. Lately, functional importance of myeloid-derived suppressor

cells (MDSC) in immune responses has been appreciated. MDSC

are a heterogeneous population of cells consisting of myeloid

progenitor cells and immature myeloid cells. They are character-

ized by the co-expression of the myeloid lineage differentiation

molecule Gr1 and CD11b. These cells markedly expand

systemically in pathological conditions, such as cancer, various

infectious diseases and some autoimmune diseases [13,14].

Accumulating evidence demonstrates that their suppressive

functionality contributes to the negative regulation of immune

responses including adaptive and innate immunity, such as

suppressing various T-cell functions, and NK and CTL cytotox-

icity [13,14,15,16,17,18]. However, the role of MDSC in HDIL-2-

induced inflammation and the development of VLS have not been

elucidated.

Resveratrol, a naturally occurring polyphenol found in grapes

and red wine, is widely used in animal models and possesses

broad-spectrum of beneficial health effects including anti-infective,

anti-inflammatory, and antioxidant properties. These interesting

properties confer the cardiovascular protective capacity and ability

to protect endothelial function on resveratrol [19,20]. In cancer

patients, resveratrol exhibits anticancer properties, such as

suppression of tumor cell proliferation, induction of tumor cell

apoptosis, increase in chemosensitization of tumor cells, and exerts
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chemopreventive effects [21,22]. Our lab has reported that

resveratrol suppresses tumor growth by inducing apoptosis in

tumor cells through aryl hydrocarbon receptor (AhR) and by

reciprocal regulation of SIRT1 and NF-kB signaling [23]. For

melanoma, experiments showed that resveratrol can enhance

chemical cytotoxicity to the tumor, and suppress tumor growth by

inducing cell-cycle interruption and apoptosis [24,25]. Neverthe-

less, effects of resveratrol on the development of VLS in HDIL-2

therapy against melanoma have not been studied.

In this report, we studied the role of resveratrol in the

development of VLS in B16F10 melanoma-bearing mice and

revealed its role in protection of the endothelium and suppression

of metastasis. We also discovered a novel functional characteristic

of resveratrol in induction of suppressive activity of MDSC and

expression of FoxO1 transcripts in context of suppressing the

development of VLS and the growth and metastasis of B16F10

melanoma.

Materials and Methods

Ethics statement, mice and recombinant IL-2
Female C57BL/6 (6–8 wk of age) mice were purchased from

NIH. All animals were housed in University of South Carolina

Animal Facility. All animal procedures were performed according

to NIH guidelines under protocols approved by the Institutional

Animal Care and Use Committee of the University of South

Carolina. Recombinant IL-2 was provided by the NCI Biological

Resources Branch (Rockville, MD). All antibodies were purchased

from Biolegend. 3H-thymidine and 51NaCr04 were purchased

from MP biomedical. Resveratrol was purchased from Sigma or

Supelco (Bellefonte, PA).

Induction and quantification of VLS
VLS was induced by IL-2 according to the established method

from our lab [12,26,27,28]. On day 0, groups of 4–5 mice were

injected intraperitoneally with 75,000 units of IL-2 or PBS as

a control, 3 times a day for 3 consecutive days. On day 4, the mice

received one injection and 2 h later were injected intravenously

with 0.1 ml of 1% Evan’s blue in PBS. After 2 h, the mice were

exsanguinated under anesthesia, and the hearts were perfused with

heparin-PBS until lungs and livers were blanched. The lungs and

livers were harvested and placed in formamide at 37uC overnight.

The Evan’s blue in the organs was quantified by measuring the

absorbance of the supernatants at 650 nm with a spectrophotom-

eter. For administration of resveratrol, mice were administered

resveratrol (100 mg/kg body weight) on day -1 by gavage, and

thereafter once a day 1 h before the first IL-2 injection during

day 0 to day 4. The VLS seen in IL-2-treated mice was expressed

as percentage of increase in extravasation of Evan’s blue when

compared with that of the PBS-treated controls and was calculated

as: [(OD650 in the organs of IL-2-treated mice)-OD650 in the

organs of PBS-treated controls)]/(OD650 in the organs of PBS-

treated controls) 6100. Each mouse was individually analyzed for

vascular leak, and data from 4–5 mice were expressed as mean

6SEM.

Tumor cell implantation, HDIL-2 and resveratrol
treatment

Mice were injected with 56105 B16F10 cells intravenously or

implanted with 26105 B16F10 cells subcutaneously on day 0. The

B16F10 melanoma cell line was purchased from American Type

Culture Collection (Manassas, VA) and maintained as recom-

mended by the supplier [26]. We started to treat mice with

resveratrol on day 1 and induce VLS with HDIL-2 on day 9 as

described above. On day 12, mice were sacrificed to evaluate VLS

and tumor metastasis in lungs. Black nodules were counted under

a dissecting microscope on the surface of the lung specimens.

