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Comparison of Two-Talker 
Attention Decoding from EEG with 
Nonlinear Neural Networks and 
Linear Methods
Gregory Ciccarelli   1, Michael Nolan1, Joseph Perricone1, Paul T. Calamia   1, Stephanie Haro   1,2,  
James O’Sullivan3, Nima Mesgarani3, Thomas F. Quatieri1,2 & Christopher J. Smalt 1

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of 
developments since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph 
recordings. AAD has been pursued for its potential application to hearing-aid design in which an 
attention-guided algorithm selects, from multiple competing acoustic sources, which should be 
enhanced for the listener and which should be suppressed. Traditionally, researchers have separated 
the AAD problem into two stages: reconstruction of a representation of the attended audio from 
neural signals, followed by determining the similarity between the candidate audio streams and the 
reconstruction. Here, we compare the traditional two-stage approach with a novel neural-network 
architecture that subsumes the explicit similarity step. We compare this new architecture against 
linear and non-linear (neural-network) baselines using both wet and dry electroencephalogram (EEG) 
systems. Our results indicate that the new architecture outperforms the baseline linear stimulus-
reconstruction method, improving decoding accuracy from 66% to 81% using wet EEG and from 59% to 
87% for dry EEG. Also of note was the finding that the dry EEG system can deliver comparable or even 
better results than the wet, despite the latter having one third as many EEG channels as the former. 
The 11-subject, wet-electrode AAD dataset for two competing, co-located talkers, the 11-subject, dry-
electrode AAD dataset, and our software are available for further validation, experimentation, and 
modification.

Hearing loss, and the associated use of hearing-aids, is rising among the general population1, and as shown by 
recent statistics from the US Dept. of Veterans Affairs, is particularly prevalent among retired military personnel2. 
Despite widespread use of hearing aids, and the incorporation of spatial and spectral algorithms for noise reduc-
tion, hearing-aids often are considered unsatisfactory in regard to their performance in noisy environments3–5. 
Particularly when background noise includes other talkers, hearing aids suffer because they have difficulty sep-
arating the “signal” (i.e., the talker of interest to the listener) from the “noise” (i.e., all other talkers) due to sim-
ilarities in spectro-temporal characteristics. The failure of hearing aids to improve listening ability in complex 
acoustic environments, either due to poor device performance, or lack of use triggered by poor performance, is 
associated with social isolation and various forms of cognitive decline such as depression6–8. Therefore, solving 
the problem of assisted listening in multi-talker environments could have wide societal benefits in terms of com-
munication and mental health. Auditory attention decoding (AAD) is a recent approach aimed at such a solution, 
one which exploits knowledge of the listener’s auditory intent (attention) to isolate and enhance the desired audio 
stream and suppress others.

Evidence for neural encoding of speech has been shown with various sensing modalities including electro-
encephalography (EEG)9, magnetoencephalography (MEG)10, and electrocorticography (ECoG)11. The exploita-
tion of such encoding for AAD in a two-talker paradigm was initially demonstrated by Mesgarani and Chang12, 
through a classifier acting on speech spectrograms reconstructed from ECoG data. Comparison of the predicted 
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spectrograms with those from the actual speech sources provided the identity of the attended talker with 93% 
accuracy when the subjects were known to be attending to the instructed stimulus. Since then, AAD has been 
achieved successfully with many variations on this initial technique13–24.

The most common approach to AAD, first described in O’Sullivan et al.13 and depicted in Fig. 1, involves EEG 
for capturing neural data as a more practical and less invasive modality than ECoG. The approach uses a linear 
least-squares method for stimulus (broadband speech envelope) reconstruction and correlation of actual and pre-
dicted speech envelopes to identify the attended talker. Stimulus reconstruction is also known as the “backward” 
problem in AAD, as the mapping from EEG to stimulus is the reverse of the natural auditory stimulus/response 
phenomenon. By contrast, predicting EEG from the stimulus is known as the “forward” problem.

