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Dataset shift refers to the problem where the input data distribution may change over time
(e.g., between training and test stages). Since this can be a critical bottleneck in several
safety-critical applications such as healthcare, drug-discovery, etc., dataset shift detection
has become an important research issue in machine learning. Though several existing
efforts have focused on image/video data, applications with graph-structured data have
not received sufficient attention. Therefore, in this paper, we investigate the problem of
detecting shifts in graph structured data through the lens of statistical hypothesis testing.
Specifically, we propose a practical two-sample test based approach for shift detection in
large-scale graph structured data. Our approach is very flexible in that it is suitable for both
undirected and directed graphs, and eliminates the need for equal sample sizes. Using
empirical studies, we demonstrate the effectiveness of the proposed test in detecting
dataset shifts. We also corroborate these findings using real-world datasets, characterized
by directed graphs and a large number of nodes.
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1 INTRODUCTION

Most machine learning (ML) applications, e.g., healthcare, drug-discovery, etc., encounter dataset
shift when operating in the real-world. The reason for this comes from the bias in the testing
conditions compared to the training environment introduced by experimental design. It is well
known that ML systems are highly susceptible to such dataset shifts, which often leads to unintended
and potentially harmful behavior. For example, in ML-based electronic health record systems, input
data is often characterized by shifting demographics, where clinical and operational practices evolve
over time and a wrong prediction can threaten human safety.

Although dataset shift is a frequent cause of failure of ML systems, very few ML systems
inspect incoming data for a potential distribution shift (Bulusu et al., 2020). While some
practical methods such as (Rabanser et al., 2019) have been proposed for detecting shifts in
applications with Euclidean structured data (speech, images, or video), there are limited efforts
in solving such issues for graph structured data that naturally arises in several scientific and
engineering applications. In recent years there has been a surge of interest in applying ML
techniques to structured data, e.g. graphs, trees, manifolds etc. In particular, graph structured
data is becoming prevalent in several high-impact applications including bioinformatics,
neuroscience, healthcare, molecular chemistry and computer graphics. In this paper, we
investigate the problem of detecting distribution shifts in graph-structured datasets for
responsible deployment of ML in safety-critical applications. Specifically, we propose to
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solve the problem of detecting shifts in graph-structured data
through the lens of statistical two-sample testing. Broadly,
the objective in two-sample testing for graphs is to test
whether two populations of random graphs are different or
not based on the samples generated from each of them.

Two-sample testing has been of significant research interest
due to its broad applicability. An important class of testing
methods relies on summary metrics that quantify the
topological differences between networks. For example, in
brain network analysis, commonly adopted topological
summary metrics include the global efficiency (Ginestet
et al., 2011) and network modularity (Ginestet et al.,
2014). An inherent challenge with these approaches is that
the topological characteristics depend directly on the number
of edges in the graph, and can be insufficient in practice. An
alternative class of methods is based on comparing the
structure of subgraphs to produce a similarity score
(Shervashidze et al., 2009; Macindoe and Richards, 2010).
For example, Shervashidze et al. (2009) used the earth
mover’s distance between the distributions of feature
summaries of their constituent subgraphs.

While these heuristic methods are reasonably effective for
comparing real-world graphs, not until recently that a
principled analysis of hypothesis testing with random
graphs was carried out. In this spirit, Ginestet et al. (2017)
developed a test statistic based on a precise geometric
characterization of the space of graph Laplacian matrices.
Most of these approaches for graph testing based on classical
two-sample tests are only applicable to the restrictive low-
dimensional setting, where the population size (number of
graphs) is larger than the size of the graphs (number of
vertices). To overcome this challenge, Tang et al. (2017a)
proposed a semi-parametric two-sample test for a class of
latent position random graphs, and studied the problem of
testing whether two dot product random graphs are drawn
from the same population or not. Other testing approaches
that focused on hypothesis testing for specific scenarios, such
as sparse networks (Ghoshdastidar et al., 2017a) and
networks with a large number of nodes (Ghoshdastidar
et al., 2017b), have been developed. More recently,
Ghoshdastidar and von Luxburg (2018) developed a novel
testing framework for random graphs, particularly for the
cases with small sample sizes and the large number of nodes,
and studied its optimality. More specifically, this test statistic
was based on the asymptotic null distributions under certain
model assumptions.