These nodules exhibited characteristic histological features of

metastatic melanomas (data not shown). The area of each nodule

was measured with software Image Pro. The area of each nodule

was normalized to the whole area of the same lobe and multiplied

by 1000. The average area of the normalized measurement was

present. For the primary tumors in the skin, they were resected

and weighed, and then used for the total RNA extraction.

Flow cytometry studies of MDSC and Treg
For flow cytometry analysis, splenocytes were prepared. Red

blood cells were lysed using red blood cell lysing buffer (Sigma).

Lung and liver infiltrating inflammatory cells were isolated using

Percoll gradient centrifugation (detailed below). Cells were re-

suspended in staining buffer (PBS containing 2 mM EDTA and

2% fetal bovine serum) and pre-incubated for 10 min at room

temperature with purified anti-CD16/32 antibody to block non-

specific binding of antibodies to Fcc receptors. For analysis of

MDSC, cells were then incubated with FITC-conjugated anti-

mouse CD11b and PE-conjugated anti-mouse Gr-1 mAbs in the

staining buffer for 30 min at 4uC. For analysis of Treg, cells were

incubated with FITC-conjugated anti-mouse CD4 mAb in the

staining for 30 min at 4uC, then fixed and permeabilized with

FoxP3 fix/perm buffer at room temperature in the dark for

20 min. The cells were washed once in FoxP3 perm buffer and

continued to stay in FoxP3 perm buffer at room temperature for

15 min. Cells were spun down and re-suspended in 100 ml fresh

FoxP3 perm buffer. Cells were then incubated with PE-conjugated

anti-mouse FoxP3 mAb at room temperature in the dark for

30 min. After incubation with the mAbs, cells were washed twice

in the staining buffer and re-suspended in the staining buffer. The

staining was analyzed with a CXP500 flow cytometer with post-

acquisition data analysis using CXP500 software (Beckman

Coulter). All antibodies were purchased from Biolegend.

Figure 1. Decreased VLS in resveratrol-treated non-tumor
mice. Non-tumor bearing mice were given HDIL-2 and/or resveratrol.
The vascular leak in the lungs and liver as well as TNF-a in the serum
were measured. A. VLS in lung. B. VLS in liver. C. The TNF-a level in the
serum was measured by sandwich ELISA.
doi:10.1371/journal.pone.0035650.g001

Resveratrol in IL-2 Therapy against Melanoma
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MDSC sorting and adoptive transfer
MDSC were sorted by two steps. First, MDSC cells were

enriched from splenocytes of VLS mice by depletion of other cells

(CD4+, CD8+, CD90.2+, B220+, NK1.1+, F4/80+, CD11C+,

CD117+) with magnetic beads, and then, CD11b+Gr-1+ double

positive cells were sorted by a flow cytometer. Briefly, splenocytes

at a density of 16108 cells/ml in the staining buffer were pre-

incubated for 10 min with purified anti-CD16/32 antibody to

block non-specific binding of antibodies to Fcc receptors, and then

incubated with biotin-conjugated anti-mouse CD4, CD8, CD90.2,

B220, NK1.1, F4/80, CD11c, and CD117 mAbs for 15 min at

room temperature. Cells were washed once with and re-suspended

in the staining buffer at the same cell density. Cells were then

incubated with EasySep biotin cocktail (Stemcell) at room

temperature for 15 min followed by incubation with EasySep

magnetic particles (Stemcell) at room temperature for 10 min.

Non-magnetic binding cells were collected, and further incubated

with FITC-conjugated anti-mouse CD11b and PE-conjugated

anti-mouse Gr-1 mAbs for 30 min at 4uC. Cells were washed twice

with and re-suspended in the staining buffer. CD11b and Gr-1

double positive cells were then sorted by a FACSAria sorter. The

purity was .98%. For adoptive transfer, 16106 cells were

transferred per recipient mouse intravenously.

Generation of LAK cells and 51Cr release assay
LAK cells were prepared as previously described [12,26,27,28].

For generation of LAK cells in vitro, splenocytes from naı̈ve mice

were cultured for 48 h with 1000 units/ml IL-2 in RPMI

containing 10% fetal bovine serum, 10 mM HEPES, 1 mM

sodium pyruvate, 2 mM L-glutamine, 0.1 mM non-essential

amino acid, 100 units/ml penicillin, 100 mg streptomycin, and

50 mM b-mercaptoethanol. Viable cells were purified by density

gradient centrifugation using NycoPrep (Cedarlane, Burlington,

NC). Such cells will be referred to as LAK cells. For generation of

LAK cells in vivo, mice were treated with IL-2 as described above.