The attention decision typically is between two simultaneous, spatially separated talkers. This approach has 
been modified to evaluate: sensitivity to number of EEG channels and size of training data14; robustness to noisy 
reference stimuli15,16; the use of auditory-inspired stimulus pre-processing including subband envelopes with 
amplitude compression17; cepstral processing of EEG and speech signals for improved correlations25; the effects 
of speaker (spatial) separation and additional speech-like background noise18; the effects of (simulated) reverber-
ation19; and potential performance improvements through various regularization methods20.

Considering the AAD pipeline as comprising steps for neural data acquisition, stimulus representation, signal 
processing (e.g., forward or backward predictive modeling), and attention determination, alternate techniques 
have been described with variations of each of these components. MEG26 and ECoG27 continue to serve as neural 
sensing modalities, while EEG channels have been reduced in number in an effort to move toward less obtrusive, 
portable systems21,22. Speech stimuli have been represented with spectrograms27 and frequency-dependent enve-
lopes after gammatone filtering28. To exploit the power and biological relevance of non-linear processing, effective 
implementations of the backward model with neural networks have been shown23, and while much less popular, 
linear versions of the forward model (predicting EEG from the stimuli) are described in Fiedler et al.22 and Wong 
et al.20. As an alternative to both forward and backward modeling, canonical correlation analysis, which involves 
transforming both stimulus and response to maximize mutual projections and thus improve correlations, has 
been applied to EEG and audio data, both with various filters, to enhance AAD performance29. Finally, state-space 
models have been applied as a final step in AAD systems to smooth noisy attention decisions and allow for near 
real-time update rates24.

Measuring the performance of AAD systems typically involves an intuitive computation of decoding accuracy, 
i.e., the percentage of decoding opportunities for which the system correctly identifies the attended talker. Overall 
results often are generated with a leave-one-out cross-validation scheme iterated over the collected dataset. This 
approach is used in both the backward13–15,17,20 and forward22 modeling paradigms. System accuracy also has been 
reported for predicting the unattended talker13,19, but in both cases performance is worse than that for predicting 
the attended talker. In Miran et al.24, the 1-norm of the attended and unattended decoder coefficients are used as 
“attention markers” to generate a smooth, near real-time (~2-second latency) attentional probability through a 
state-space estimator. Talker classification is considered correct if the probability estimate and its 90% confidence 
interval for the attended talker are above 0.5, and accuracy is again measured as the percentage of correctly 
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Figure 1.  System architecture for auditory attention decoding: backward model. The temporal response 
function (TRF) can be linear or non-linear (neural network, see Fig. 3).

DNN DNN Decision:
A or B

Audio 
Processing

Audio 
Processing

Multichannel EEG

Speech Stream A

Speech Stream B

Speaker 
Separation

EEG 
Preprocessing

Figure 2.  System architecture for auditory attention decoding: DNN binary classification. See Fig. 4 for a 
specific instance of the DNN.
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classified opportunities. In de Taillez et al.23 and Wong et al.20, performance is reported as an information transfer 
rate, i.e., the number of correct decoding decisions per minute.

Comparison of performance statistics across different published results, even those using the same decod-
ing approach and performance metric, is hampered by variations in experimental parameters including talker 
number, angular separation, and gender, as well as number/placement of EEG electrodes, and by variations 
in processing parameters such as EEG or speech-envelope bandwidths, and correlation lags and window 
sizes. To address these barriers, in this paper we describe two datasets and three decoding algorithms along 
with results from each of the six combinations. The datasets include wet and dry EEG data collected from 11 
subjects during an auditory-attention experiment with two simultaneous, co-located talkers (one female, one 
male). The algorithms include a linear stimulus-reconstruction decoder described in O’Sullivan et al.13 and a 
neural-network stimulus-reconstruction decoder described in de Taillez et al.23, and we introduce a novel convo-
lutional neural-network classifier that predicts the attended talker without explicit stimulus or response predic-
tion (Fig. 2). Our results indicate that this new architecture outperforms the traditional stimulus-reconstruction 
decoders by a significant margin on both datasets.