Unfortunately, all these approaches are limited to testing
undirected graphs under the equal sample size (for two graph
populations) setting. In real-world dataset shift detection
problems, these assumptions are extremely restrictive,
making existing approaches inapplicable to several
applications. In order to circumvent these crucial
shortcomings, we develop a novel approach based on
hypothesis testing for detecting shifts in graph-structured
data, which is more flexible (i.e., accommodates 1) both

undirected and directed graphs and 2) unequal sample size
cases). Moreover, it is highly effective even when the sample
size grows. Notice that, similar to the setting in
Ghoshdastidar and von Luxburg (2018), we also
consider scenarios where all networks are defined from the
same vertex set, which is common to several real-world
applications. The main contributions of this paper are
summarized below:

• We propose a new test statistic that can be applied to
undirected graphs as well as directed graphs and/or
unweighted graphs as well as weighted graphs, while
eliminating the equal sample size requirement. The
asymptotic distribution for the proposed statistic, based
on the well-known U-statistic, is derived.

• A practical permutation approach based on a simplified form
of the statistic is also proposed.

• We compare the new approach with existing methods for
graph testing in diverse simulation settings, and show that
the proposed statistic is more flexible and achieves
significant performance improvements.

• In order to demonstrate the usefulness of the proposed
method in challenging real-world problems, we consider
several applications (including a healthcare application), and
show the effectiveness of our approach.

2 PRELIMINARIES

We consider the following two-sample setting. Let two random
graph populations with d vertices be denoted asA1, . . . ,Am from
P∈[0, 1]d×d and B1, . . . ,Bn fromQ∈[0, 1]d×d with their adjacency
matrices A1, . . . ,Am and B1, . . . ,Bn, respectively. We are
concerned with testing hypotheses:

H0 : P � Q vs H1 : P ≠Q. (1)

Notice that we consider the cases where each population
consists of independent and identically distributed samples,
which encompasses a wide-range of network analysis
problems, see, e.g., Holland et al. (1983), Newman and Girvan
(2004), Newman (2006). In contrast to existing formulations, e.g.,
Ghoshdastidar and von Luxburg (2018), we consider a more
flexible setup where 1) the sample sizesm and n are allowed to be
different and 2) the graphs in p and Q can be weighted and/or
directed.

While there have several efforts to two-sample testing of
graphs (Bubeck et al., 2016; Gao and Lafferty, 2017;
Maugis et al., 2017), recent works such as Tang et al.
(2017a), Tang et al. (2017b); Ginestet et al. (2017) have
focused on designing more general testing methods that
are applicable to practical settings. For example, Ginestet
et al. (2017) proposed a practical test statistic based on the
correspondence between an undirected graph and its
Laplacian under the inhomogeneous Erd}os-Rényi (IER)
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assumption, which means all nodes are independently
generated from a Bernoulli distribution (see details in
Section 3). The test statistic, under the assumption of
equal sample sizes m, can be described as follows:

Tgin � ∑d
i< j

[(A)ij − (B)ij]2
a

, (2)

where

a � 1
m(m − 1) ∑mk�1 [(Ak)ij − (A)ij]2
+ 1
m(m − 1)∑mk�1 [(Bk)ij − (B)ij]2,

(A)ij � 1
m

∑m
k�1

(Ak)ij, (B)ij � 1
m

∑m
k�1

(Bk)ij.

The authors showed that Tgin converges to a chi-square
distribution as m→∞ under H0. However, this statistic can be
interpreted as Hotelling’s T2 statistic for multivariate data, thus
leading to no performance guarantees for “small m and large d”
scenario. This is because the variance estimates used in Eq. 2 are not
stable for small m and large d, especially when graphs are sparse.

Recently, Ghoshdastidar and von Luxburg (2018) proposed a
new class of test statistics, designed for different scenarios under
the IER model assumption. More specifically, they focused on
cases with smallm and large d. For cases withm> 1, the following
test statistic was used:

Tspec �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ∑mk�1(Ak − Bk)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2																								

max
1≤ i≤ d

∑d
j�1

∑d
j�1

∑m
k�1
[(Ak)ij + (Bk)ij]√ , (3)

While it was suggested by the authors to perform this test
using bootstraps from the aggregated data, this could be
challenging for sparse graphs, since it is difficult to construct
bootstrapped statistics from an operator norm. Hence, they
considered an alternate test statistic based on the Frobenius-
norm as follows:

Tfro �
∑d
i< j
( ∑

k≤m/2
(Δk)ij)( ∑

k>m/2
(Δk)ij)																								∑d

i< j
( ∑

k≤m/2
(Sk)ij)( ∑

k>m/2
(Sk)ij)√ , (4)

where (Δk)ij � (Ak)ij − (Bk)ij and (Sk)ij � (Ak)ij + (Bk)ij. It was
shown that this test is provably effective and more reliable.
Furthermore, they derived the asymptotic normality of Tfro as
d→∞ to make the method instantly applicable without the
bootstrap procedure. Despite the good properties of this
method, this test can be used only when the two sample
sizes are equal, and when graphs are undirected. In the rest of
this paper, we develop a new test statistic which addresses
these two crucial limitations.

3 PROPOSED TEST

To carry out two-sample testing, we want to measure the distance
between two populations. Here, we utilize the Frobenius distance
as the evidence for discrepancy between two populations:

T � ‖P − Q‖2F . (5)

Next, we provide finite sample estimates of this quantity. To
accommodate more general settings for random graphs, the new
test statistic is defined as follows:

Tnew � ∑d
i�1

∑d
j�1

Tij, (6)

where

Tij � 1
m(m − 1)∑k≠ lm

(Ak)ij(Al)ij + 1
n(n − 1)∑k≠ l

n

(Bk)ij(Bl)ij

− 2
mn

∑
k�1

m ∑
l�1

n

(Ak)ij(Bl)ij.

Note that the proposed test statistic accommodates scenarios
where 1) the sample sizesm and n are different and 2) the graphs
in p and Q are weighted and/or directed.

Next, we analyze the theoretical properties of the proposed
test. For the ease of theoretical analysis, we focus on the case
where graphs are unweighted and undirected. However, the
proposed test and algorithmic tools are applicable to weighted
and/or directed graph scenarios which is the main focus of the
paper and is considered in our experimental evaluations. More
specifically, in our theoretical analysis, we assume that graphs are
drawn from the inhomogeneous Erd}os-Rényi (IER) random
graph process, which is considered as an extended version of
the Erd}os-Rényi (ER) model from Bollobás et al. (2007). In other
words, we consider unweighted and undirected random graphs,
where edges occur independently without any additional
structural assumption on the population adjacency matrix.
Note, the IER model encompasses other models studied in the
literature including random dot product graphs (Tang et al.,
2017b) and stochastic block models (Lei et al., 2016). A graph
G ∈ [0, 1]d×d from a population symmetric adjacency p with zero
diagonal is considered to be an IER graph if
(G)ij i.i.d˜ Bernoulli(Pij) for all i, j ∈ {1, . . . , d}. Here, d denotes
the cardinality of the vertex set. Next we analyze the
theoretical properties of the proposed test under IER assumption.

LEMMA 3.1. Tnew is an unbiased empirical estimate of T,
that is,

E(Tnew) � T . (7)

PROOF. Under the IER assumptions, for all i, j � 1, . . . , d, we
have

(Ak)ij(Al)ij ∼ Bernoulli(P2
ij),∑m

k≠ l

(Ak)ij(Al)ij ∼ Binomial(m(m − 1), P2
ij),
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(Bk)ij(Bl)ij ∼ Bernoulli(Q2
ij),∑

k≠ l

n

(Bk)ij(Bl)ij ∼ Binomial(n(n − 1),Q2
ij),

since Ak and Bl are mutually independent
(k � 1, . . . ,m, l � 1, . . . , n). Then,

E(T) � ∑d
i�1

∑d
j�1
[ 1
m(m − 1)m(m − 1)P2

ij

+ 1
n(n − 1) n(n − 1)Q2

ij −
2
mn

mnPijQij] � ∑d
i�1

∑d
j�1

(Pij − Qij)2
�‖ P − Q‖2F .

In the form of Tij, the first term and the second term represent
a similarity (closeness) within two samples, and the last term
represents similarity between two samples. Hence, a relatively
large value of Tnew is the evidence against the null hypothesis.
Note that the proposed statistic does not require equal sample
sizes and undirected graphs assumptions.