On day 4, splenocytes were prepared and viable cells were

Figure 2. Decreased VLS and increased tumor regression in resveratrol-treated melanoma-bearing mice. C57BL/6 mice were injected
i.v. with B16F10 melanoma cells (56105 cells/mouse) and adminsitered resveratrol as described in Fig. 1. On day 9, mice were treated with IL-2 as in
Fig. 1. The mice were sacrificed for evaluation of VLS on day 12. The numbers of black metastatic nodules on the lung surfaces were counted under
a microdissecting microscope. The area of each nodule was measured with software Image Pro. The values are shown as mean6SEM. A. VLS in lung.
B. VLS in liver. C. Enumeration of lung metastatic nodules. D. Area measurement of lung metastatic nodules. E. Histopathology of lung metastasis on
the surface of one lobe.
doi:10.1371/journal.pone.0035650.g002

Resveratrol in IL-2 Therapy against Melanoma
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purified using NycoPrep and referred to as LAK cells. Cytotoxicity

of LAK cells was tested against B16F10 tumor or TME endothelial

cells using 4 h 51Cr-release assay. Briefly, 16106 target cells were

labeled with 100 mCi of 51NaCrO4 (MP Biomedicals) at 37uC for

1 h, washed three times in RPMI 1640 culture medium, and

adjusted to 16105 cells/ml. In brief, 16104 target cells were

plated into 96-well U-bottom plates with varying numbers of LAK

cells depending on the respective E:T cell ratios. In these

experiments, the LAK cells were defined as the effector cells (E)

that mediate lysis of the 51NaCrO4-labeled endothelial cells or

tumor cells, which were defined as the target cells (T). In some

groups, target cells were incubated with resveratrol (25 mM) for

2 h at 37uC before they were added into the plates. For analysis of

MDSC suppression, LAK cells were incubated with MDSC for

2 h before adding to the plates. Spontaneous release of 51NaCrO4

was determined by culturing the target cells alone, and the

maximum release of 51NaCrO4 was determined by incubating the

target cells with 1% SDS. The supernatants were harvested after

4 h culture, and the radioactivity was measured using a Microbeta

counter (PerkinElmer). Percentage of killing efficiency of LAK cells

was calculated as percent cytotoxicity = [(sample cpm 2

spontaneous release cpm)/(maximum release cpm 2 spontaneous

release cpm)] 6100. The data were represented as mean 6SEM.

Each group had four wells.

Isolation of T cells and infiltrating inflammatory cells
To isolate T cells from spleen, splenocytes were stained with

anti-CD3 Abs, followed by magnetic beads isolation. For isolation

of infiltrating mononuclear cells (MNCs) from lung or liver, mice

were perfused. Lung or liver was minced and passed through

100 mm filter. Single-cell suspensions were subject to Percoll

gradient (70%/30%) centrifugation.

TUNEL assay of cell apoptosis
Cell apoptosis was evaluated with conventional TUNEL assay

using DeadEnd Colorimetric TUNEL System from Promega by

following the manufacturer’s instructions. Numbers of TUNEL-

Figure 3. Resveratrol protects endothelial integrity. The ultrastructural studies showed resveratrol protects endothelial cells. Panels 1 and 2
show PBS- or resveratrol-treated mice, respectively. The endothelial cell (En) lining the blood vessel is firmly anchored to the basal lamina (BL) with
good integrity, thereby showing normal morphology. The cell has an intact nucleus (Nu) and is closely opposed to the intact basal lamina. Three RBCs
lie within the blood vessel lumen. Panel 3 shows IL-2-treated mice with significant damage to the endothelial cells. Cell membrane is folding (F) and
discontinuous (D). Vacuolation (V) is found under the folded cell membrane and within the cytoplasm. In addition, some endothelial cells have lost
the normal morphology, with only extended cell membrane remnants remaining. Cellular debris from former endothelial cells can be found in the
blood vessel lumen. An RBC fills the lumen. Panel 4 shows IL-2+resveratrol-treated mice with normal endothelial cell morphology. The cell membrane
and cytoplasmic contents are well defined and closely adhere to the basal lamina. The intact nucleus is closely opposed to the intact basal lamina
Three RBC fill the lumen. Original magnification,620,000.
doi:10.1371/journal.pone.0035650.g003
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positive stained endothelial cells were counted in 5 vessels of each

slide and the data were expressed as mean 6SE of apoptotic cells

per vessel.

Histological Analysis of cell infiltration and measurement
of serum TNF-a

The lungs and livers were fixed in 10% formalin solution. The

organs were embedded in paraffin, sectioned, and stained with

hematoxylin and eosin. Perivascular infiltration was scaled by

counting the number of lymphocytes infiltrating around the vessel

and averaging the minimum and maximum range for each group.

Five samples per mouse were analyzed, and a minimum of four

mice were included. Sera were prepared for detection of TNF-a by

sandwich ELISA using TNF-a ELISA kit (Biolegend).