Methods
AAD experimental collection.  Protocol.  Speech from two co-located talkers, one male, and one female, 
was presented to each subject in a quiet, electrically shielded audiometric booth. The audio was presented from 
a single loudspeaker directly in front of the subject, with the experiment lasting approximately 40 minutes. The 
stimuli consisted of four “wikiHow.com” instructions lasting approximately 5 minutes each: “How to Make 
Waffles”, “How to Take Care of a Dog”, “How to be a Shepherd”, and “How to Identify Birds”. Each story (attended 
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Figure 3.  The neural network architecture for stimulus reconstruction, based on the design in de Taillez et al.23. 
There is one hidden layer with two nodes (FC1) to enforce significant compression of EEG data before being 
transformed to a predicted audio stimulus (see Fig. 1 for the system architecture). BN = batch normalization, 
FC = fully connected.
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Figure 4.  The convolutional architecture used for integrated similarity computation between EEG and 
a candidate audio stream. Components include batch normalization (BN), convolution layers (Convi), 
exponential linear units (ELU), drop-outs (DO), and fully connected layers (FCi). Wet EEG (kernel, num ch 
in, num ch out): Conv1: 3 × 65 × 64, Conv2: 1 × 64 × 2, Dry EEG: Conv1: 3 × 19 × 19, Conv2: 1 × 19 × 2, Both: 
FC1: 246 × 200, FC2: 200 × 200, FC3: 200 × 100, FC4:100 × 1, MaxPool 1D, stride:2. See Fig. 2 for the system 
architecture.
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audio) was heard twice, once read by the male and once by the female talker, with a different story by the opposite 
gender presented simultaneously as the distractor (unattended) audio stream. The order of the two talkers, as well 
as the attended and distractor audio streams were randomized for each subject. Participants were instructed as to 
which gender talker to focus on at the start of each story on a screen in front of them throughout the experiment. 
Each story was interrupted randomly after 5–10 sentences were presented, and the participant was asked to repeat 
the last sentence of the attended talker. We term each uninterrupted listening interval as a “part”. A subset of sub-
jects also participated in an auditory oddball task, but that data is not part of this analysis.

Subjects.  The experimental protocol was approved by the MIT Committee on the Use of Humans as 
Experimental Subjects and the US Army Medical Research and Materiel Command (USAMRMC) Human 
Research Protection Office. All research was conducted in accordance with the relevant guidelines and regu-
lations for human subject testing required by these committees. All subjects gave written informed consent to 
participate in the protocol.

Eleven MIT Lincoln Laboratory employees (7 male, 4 female) agreed to participate in two experiments on different  
days. The first experiment used a wet EEG system, and the second used a dry EEG system. All participants 
self-reported normal threshold hearing.

To ensure that subjects were on task, as well as potentially to exclude subjects that were unwilling or unable 
to attend to the target speaker, we checked the randomized interruptions of the stimuli presentations for a qual-
itative measure of attention. No subjects were excluded due to performance concerns. Several of the authors did 
participate in the study.

EEG instrumentation and preprocessing.  Wet electrode EEG data were collected using a Neuroscan 64-channel 
Quik-Cap and a SynAmps RT amplifier with a sampling rate of 1000 Hz, and recorded in Curry data-acquisition 
software (Compumedics, Charlotte, NC) with a high-pass cut-off of 0.05 Hz and a low-pass cut-off of 400 Hz. 
Additional electrodes were placed on both mastoids, as well as for some subjects above, below, and next to the left 
eye. The reference electrode was located halfway between CZ and CPZ. Dry electrode EEG data were collected 
using a Wearable Sensing DSI-24 system (San Diego, CA), a joint sensor platform and signal amplifier. The system 
records from 18 scalp channels and two reference channels attached to the subject’s earlobes. Data were collected 
at a 300 Hz sampling rate using DSI-Streamer software, with a high-pass cut-off of 1 Hz and low-pass cut-off of 
50 Hz.