When m � n, we have a simpler form of the estimate.
Let Z � (z1, . . . , zm) be i.i.d random variables zk �
(Ak, Bk) ∼ P × Q (k � 1, . . . ,m). Then,

Tnew � ∑d
i�1

∑d
j�1

Tij, (8)

where

Tij � 1
m(m − 1) ∑mk≠ l h(uk, ul)ij, (9)

and
h(zk, zl)ij � (Ak)ij(Al)ij + (Bk)ij(Bl)ij − (Ak)ij(Bl)ij − (Al)ij(Bk)ij.
Since the proposed estimate has a form of U-statistics, which
provides a minimum-variance unbiased estimator for T
(Hoeffding, 1992; Serfling, 2009), the asymptotic distribution
of Tnew can be derived based on the asymptotic results of
U-statistics.

Theorem 3.1 Assume E(h2)<∞. Under H1, we have		
m

√ (Tnew − T) →d N(0, d2σ2), (10)

where σ2 � varz(Ez’h(z, z′)ij). Under H0, the U-statistic is
degenerate and

mTnew →d ∑∞
u�1

d2λu(ξ2u − 1), (11)

where ξu ˜i.i.d N(0, 1) and λu are the solutions of

λuϕu(z) � ∫
z′

h(z, z′)ijϕu(z′)dP(z′). (12)

PROOF. These results can be obtained by applying the
asymptotic properties of U-statistics as given in Serfling (2009)
and the IER assumptions.

Having devised the test statistic, our next aim is to determine
whether the new test statistic Tnew is large enough to be outside

the 1 − α quantile of the limiting null distribution in Eq. 11,
where a is the significance level of the test. One difficulty in
implementing this test is that the asymptotic null distribution 11)
and its a quantile do not have an analytic form unless λu � 0 or 1.
Therefore, in order to estimate this quantile, we propose a
permutation approach on the aggregated data. The main
advantage of this method is that it yields a valid level a test in
finite-sample scenarios (Lehmann and Romano, 2006). To this
end, we first consider a simpler form of the test statistic (based on
Tnew) defined as follows:

T ′
new � ∑d

i�1
∑d
j�1

T ′
ij, (13)

where

T ′
ij � 1

m(m − 1) ∑mk≠ l (Ak)ij(Al)ij + 1
n(n − 1)∑nk≠ l

(Bk)ij(Bl)ij. (14)

Although we do not use the last term of Tij in the definition of
T ′

ij, the performance of the test statistic T ′new achieved by
incorporating similarities in two samples is still maintained in
the permutation framework. The permutation test is summarized
in Algorithm 1; its computational cost is O(R(m∨n)2), where
(m∨n) indicates the maximum among m and n.

Algorithm 1Permutation test using T ′new.

Input: Graph samples A1, . . . ,Am and B1, . . . ,Bn;
Significance level α; Number of permutation R.
Output: Reject the null hypothesis H0 if p-value ≤ α.
1: Compute T ’new by Eqs. 13, 14.
2: for r � 1 to R do
3: Randomlypermute thepooled samples {A1, . . . ,Am, B1, . . . ,Bn}
and divide into two groups with sample sizes m and n.
4: Compute T ′r which is T ′new (as given in Eqs. 13, 14 calculated
using permuted samples.
5: end for.
6: Calculate p-value � ∣∣∣∣{r : T ′r ≥T ′new}/R_

∣∣∣∣
Unlike Ghoshdastidar and von Luxburg (2018) where the test
is reliable even for a small number of samples, due to its
asymptotic distribution, our test procedure needs a reasonable
number of samples to implement the permutation test. Based
on simulations, we see that as low as four samples are sufficient
to obtain reliable results.

4 EXPERIMENTS

Here, we first examine the performance of the new test statistics
under diverse settings through simulation studies. Later, we will
apply the new test to real-world applications.

4.1 Simulated Data
To evaluate the performance of the new test, we examine sparse
graphs from stochastic block models with two communities as
studied in Tang et al. (2017a) an Ghoshdastidar and von Luxburg
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(2018). Specifically, we consider sparse graphs with d nodes where
the same d/2 size community is constructed with an edge
probability p and d/2 size different community with an edge
probability q. In other words, we define p and Q as follows:

P : ( p q
q p

)
d×d

vs Q : ( p + ϵ q
q p + ϵ)

d×d
.