Electron microscopic studies of vascular injury
Tissue samples were fixed in 5% glutaldehyde/4.4% formalde-

hyde/2.75% picric acid in 0.05 M sodium cacodylate buffer,

pH 7.4, washed in a sodium cacodylate buffer, postfixed in

osmium tetroxide, embedded in Polybed 812 resin (Polysciences,

Warrington, PA) and studied with an electron microscope.

[3H]-thymidine incorporation assay
LAK cells generated from IL-2 treated mice were cultured in

complete RPMI 1640 medium in a 96-well round bottom plate.

[3H]-thymidine (1 mCi/well) was added to the culture. In some

groups, LAK cells were incubated with MDSC at 10:1 ratio

(LAK:MDSC) for 2 h before adding [3H]-thymidine. At 16 h,

cultures were harvested using a cell harvester and the radioactivity

incorporated in the cells was measured in a beta counter

(Microbeta counter, Perkin Elmer).

Quantitative real-time PCR (QPCR)
Total RNAs were prepared and reversely transcribed to cDNA

using miRNeasy Mini Kit and miScript Reverse Transcription Kit

(Qiagen). FoxO1, arginase 1 (Arg1), aryl hydrocarbon receptor

(AhR), and 18S RNA (18S) were amplified using miScript SYBR

Green PCR kit (Qiagen) in a StepOnePlus PCR amplifier (ABI).

The relative gene expression level was normalized to the

endogenous control 18S. The primer sequences were listed below.

FoxO1 F: TGT TAG GCC CAC CAC ACG AGT TTA; FoxO1

R: GGT GAA AGC AAA GGG CTC CAA TGT; Arg1 F: ACG

GCA GTG GCT TTA ATT GGC; Arg1 R: TCT GTC TGC

TTT GCT GTG ATG CC; NOS2 F: TGC CAC CAA CAA

TGG CAA CAT C; AhR R: TTG AAG TCA ACC TCA CCA

GCA GC; 18S F: AAA GGA ATT GAC GGA AGG GCA CC;

18S R: AAC TAA GAA CGG CCA TGC ACC AC.

Statistical analysis
Data were presented as mean 6SEM and analyzed for

significance using non-paired Student’s t-test. In case of multiple

testing, One-way ANOVA test followed by Newman-Keuls

Figure 4. Histological studies of the lung and the liver for inflammatory cell infiltration. Lungs and livers from VLS mice were harvested
and preserved in 10% formalin solution. Sections were stained with hematoxylin and eosin. The level of perivascular infiltration was determined by
counting the number of cells infiltrating around a venule. The data depicts the mean 6SEM of sections from four individual mice. A. The level of
perivascular infiltration in lungs. B. The level of perivascular infiltration in livers. C. Statistic analysis of the infiltration depicts p.0.05 between IL-2 and
IL-2+Resveratrol groups. Original magnification,6200.
doi:10.1371/journal.pone.0035650.g004
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Multiple Comparision Test was applied using Graphpad Prism 5

software. Comparisons were considered significant at p#0.05.

Results

Resveratrol prevents VLS while maintaining the
effectiveness of HDIL-2 treatment

HDIL-2 has been shown to have significant efficacy against

advanced stages of melanoma. However, HDIL-2 treatment is

accompanied by significant toxicity including VLS which limits its

therapeutic efficacy [1,2,3,4,5]. In the current study, we first

evaluated whether resveratrol plays any role in the prevention of

HDIL-2-induced VLS. For this purpose, we induced VLS in

normal mice with HDIL-2. Resveratrol was given to mice one day

before HDIL-2 treatment and once a day during the treatment

until the day of sacrifice of mice. Four sets of experiments were

established: IL-2 treatment (IL), resveratrol treatment (Res), IL-2 +
resveratrol co-treatment (IL+R), and PBS treatment (PBS). The

results showed that the vascular leak was dramatically suppressed

by resveratrol treatment. Serum levels of TNF-a were also

significantly decreased in resveratrol treatment group (Fig. 1).

These results demonstrated that resveratrol can prevent IL-2-

induced VLS.

Next, we tested whether resveratrol exerts a similar effect in

melanoma-bearing mice. To this end, C57BL/6 mice were

injected i.v. with B16F10 melanoma cells (56105 cells/mouse).