Prior to analysis, all EEG data were down-sampled to 100 Hz using MATLAB’s resample function (Mathworks, 
Natick, MA), which applies an anti-aliasing low-pass filter with a cutoff frequency of 50 Hz. EEG data were 
band-pass filtered with a passband frequency of 2 to 32 Hz.

Audio preprocessing.  For both the stimulus reconstruction and binary classification methods, we pre-processed 
the two clean, audio streams to extract their broadband envelopes using the iterative algorithm in Horwitz-Martin 
et al.30. Envelopes were subsequently downsampled to a 100-Hz sampling rate.

Linear decoding.  To recreate the linear, stimulus-reconstruction approach in O’Sullivan et al.13 (see Fig. 1), 
we implemented a regularized, linear transform from EEG response data to audio envelope. We refer to the linear 
transform as LSQ, but in order to align the fitting of the linear model to the fitting of the neural network model 
in which the waveform is predicted, we used a Pearson correlation loss function instead of a mean squared error 
loss function.

The linear prediction of the audio waveform y is created with a simple matrix multiplication of the estimated 
weights, w, with a matrix of EEG data segments, A. Each row of A contains all the time points of the context win-
dow for all the EEG channels.

The LSQ weights, w, are often called the temporal response function (TRF) from the response-prediction EEG 
literature in which the EEG is seen as a response to the audio stimulus. Strictly speaking, when attention decoding 
is formulated in the backwards direction, the weights represent an inverse TRF.

The regularization parameter was selected on a per-subject, per-test-part basis from a set of ten logarithmi-
cally spaced values from 101 to 1010. A robust standard scaling was applied to the training and testing audio and 
EEG data, also on a per-subject, per-test-part basis, using the estimated median and inter-quartile range of the 
training data. Each segment of data used for the LSQ method (and the DNN correlation-based method) was 26 
samples long (approximately 250 ms given the 100-Hz sampling rate). Estimation was performed using Python 3 
and Scikit-learn’s linear_model.RidgeCV method31. Internal cross validation was performed using a three 
fold split at the part level. Separate models were trained for each subject; no transfer learning across subjects was 
used in this analysis.

Nonlinear decoding.  The motivation for applying a deep neural network (DNN) to the AAD problem is 
that a non-linear decoder may provide improved performance relative to a linear decoder due to the inherent 
non-linear processing of acoustic signals along the auditory pathway. A DNN is a prototypical non-linear method 
flexible enough to handle multi-dimensional time series data. We use a neural network inspired by de Taillez et al.23  
for the correlation-based classifier, and a novel convolutional DNN for the integrated classification decision 
architecture.

Neural network for stimulus reconstruction.  A simple neural-network architecture comprising a single hidden 
layer with two nodes was shown in de Taillez et al.23 to yield the best performance from a group of more com-
plicated networks considered. Our adaptation of that network, shown in Fig. 3, includes batch normalization32 
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before the inputs to each layer, and a hard hyperbolic tangent (as opposed to a linear function) for the output 
layer’s activation to enforce our prior expectation that the audio envelope be bounded.

The network was trained with the Adam optimizer using a mini-batch size of 1024 samples, no weight decay, 
a learning rate of 10−3, and 2400 iterations. Following de Taillez et al.23 we also employed a correlation-based loss 
function rather than a mean-squared error-loss function to exploit the prior knowledge that we ultimately will be 
testing the reconstructed waveform and AAD performance with a correlation metric.