We generate m samples from p and n samples from Q. Under
the null, ϵ � 0, implying P � Q, whereas ϵ> 0 underH1, implying
P ≠Q. Following Ghoshdastidar and von Luxburg (2018), we set
p � 0.1, q � 0.05, and ϵ � 0 for null, whereas ϵ � 0.04 for the
alternative hypothesis. We examine the performance of the new
test for different choices of d ∈ {100, 200, 300, 400, 500}.

The performance of the test based on T ′new is studied and
compared to existing methods. T fro in Ghoshdastidar and
von Luxburg (2018) is the bootstrap test based on Tfro, and
T asymp denotes the normal dominance test based on the
asymptotic distribution of Tfro (also from Ghoshdastidar
and von Luxburg (2018)). We denote the new test which is
the permutation test based on T ′new as T ′ new. The
estimated power is calculated as the number of null
rejections at α � 0.05 level out of 100 independent trials
for each of these methods. For T fro and T new, p-values
are determined by 1,000 permutation runs to have a reliable
comparison.

Figure 1 shows results for the undirected graph case under
different settings. When two sample sizes are equal (upper panels),
where existing methods can be applied, we see that the proposed test
outperforms all othermethods.Note that, when the sample size of two
graph populations are different (i.e., m≠ n), the existing methods
cannot be applied. We see that the proposed test still performs well
under sample imbalance and the large d regime.

We also evaluate the performance of the new test for directed
graphs under various configurations. (Figure 2). The existing
methods are not applicable to directed graphs, but we transform
Tfro so that it can be applied to directed graphs. The results show
that the new test also has better power than the existing method in
two-sample testing for directed graph and works well for large
graphs.

Next, we examine the effect of the sparsity on the performance of
the tests. To this end, we consider the same setting as above, but with
different choices of ϵ ∈ {0.02, 0.03, 0.04} for each of methods. Small ϵ
implies that there is small difference between p andQ,making the tests
more difficult to detect discrepancy between two samples. Table 1
shows results for undirected graphswith variations in the sparsity level
ϵ. We see that, in general, the proposed method is consistently
superior to existing methods. This indicates that our test statistic is
more effective in detecting the inhomogeneity between two samples
than the existing methods. The effect of a sparsity level ϵ on the
performance of the proposed test for directed graphs can be found in
Table 2. We see that the proposed test also performs better than the

FIGURE 1 | Performance comparison of different tests for undirected graphs.
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existing method for directed graph settings, and as expected, the
power increases as ϵ or the number of samples increases.

This observation becomes particularly evident when we
have a large number of samples. To this end, we study how the
performance of the tests is affected by the number of samples.
For this study, we consider m � n ∈ {10, 20, 50} with relatively
small graphs d ∈ {50, 100, 150, 200} and fix ϵ � 0.02. This

analysis is designed to reveal the potential impact of
sample size in high-dimensional settings. Tables 3, 4
report numerical results for the performance of the tests
with varying number of samples. We see that the proposed
test in general outperforms the existing tests for both
undirected and directed graphs. Hence, we can claim that
the new test works well in high-dimensional settings.

FIGURE 2 | Performance comparison of proposed test for directed graphs.

TABLE 1 | Power comparison of different tests for undirected graphs with varying sparsity levels.

m=n= 4 ϵ= 0.02 ϵ= 0.03 ϵ= 0.04

D T fro T asymp T 9 new T fro T asymp T 9 new T fro T asymp T 9 new

100 0.09 0.05 0.10 0.10 0.03 0.08 0.17 0.05 0.17
200 0.09 0.05 0.07 0.18 0.10 0.18 0.39 0.22 0.39
300 0.17 0.03 0.17 0.34 0.19 0.37 0.50 0.40 0.66
400 0.11 0.09 0.15 0.40 0.26 0.53 0.78 0.71 0.90
500 0.22 0.08 0.22 0.63 0.48 0.75 0.91 0.89 0.98

m=n= 8 ϵ= 0.02 ϵ= 0.03 ϵ= 0.04

d T fro T asymp T 9 new T fro T asymp T 9 new T fro T asymp T 9 new

100 0.13 0.05 0.08 0.17 0.08 0.23 0.39 0.21 0.64
200 0.19 0.09 0.31 0.40 0.20 0.67 0.80 0.66 0.99
300 0.36 0.22 0.49 0.73 0.58 0.92 0.98 0.94 1.00
400 0.37 0.19 0.61 0.92 0.86 1.00 1.00 0.99 1.00
500 0.51 0.31 0.76 0.98 0.96 1.00 1.00 1.00 1.00

Bold values indicate the largest power of the test under each condition.