On day 9, mice were treated with IL-2 or resveratrol as described

above. The mice were euthanized for evaluation of VLS on

day 12. Our results showed that resveratrol significantly inhibited

VLS in tumor-bearing mice both in the lungs and liver to a similar

extent when compared to that seen in the non-tumor-bearing mice

(Fig. 2A and 2B). The metastasis and tumor growth in lungs (seen

as black nodules) were significantly inhibited by IL-2 or

IL2+resveratrol co-treatment. Moreover, IL2+resveratrol co-

treatment was more effective in inhibiting tumor metastasis than

IL-2 treatment alone (Fig. 2C–2E). These results indicated that

Figure 5. Resveratrol protects endothelial cells from apoptosis. Lungs from PBS, resveratrol, IL-2 or IL-2+resveratrol-treated mice were
examined for apoptosis with TUNEL assay as described in Materials and Methods. Apoptotic cells are depicted by brown stained nuclei (arrow). The
histogram shows the quantification of apoptotic cells. Original magnification,6400.
doi:10.1371/journal.pone.0035650.g005

Resveratrol in IL-2 Therapy against Melanoma
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resveratrol can ameliorate IL-2 toxicity while promoting the

effectiveness of IL-2 in metastatic melanoma therapy.

Resveratrol does not affect infiltration of inflammatory
cells but protects endothelial cell integrity and prevents
the cells from undergoing apoptosis

We previously found that HDIL-2-therapy caused endothelial

cell (EC) damage by activating LAK cells [26,28,29]. Therefore,

we investigated if resveratrol-mediated suppression of VLS

resulted from its protective effect on ECs by pursuing ultrastruc-

tural studies of the lungs. As shown in Fig. 3, ECs from PBS or

resveratrol group showed normal morphological features. In

contrast, ECs from IL-2-treatment group revealed extensive

damage, including cell membrane folding or break and vacuola-

tion of cytoplasmic particles. Some of the endothelial cells were

severely damaged, with only extended cell membrane remnants

remaining. Cellular debris from ECs was found in the blood

capillary lumen [26]. Interestingly, IL2+resveratrol treatment

exhibited morphologically normal ECs and the basal lamina,

whereas we only found minor damage in few endothelial cells.

We wondered whether suppression of IL-2 induced VLS by

resveratrol resulted from inability of inflammatory cells to infiltrate

into the organs. Therefore, the inflammatory cell extravasation

was examined under microscope. The results showed that the IL-2

treatment induced significant perivascular infiltration both in lungs

and liver. Notably, IL-2 + resveratrol co-treatment also exhibited

similar levels of perivascular infiltration as the IL-2 treatment. The

degree of infiltration was also measured by counting the layers of

cell infiltration around each vessel and averaging the numbers for

each group (Fig. 4). These data suggested that the suppression of

VLS seen in IL-2 + resveratrol treated-mice was not due to the

inability of infiltration of inflammatory cells.

We previously reported that apoptosis could be one of the

mechanisms of EC damage [26]. Hence, we applied TUNEL

assay to examine apoptosis in lung sections. Our results showed

that IL-2-treated mice exhibited a large number of ECs that had

undergone apoptosis, which was determined by TUNEL-positive

staining. In contrast, IL-2+resveratrol treated-mice did not show

TUNEL-positive cells (Fig. 5). These data suggested that

Figure 6. Resveratrol inhibits IL-2-induced expansion of Treg. Splenocytes and infiltrating cells were stained with FITC-conjugated anti-CD4
mAb, fixed and permeabilized and incubated with PE-conjugated anti-FoxP3 mAb as described in Materials and Methods. The stained cells were
analyzed by flow cytometry. The representative dot plots from spleen (A), lung (B), and liver (C) and the statistical analysis of the percentage mean
6SEM of Treg (D) are shown.
doi:10.1371/journal.pone.0035650.g006
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resveratrol can prevent VLS by protecting ECs from ultrastruc-

tural damage and apoptosis.

Resveratrol induced expansion and suppressive
functionality of myeloid-derived suppressor cells (MDSC)

To explore the underneath mechanisms that contribute to the

suppressive function of resveratrol on VLS, we studied the

contribution of the suppressor cells in the inhibition of VLS by

resveratrol. To this end, we focused on studies of Treg and

MDSC. Our previous study showed that IL-2 treatment could

induce expansion of CD4+FoxP3+ Treg; these Treg can suppress

the cytolytic killing of ECs by LAK cells in vitro [12]. In the current

study, we measured the percentage of Treg in spleen, lung and

liver. On day 12, the splenocytes and the infiltrating-mononuclear

cells from lung and liver were prepared for staining of CD4 and

FoxP3. The results showed that IL-2 caused an expansion of Treg

in spleen, lung and liver. However, resveratrol treatment did not

induce their expansion; instead, it inhibited Treg expansion to

some extent (Fig. 6). Simultaneously, we stained cells for Gr-1 and

CD11b expression. The results showed that either resveratrol or

IL-2 could induce the expansion of MDSC. Moreover, combina-

tion of IL-2+resveratrol caused a further induction of MDSC

(Fig. 7). These results suggested the possibility that MDSC rather

than Treg probably contributed to the suppression of VLS in

resveratrol treatment.