Neural network for direct classification.  Our novel end-to-end classification network with integrated similarity 
computation between EEG signals and a candidate audio envelope is pictured in Fig. 4. It comprises two con-
volutional layers, the first of which uses a kernel of three samples, and the second of which uses a kernel of one 
sample. The convolutional layers are followed by a set of four, fully connected layers that decrease in size in the 
later stages. We use batch normalization and dropout33 throughout, and the exponential linear unit34 for the 
non-linearity. Training includes a binary cross-entropy loss function, mini-batch size of 1024, Adam optimizer, 
no weight decay, and a learning rate of 10−3. We terminated the optimization process if the loss on the training set 
declined to below 0.09 or if the optimizer had run for 2400 steps. Because of computational limits on our comput-
ers, we randomly downsampled the 10-second set of samples over which a frame was evaluated by a factor of four.

Methods of evaluation.  Correlation-based evaluation.  Algorithm performance was evaluated in a 
leave-one-out cross-validation paradigm across all audio parts presented to the subject. Multi-part training was 
performed by concatenating the presented audio data and recorded EEG response data. The concatenation was 
performed after each part was converted into a data matrix for the algorithm estimation to avoid discontinuities. 
The LSQ (linear) and DNN (non-linear) estimators were trained to reconstruct the attended audio using the 
training audio and EEG. Then, given the test EEG, each algorithm attempted to reconstruct the attended audio 
stimulus.

The estimated audio was then compared to the two candidate audio streams (attended and unattended) using 
Pearson correlation. The correlation was computed for ten-second, non-overlapping windows for the test part. If 
the left-out part was less than ten seconds, it was not evaluated. Decoding accuracy was computed as the percent-
age of 10-second windows for which the correlation coefficient with the attended audio envelope was higher than 
the correlation coefficient with the unattended audio envelope.

Classification-based evaluation.  In the DNN classification architecture, the algorithm directly makes a similarity 
prediction between the recorded EEG and each of the candidate audio streams. In other words, the similarity 
metric is learned by the network during the training rather than dictated by the user. Given the similarity scores 
for each candidate audio stream, the attended stream is declared as the one with the highest score. To keep the 
decision rate the same between the two network architectures, we provide the classification algorithm data seg-
ments that are ten seconds in duration.

Computational environment.  Analysis was performed using a mix of a GPU/CPU cluster and desktop comput-
ing environment running Python 3 and MATLAB (Mathworks, Natick, MA). The neural networks were imple-
mented in PyTorch 1.035, and parallelization across test folds was achieved with Nipype version 1.1.936. The linear 
analysis used Scikit-learn version 0.19.1. An individual neural network train fold could be trained in less than a 
day.

EEG lead sub-sampling.  The 64 channel wet EEG configuration contains a superset of the 18 channel dry EEG 
leads. As a third comparison between the systems, we sub-sampled the wet EEG leads to the dry subset.

Results
Decoding accuracy.  Decoding results for the wet EEG system are shown in Fig. 5, and for the dry EEG in 
Fig. 6. Each figure shows the per-subject average decoding accuracy using the linear correlation, neural-net-
work based correlation, and DNN classification methods. Chance-level performance, indicated by the black stars, 
was computed as the 95th percentile point of a binomial distribution with p = 0.5 and n equal to the number 
of non-overlapping 10-second windows. Mean decoding accuracies across subjects are summarized in Table 1, 
including those for which we sub-sampled the wet EEG channels to match the 18 channels (by location) of the dry 
EEG system for a more direct comparison of the two. A 2-way mixed-model ANOVA (EEG Type by Algorithm 
Type) was performed with subjects modeled as a random factor. We found a main effect for the choice of algo-
rithm type (F(2, 80) = 144.0, p < 0.0001) but not for EEG type (F(2, 80) = 0.46, p = 0.64). The interaction between 
algorithm choice and EEG type was also significant (F(4, 80) = 2.8, p < 0.05). Tukey corrections were used for 
post-hoc multiple comparisons, and revealed statistically significant differences between the DNN classifier and 
both stimulus-reconstruction algorithms for both wet and dry EEG. There was no significant pairwise effect of 
the EEG type for any of three algorithms tested, including when sub-sampling the wet EEG channels to match the 
dry system (18 channels).