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 5896326

Song et al. Graph Dataset Shift Detection

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


4.2 Real-World Applications
4.2.1 Phone-Call Network
The MIT Media Laboratory conducted a study following 87
subjects who used mobile phones with a pre-installed device
that can record call logs. The study lasted for 330°days from July
2004 to June 2005 (Eagle et al., 2009). Given the richness of this
dataset, one question of interest to answer is that whether the
phone call patterns among subjects are different between
weekends and weekdays. These patterns can be viewed as a
representation of the personal relationship and professional
relationships of a subject. Removing days with no calls among
subjects, there are t � 299 networks in total (corresponding to
number of days) and 87 subjects (or nodes) with adjacency
matrices Nt with value one for element (i, j) if subject i called
j on day t and 0 otherwise. This in turn comprises of 85°days in
weekends and 214°days in weekdays. This is an example of
unweighted directed graphs with imbalanced sample sizes.

The test statistic and corresponding p-value are shown in
Table 5. We see that the new test rejects the null hypothesis of
equal distribution at 0.05 significance level. This outcome is
intuitively plausible as phone call patterns in weekends
(personal) can be different from the patterns in weekdays (work).

4.2.2 Safety-Critical Healthcare Application
Modeling relationships between functional or structural regions
in the brain is a significant step toward understanding, diagnosing,

and eventually treating a gamut of neurological conditions including
epilepsy, stroke, and autism. A variety of sensing mechanisms, such
as functional-MRI, Electroencephalography (EEG), and
Electrocorticography (ECoG), are commonly adopted to uncover
patterns in both brain structure and function. In particular, the
resting state fMRI (Kelly et al., 2008) has been proven effective in
identifying diagnostic biomarkers for mental health conditions such
as the Alzheimer disease (Chen et al., 2011) and autism (Plitt et al.,
2015). At the core of these neuropathology studies is predictive
models that map variations in brain functionality, obtained as time-
series measurements in regions of interest, to clinical scores. For
example, the Autism Brain Imaging Data Exchange (ABIDE) is a
collaborative effort (Di Martino et al., 2014), which seeks to build a
data-driven approach for autism diagnosis. Further, several
published studies have reported that predictive models can reveal
patterns in brain activity that act as effective biomarkers for
classifying patients with mental illness (Plitt et al., 2015).
Following current practice (Parisot et al., 2017), graphs are
natural data structures to model the functional connectivity of
human brain (e.g. fMRI), where nodes correspond to the
different functional regions in the brain and edges represent the
functional correlations between the regions. The problem of defining
appropriate metrics to compare these graphs and thereby identify
suitable biomarkers for autism severity has been of significant
research interest. We show that the proposed two-sample test is
highly effective at characterizing stratification based on
demographics (e.g. age, gender) as well as autism severity states
(normal vs abnormal) across a large population of brain networks.

TABLE 2 | Power of the proposed test for directed graphs with varying sparsity
levels.

m=n= 4 ϵ= 0.02 ϵ= 0.03 ϵ= 0.04

D T fro T 9 new T fro T 9 new T fro T 9 new

100 0.13 0.09 0.11 0.11 0.21 0.26
200 0.11 0.12 0.25 0.27 0.49 0.66
300 0.17 0.22 0.46 0.61 0.76 0.94
400 0.20 0.20 0.60 0.72 0.95 1.00
500 0.36 0.37 0.77 0.93 1.00 1.00

m=n= 8 ϵ= 0.02 ϵ= 0.03 ϵ= 0.04

D T fro T9 new T fro T9 new T fro T9 new

100 0.14 0.18 0.20 0.42 0.66 0.93
200 0.26 0.38 0.77 0.94 0.97 1.00
300 0.43 0.68 0.94 1.00 1.00 1.00
400 0.62 0.89 1.00 1.00 1.00 1.00
500 0.80 0.96 1.00 1.00 1.00 1.00

Bold values indicate the largest power of the test under each condition.