To address this further, we examined the suppressive ability of

MDSC on LAK cytotoxicity and proliferation. To this end, LAK

cells from IL-2-treated mice were isolated, and then incubated

with MDSC at 10:1 ratio (LAK: MDSC) for 2 h at 37uC. For the

cytotoxicity assay, the mixture of the culture was added to 51Cr-

labeled EC target (TME cell line) at 50:1 ratio (E:T) followed by

4 h 51Cr-release assay. For the proliferation assay, the mixture of

the culture was supplemented with 3H-thymidine and continued

culture for 16 h and then the 3H-thymidine incorporation was

measured. To our surprise, the results showed that MDSC from

IL-2+resveratrol group (named as R-MDSC) significantly inhib-

ited LAK cytotoxicity and proliferation; however, MDSC from IL-

2 group (named as IL-MDSC) did not show any suppressive effects

on either LAK cytotoxicity or proliferation (Fig. 8A & 8B).

Figure 7. Expansion of MDSC by IL-2 and/or resveratrol treatment. Splenocytes and the infiltrating cells were stained with FITC-conjugated
anti-CD11b and PE-conjugated anti-Gr-1 mAbs. The stained cells were analyzed by flow cytometry. The representative dot plots from spleen (A), lung
(B), and liver (C) and the statistical analysis of the percentage mean 6SEM of MDSC (D) were shown.
doi:10.1371/journal.pone.0035650.g007
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To further evaluate whether these MDSCs play a suppressive

role in the development of VLS in vivo, we transferred these

MDSCs intravenously into naı̈ve mice and induced VLS in the

recipient mice on the same day of the cell transfer. The results

showed that R-MDSC caused marked inhibition of VLS; again,

IL-MDSC did not inhibit VLS at all (Fig. 8C). Correspondently,

we found that resveratrol induced the expression of Arg1 in

MDSC but IL-2 did not. Interestingly, IL-2 and resveratrol co-

treatment induced the most expression of Arg1 (Fig. 8D). This

could be because resveratrol is more effective in activated cells

than unactivated cells [30]. We also found that R-MDSC and IL-

MDSC have different expression level of AhR, which is the main

receptor for resveratrol-derived signaling [23]. We found that

resveratrol increased the expression of AhR in MDSC but IL-2 did

not. Similar to the expression of Arg 1, IL-2 and resveratrol co-

treatment induced the most expression of AhR (Fig. 8E). All

together, our results indicated that resveratrol can elicit or

enhance the suppressive functionality of MDSC that could

contribute to the suppression of VLS.

Resveratrol induced expression of FoxO1 in tumor cells
Thus far, we demonstrated that resveratrol can ameliorate IL-2

toxicity while promoting the effectiveness of IL-2 in metastatic

melanoma therapy. We showed that resveratrol-treated MDSC

could contribute to the suppression of the cytolytic activity of LAK

cells on ECs. However, MDSC are generally recognized for their

role in helping evasion of tumor by suppressing the host immunity

in situ of the tumor. Our results raised the possibility that

resveratrol possesses the specific characteristic that can overcome

the suppressive effect of MDSC to the tumor. To explore the

possible mechanisms, we studied whether resveratrol played a role

in the expression of the tumor suppressor genes by analysis of

FoxO1 gene expression. To this end, we resected the primary

melanoma in the skin and examined the transcripts of FoxO1 by

QPCR. The results showed that either resveratrol or IL-2

treatment can induce the expression of FoxO1 in the tumor in

vivo. IL-2 and resveratrol co-treatment induced the highest

expression of FoxO1 (Fig. 9A). Correspondently, the growth of

the tumor was significantly inhibited by the treatment which was

demonstrated by the decreased tumor weight while IL-2 and

resveratrol co-treatment can exert the maximal inhibitory effects

on the tumor growth (Fig. 9B).

We also cultured B16F10 cells with IL-2 and/or different dose

of resveratrol. We found that resveratrol could induce the

expression of FoxO1 in a dose-dependant manner. However,

IL-2 alone did not induce the expression of FoxO1. This

concentration of IL-2 is effective in LAK cell development [26].

With IL-2 and resveratrol co-treatment, the expression levels of

FoxO1 were not different from the resveratrol treatment alone

(Fig. 9C), which suggest that IL-2 does not directly affect the

expression of FoxO1 in B16F10 tumor cells. However, in the in

vivo experiment, HDIL-2 administration did induce the expression

of FoxO1 in the primary tumors (Fig. 9A). These results indicate

that the release of other factors from the HDIL-2-induced

inflammation could trigger the expression of FoxO1 in the tumor,

and such factors work together with resveratrol co-treatment to

further enhance the expression of FoxO1.