Visualization of LSQ TRF.  For visualization, the linear kernel length was expanded from 26 to 51 samples 
in order to ensure capturing the full temporal evolution of the transform, but on average only the first half of the 
TRFs showed substantial non-zero activity. We normalize the TRF weights so the minimum weight is 0 and the 
maximum weight is 1. We compute the normalization separately for the wet and dry systems and per subject. 
Then, we average across the subjects and re-normalize again to a 0–1 for display as shown in Fig. 7 as a series of 
headmaps. We see a TRF peak occurs at 200 ms in the center of the head and dissipates afterwards. This timing is 
consistent with that reported previously where peaks near 200 ms also are shown13,14,19.
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Channel importance in the convolutional DNN.  While obtaining insight into why a DNN performs as 
it does remains a challenging research question, we can gain some understanding of the convolutional DNN by 
examining the filter weights of the first convolutional layer. Essentially, this convolution is creating a set of linear 
combinations of the input EEG and audio channels. The full convolutional weight matrix is 3-dimensional (kernel 
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Figure 5.  Per-subject attention-decoding accuracy using a wet, 64 channel EEG system. 10-second evaluation 
window, three algorithms: linear stimulus reconstruction (LSQ), non-linear stimulus reconstruction (DNN 
Corr.), and DNN classification (DNN Clf.). Chance performance is indicated by the black stars.

Figure 6.  Per-subject attention-decoding accuracy using a dry EEG system. 10-second evaluation window, 
three algorithms: linear stimulus reconstruction (LSQ), non-linear stimulus reconstruction (DNN Corr.), and 
DNN classification (DNN Clf.). Chance performance is indicated by the black stars.

Stimulus Reconstruction Classifier

Linear Nonlinear (DNN) Nonlinear (DNN)

Wet EEG: 64 channels 66% (9%) 62% (10%) 81% (6%)

Wet EEG: 18 channels 63% (10%) 62% (8%) 85% (7%)

Dry EEG: 18 channels 59% (7%) 60% (8%) 87% (5%)

Table 1.  Mean decoding accuracies for the three architectures and two EEG types. Standard deviations are 
shown in parentheses. The 18-channel wet EEG entries were computed using only the electrodes with positions 
that matched those of the 18 electrodes from the dry EEG cap.
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by input channel by output channel), but we can collapse the 3D matrix into one dimension in order to visualize 
it. First, we select the middle element of the three-point temporal kernel, and then take the absolute value of the 
weights. Next, we sum the convolutional weights along the input channel. Taking the wet EEG as an example, 
there are 64 EEG channels and an audio channel as the input and 64 channels as the output from the first convolu-
tional layer. As in visualization of the LSQ TRF, we normalize the 64 EEG weights of the 65-element vector so the 
minimum weight is 0 and the maximum weight is 1. We then apply that normalization to the 65th audio element. 
We compute the normalization separately for the wet and dry systems and per subject. Then, we average across 
the subjects and re-normalize again to a 0–1 range using only the EEG weights but applying that normalization to 
the audio weight. Consequently, an audio weight greater than 1.0 is possible and signifies that audio is weighted 
more than any of the EEG leads.

Figure 8 shows the mean absolute weights assigned to the wet, wet sub-sampled, and dry EEG datasets vis-
ualized as a headmap. Activated regions show some similarity to the LSQ TRF values in Fig. 7. Specifically, for 
the wet-EEG case, the central peak for the DNN headmap is roughly co-located with the 200 ms peak for the 
LSQ TRF. For the dry-EEG case, the elongated activation area to the right of the mid-sagittal plane resembles 
that for the 200 ms LSQ TRF (although the central peak at 200 ms is not evident in the DNN weights). The wet 
sub-sampled head map shows the same frontal activation strength as the dry map. Since the DNN classifier takes 
both audio (envelope) and EEG as an input, the audio channel should be weighted highly, and we see this is the 
case with the wet and wet sub-sampled EEG systems yielding audio weights of 1.7 and 1.1 and the dry electrode 
system yielding an audio weight of 0.77. This indicates that the network is utilizing both EEG and audio signals 
to make a decision.