TABLE 3 | Power comparison of different tests for undirected graphs with varying sample sizes.

m=n= 10 m=n= 20 m=n = 50

d T fro T asymp T 9 new T fro T asymp T 9 new T fro T asymp T 9 new

50 0.08 0.08 0.12 0.11 0.04 0.16 0.28 0.15 0.43
100 0.16 0.08 0.17 0.18 0.05 0.23 0.61 0.42 0.81
150 0.16 0.03 0.15 0.21 0.14 0.30 0.70 0.52 0.97
200 0.14 0.06 0.22 0.37 0.21 0.56 0.94 0.89 1.00

Bold values indicate the largest power of the test under each condition.

TABLE 4 | Power comparison of different tests for directed graphs with varying
sample sizes.

Directed m=n= 10 m=n = 20 m=n = 50

d T fro T 9 new T fro T 9 new T fro T 9 new

50 0.05 0.09 0.12 0.28 0.49 0.77
100 0.15 0.24 0.29 0.43 0.82 0.99
150 0.15 0.21 0.39 0.52 0.95 1.00
200 0.28 0.42 0.66 0.86 1.00 1.00

Bold values indicate the largest power of the test under each condition.

TABLE 5 | Test summary on the phone-call network.

Test statistic p-value

15.8131 <0.001
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In the dataset, there are total 871 graphs and each graph
consists of 111 nodes (functional regions). Through this example,
we study the effectiveness of our approach under the weighted
and undirected graph setting. In particular, we focus on detecting
variations across stratification arising from demographics
(gender, age). Specifically, groups of normal control subjects as
well as those diagnosed with Autism Spectrum Disorders (ADS)
are further sub-divided according to their gender (Male or Female)

and age (under 20 or over 20), and we compare these sub-groups
using the proposed test.Table 6 shows the distribution of graphs in
the dataset and Figure 3 shows an example of the network
structure of normal-male and normal-female groups.

We conduct the two-sample test based on T ′ new for each group
with 10,000 permutations and the results are summarized inTable 7.
We see that the new test rejects the null hypothesis of homogeneity
in groups with respect to the treatment and age at 5% significance

TABLE 6 | Distribution of graphs. “M” and “F” indicate male and female, respectively. ‘<20’ and ‘>20’ represent age less than 20 and over 20, respectively.

TABLE 7 | p-values of the tests on the ABIDE dataset.

TABLE 8 | Estimated power of the tests with the significance level at 5%. Black numbers indicate the power of test based on T fro and red numbers represent the power of
test based on T ’ new.
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level (Normal>20 vs ADS<20 and Normal<20 vs ADS>20). In
addition, the new test rejects the null hypothesis of homogeneity
in both normal and ADS groups with respect to the age difference
(Normal<20 vs Normal>20 and ADS<20 vs ADS>20).

This conclusion indicates there is a dataset shift even within the
same normal andADS groups, depending on the age. Hence, the fact
that normal and ADS groups are considered differently by age may
affect themachine learning subjects classification and prediction task
in population.Moreover, with the dataset in which the normal group
and ADS group are determined differently by age and not by gender,
themachine learning classification and predictionmodel may not be
reliable. Hence, detecting dataset shift shed some light on the
machine learning task for more reliable results.

We also compare the new testwith the existingmethodT fro to this
example. Note that the existing method T asymp may not be reliable
due to the small number of nodes. Since T fro is only applicable to the
balanced sample sizes, we randomly choose 54 graphs from each group
as the smallest sample size among the groups is 54. We run the tests
100 times at the significance level 5%. The test powers are shown in
Table 8. We see that the new test in general outperforms T fro.
Compared to the results in Table 7, some examples show inconsistent
performance of the tests. This is because we only consider a subset of
graphs due to the limitation of the existing approaches in that they
cannot be applied to unbalanced sample size examples.

5 CONCLUSION

We propose the new two-sample test statistic for graph-structured
data. Unlike the existing methods, the new test statistic is more
versatile, which is applicable to directed graphs, imbalanced sample
size cases, and even weighted graphs. The asymptotic distribution of
the test statistic is presented and a practical testing procedure is

proposed. The performance of the new method is studied under a
number of settings. Experiments demonstrate that the new test in
general outperforms state-of-the-art tests. The proposed test is also
applied to two real datasets (including a safety-critical healthcare
application), and we reveal that the new approach is effective to
detecting the heterogeneity between disparate samples.
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FIGURE 3 | Example networks from Normal-Male and Normal-Female groups.
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