Resveratrol makes melanoma more susceptible to the
cytotoxicity of LAK cells by increasing the sensitivity of
the tumor cells to the cytotoxicity

It has been shown that resveratrol can suppress melanoma

growth by inducing the cell-cycle interruption and apoptosis in the

tumor cells; resveratrol also can enhance the chemical cytotoxicity

to the tumor by the chemotherapeutic agents [24,25]. In this

study, we studied whether resveratrol could affect the LAK

cytotoxicity to the tumor. To this end, LAK cells were used as the

effectors and generated in vitro from splenocytes of normal mice as

described in the Materials and Methods. B16F10 cells were used as

the targets. We pre-incubated the targets with resveratrol at

25 mM for 2 h at 37uC before the 4 h cytotoxicity assay. The

results showed that the pre-treatment of resveratrol significantly

increased the number of the killed targets by LAK cells (Fig. 9D).

The above results suggested that resveratrol can directly induce

the expression of the tumor suppressor gene FoxO1, thereby

leading to the suppression of the tumor growth and cell death by

triggering autophagy [31,32]. IL-2 can facilitate such effects by the

unknown factors from the HDIL-2-induced inflammation. Mean-

while, resveratrol directly enhances the susceptibility of B16F10

tumor cells to the LAK cytotoxicity. Together, these mechanisms

Figure 8. Analysis of the functional characteristics of MDSC.
Panel A: MDSC were isolated from IL-2 and IL-2+resveratrol treatment
(labeled as IL-MDSC and R-MDSC respectively). LAK cells from IL-2
treated mice were isolated and incubated with MDSC for 2 h, and then
used as effectors in the cytotoxicity assay against EC cell targets. Panel
B: 3H-thymidine incorporation assay to measure the proliferation of the
LAK cells in the panel A. Panel C: 16106 MDSC were intravenously
transferred to naive mice. VLS was then induced in the recipient mice.
Panel D & E: Total RNA was extracted from the MDSC with the
respective treatment. Expression of Arg1 (D) and AhR (E) were detected
by QPCR. The relative expression was normalized to the endogenous
18S.
doi:10.1371/journal.pone.0035650.g008
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are able to overcome the suppressive activity of MDSC against the

immunity of the host that eventually leads to the tumor regression.

Discussion

Our results support a potential use of resveratrol in HDIL-2

treatment against melanoma and revealed some mechanisms. The

resveratrol treatment effectively inhibited the development of VLS

that is the most severe side-effect from HDIL-2 therapy.

Meanwhile, the co-treatment with resveratrol and HDIL-2

promoted the efficacy of the tumor therapy arisen from either

resveratrol or HDIL-2 treatment. Resveratrol played a differential

role in the protection of EC injury and killing of the tumor. On the

one hand, resveratrol prevented ECs from the ultrastructural

damage and apoptosis; on the other hand, it increased the tumor

killing by enhancing the susceptibility of the tumor to the

cytotoxicity killer cells.

To understand how resveratrol played the suppressive role in

the development of VLS, we focused on the study of Treg and

MDSC, the two main populations of the immune suppressors. We

found that resveratrol induced the expansion of MDSCs that can

suppress the cytolytic killing of ECs and the development of VLS

while the number of Treg decreased at the same time. Previous

studies from our lab and the others also showed that resveratrol

inhibited the production of TGF-b and the expansion of Treg in

the tumor-bearing mice while it induced the expansion of MDSCs

that suppressed the development of chronic colits [33,34]. These

results demonstrate that MDSC is the predominant suppressor

cells than Treg in the development of VLS. It could be true since

MDSCs are the dominant suppressor cells that induce the tumor

escape than Treg [35]. This conclusion could be corroborated by

the fact that HDIL-2 treatment can induce the expansion of Tregs

but they are not able to prevent the development of VLS [12].

There are conflicting reports on whether MDSC are involved in

the induction of Treg [13]. It was also reported that both Treg and

MDSC could expand in the tumor-bearing mice, and that the

expansion of the two populations were not related [36]. Here, we

showed that IL-2 treatment induced both MDSC and Treg

expansion. However, resveratrol treatment only induced MDSC

expansion while it inhibited Treg expansion. Therefore, our

current study demonstrates a differential role of resveratrol on

Treg and MDSC.