Discussion
As shown in Figs 5 and 6, and Table 1, both the nonlinear and linear approaches yielded comparable performance 
under the stimulus-reconstruction architecture. Decoding accuracy in our study varied more with the subject 
than with the choice of these algorithms. Typically, either both approaches performed well on a subject (e.g., Subj. 
555), or both performed poorly (e.g., Subj. 437). The DNN classifier approach dramatically outperformed the 
traditional segregated architecture in decoding accuracy (81% wet, 87% dry) with a performance advantage in 
all of the dry EEG cases and all but two of the wet EEG cases, and shows a smaller variance among the subjects. 
While the exact reason for this is unclear, future work includes further analysis of the DNN’s weights to better 
understand its learned similarity metric. In addition, comparison of the DNN classifier to a logistic-regression 
classifier could yield insight into the importance of non-linearities in the decoding process.

In regard to the two EEG systems, overall decoding performance is comparable between the wet electrode 
and dry electrode systems. This result is somewhat surprising given that the wet system contains more than three 
times as many channels (64 vs. 18), although earlier work has shown a channel reduction from 96 to 20 had lim-
ited effect on decoding accuracy14. When we sub-sampled the number of wet electrode leads, we noticed a small 
increase in performance in the one-stage method suggesting some degree of overfitting was occurring with all 
64 channels. Otherwise, the results did not change substantially. Further study is necessary to understand exactly 

Figure 7.  Normalized grand average headmaps of the LSQ TRF values across subjects.

Figure 8.  Normalized grand average headmaps of the mean convolutional weights for the wet, wet sub-
sampled, and dry EEG systems for the DNN classifier network. The colors are scaled between 0 and 1. The audio 
channel weights (not shown) were 1.7, 1.1, and 0.77 for the wet, wet sub-sampled, and dry systems, respectively.
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how the various features of the two EEG systems (e.g., channel count, sensor type, choice of reference, etc.) inter-
act and influence the decoding performance, although the successful decoding from both systems indicates that 
our novel DNN classifier approach is robust to different sensor configurations. Given these results, and recent 
studies that suggest that wet and dry EEG systems can deliver similar signal qualities (albeit with different sys-
tems than we used)37, a practical integration of AAD into an unobtrusive, wearable hearing device seems to be an 
achievable, long-term goal.

Of the three approaches we considered, two explicitly involve a backward model, i.e., stimulus reconstruction. 
We did not test the forward decoding architecture in this paper for both empirical and theoretical reasons. In 
regard to the former, the forward decoding approach has shown slightly worse performance than the backward 
decoding approach20. Theoretically, this performance loss is understandable because the auditory stimulus is 
just one of many internal and external factors, none of which is known other than the audio, that influence the 
corresponding EEG waveform. By contrast, because the neural activity represented in the EEG data is at least in 
part due to an auditory stimulus, it is reasonable to filter out the non-auditory components but retain the auditory 
component. As an extreme example, assume a model for the transform from audio to a specific EEG channel as 
the envelope of the audio plus additive noise, with the noise independent at each lead. In this case, the forward 
problem requires predicting noise, whereas the backward problem allows averaging out the noise across all the 
leads to recover the auditory envelope.

The performance of the linear approach in our study was lower than that reported in previous studies, poten-
tially due to differences in the experimental design and decoding parameters. One significant difference between 
the results reported here and in other publications is that our talkers were co-located, i.e., combined digitally and 
delivered from a single loudspeaker in front of the subject. Reduced spatial separation (down to 10°) has been 
shown to have a detrimental effect on decoding accuracy in low (−1.1, −4.1, and −7.1 dB) but not high (20 dB) 
SNR conditions18, so it is not clear how strong an effect co-location had in this work. Other studies have included 
talkers at ±90° azimuth13,15–18, ±60°19,20, ±30°14, or ±10°18. We chose to use co-located talkers because this would 
provide a lower bound on decoding accuracy (from a spatial perspective) without extrapolating from an arbitrary 
separation angle.