The expansion of MDSC in HDIL-2 immunotherapy was

found in patients with renal cell carcinoma (RCC) therapy. In

these patients, an increased secretion of Arg1 in the patients blood

was also detected [37,38]. However, the role of MDSC in the

development of HDIL-2-induced VLS and their functionality has

not been studied before. In the current report, we found that

HDIL-2-induced MDSCs from spleen were not suppressive. This

is not surprising considering that MDSCs from spleen of naı̈ve

mice or tumor-bearing mice do not possess the suppressive

Figure 9. Resveratrol enhances the expression of FoxO1 and the cytolytic susceptibility of melanoma. Panel A and B: C57BL/6 mice
were implanted s.c. with B16F10 melanoma cells (26105 cells/mouse) and orally administered with resveratrol. On day 9, mice were treated with IL-2
as described in Fig. 1. The mice were sacrificed for evaluation of VLS on day 12. The primary tumors in the skin were resected and weighed. Total RNA
was extracted. Expression of FoxO1 was detected by QPCR (A). The relative expression was normalized to the endogenous 18S. The mean 6SEM of
weight is shown (B). Panel C: B16F10 cells were cultured with vehicle (Veh), IL-2 (IL) (1000 units/ml), or resveratrol at the indicated dose for 24 h. Total
RNA was extracted. Expression of FoxO1 was detected by QPCR. Panel D: LAK cells were generated by culturing splenocytes from naı̈ve mice with IL-2
(1000 units/ml) for 48 h. B16F10 cells were incubated with resveratrol (25 mM) for 2 h and labeled with 51Cr. The labeled B16F10 cells were then
added to the LAK cells. After 4 h, the release of 51Cr was measured and percent cytotoxicity was calculated. Statistical analysis was performed at each
effector to target ratio and showed p,0.001.
doi:10.1371/journal.pone.0035650.g009
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function; but they become suppressive after culture with tumor-

derived factors, which is corroborated by the fact that MDSC from

tumor tissue rather than spleen possess the suppressive character-

istics. In these studies, the authors claimed that the regaining of

suppressive function was because these MDSC differentiated into

suppressive macrophages (F4/80+) [35,39,40]. In our report,

resveratrol administration recovered their suppressive functional-

ities including the expression of Arg1, the suppression of the

proliferation and cytotoxicity of LAK cells, as well as suppression

of the development of VLS after the adoptive transfer (Fig. 8A–

8D).

Whether resveratrol can induce the differentiation of the

suppressive macrophages or how resveratrol recoveres the

suppressive function of MDSC is not clear. We examined the

interaction between resveratrol and MDSC. AhR functions as one

the main receptors for resveratrol [23]. Our results demonstrated

that resveratrol could induce the expression of AhR in the MDSC

while IL-2 could not. Interestingly, IL-2 and resveratrol co-

treatment induced the most expression of AhR (Fig. 8E). This

could be because resveratrol is more effective in activated cells

than unactivated cells [30]. We noted that the expression of AhR

was positively related to the expression level of Arg1 and

suppression functionality of MDSC. IL-MDSC showed the lowest

level of AhR whereas R-MDSC showed the highest level of AhR.

We assume that the signals from AhR may be critical for MDSCs

to recover their function. The signals from AhR-resveratrol

reaction might act as a mimic to the tumor-derived signals that

induce the suppressive function of MDSCs. Further studies are

needed to clarify this hypothesis.

Resveratrol has been shown to possess chemopreventive

activities such as suppression of tumor cell proliferation, induction

of tumor cell apoptosis, and enhancement of chemosensitization of

tumor cells [21,22,24,25]. It is known that resveratrol can directly

induce cell-cycle disruption and apoptosis in chemoresistant B16

melanoma that leads to tumor regresson; meanwhile, resveratrol

makes melanomas more susceptible to the chemotherapeutic drugs

[24,25]. Our results showed: (1) resveratrol significantly enhanced

the expression of FoxO1 gene of melanoma (Fig. 9A-9C). (2)

resveratrol dramatically increased the susceptibility of melanoma

to LAK cytotoxicity (Fig. 9D). It is known that FoxO1 controls the

tumor growth; the expression of FoxO1 inhibits the tumor growth

and triggers the ultimate death of tumor [31,32]. We propose that

the above two effects of resveratrol might compensate and

overcome the suppression of MDSC on the tumor infiltrating T

lymphocytes so as to promote anti-tumor immunity.

The response to immunotherapy with HDIL-2 in patients with

metastatic RCC and melanoma is about 15% to 23%. The

immune suppression caused by the HDIL-2 treatment, such as

induction of Tregs, could be part of the reason why HDIL-2

remains less effective [1,2,3,4,5,37,38]. Our results indicate that

induction of MDSC is also an important factor in affecting the

results of the treatment. The functional status of immune

suppression of MDSC could be related to the responsiveness of

the therapy in patients. The clinical evidence is needed to further

elucidate such an issue. Resveratrol could be act in two beneficial

ways in HDIL-2 therapy by suppressing endothelial damage while

enhancing sensitivity of tumor killing. In our previous studies, we

have shown that melanoma cells and ECs can show differential

susceptibility to LAK lysis based on the expression of CD44

variant isoforms [27]. Therefore, resveratrol might induce the

differential expression of CD44 variants in melanoma cells, ECs,

LAK, Treg, and MDSCs that contributes to the differential role of

resveratrol and MDSC in EC protection and tumor killing.

Further studies are necessary to address the role of resveratrol in

modulating CD44 isoform expression.
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