A second potential reason for our relatively low linear decoding accuracy is that our correlation window (trial 
size) of 10 s and kernel length of 250 ms are shorter than those in some other experiments. Decoding accuracy 
previously has been shown to deteriorate with shortening trial sizes17,20,38, and one-minute13,14 and 30-second16,18 
windows are more common in the literature. Our choice of 10 s was motivated by the fact that, a smaller window, 
eventually coupled with temporal smoothing such as that described in Miran et al.24, will be necessary for use 
with a practical, low-latency AAD system. Linear reconstruction kernels ranging from 250 ms13,17 to 500 ms19,20 
have been reported, although no length has been shown to be optimal. We chose a 250 ms kernel based on early 
pilot data that did not indicate a significant improvement with an increase to 500 ms. Table 2 contains mean 
decoding accuracies for different correlation windows and kernel lengths to facilitate comparison to other AAD 
studies. Some improvement is seen with an increase in the correlation window length, but as with our pilot data, 
the kernel length had a negligible effect on performance.

There are still several considerations in translating the decoding performance we are achieving to clinical 
utility. First, consistent with many other studies in the literature (Dau et al.39 is an exception), we focused on 
normal hearing listeners. We will need to recruit a substantial group of HI subjects to evaluate these algorithms 
for their use. Second, there is significant variance in decoding performance across individuals. In our study, par-
ticipants were randomly prompted to repeat the last sentence from the attended talker, but the recall accuracy 
was consistently high and does not explain the variation in performance. In addition to traditional hearing loss, 
other potential factors that could affect AAD performance include cochlear synaptopathy, cognitive ability (e.g., 
working memory), and fatigue. Such factors have been considered in the context of the variability of traditional 
hearing-aid performance/acceptance40 and should be explored further in the context of AAD.

In conclusion, we have compared two different auditory-attention decision architectures, one which employs 
a Pearson based similarity metric to compare the reconstructed stimulus with actual stimuli (using a linear or 
DNN-based reconstruction approach), and a second, novel version in which the similarity transform is learned 
as part of the optimization process in a convolutional neural network. Furthermore, we evaluated all three algo-
rithms with both a wet and a dry electrode EEG system using a two-talker AAD protocol. We found that the 
integrated decision-making architecture using a convolutional neural network yielded results comparable to 
state-of-the-art performance reported, and we have shown we can achieve this performance with both a wet 
and dry system where the talkers are not spatially separated. Future work includes validation on additional data-
sets to establish generalizablity, including evaluation of neural network architectures with around-the-ear21 and 
in-ear22 EEG electrodes. We also plan to employ transfer learning of network knowledge across subjects, and 
consider end-to-end neural network based architectures that combine both speaker separation and attention 
decoding, simply outputting the attended audio stream directly. This approach could be performed with single 
or multi-channel audio.

250 ms Kernel 500 ms Kernel

10 s Corr 30 s Corr 10 s Corr 30 s Corr

Wet EEG: 64 channels 66% (9%) 70% (12%) 63% (8%) 69% (13%)

Dry EEG: 18 channels 59% (7%) 63% (17%) 58% (7%) 62% (13%)

Table 2.  Mean decoding accuracy for the linear architecture with variations in the correlation window (10 s, 
30 s) and the kernel size (250 ms, 500 ms). Standard deviations are shown in parentheses.
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We plan to release both EEG datasets with baseline algorithms and benchmark performance metrics. We look 
forward to other research groups contributing their own analyses of this data in order to increase both the accu-
racy of decoding and shorten the latency of decoding. Improvements in both areas are needed for AAD to fulfill 
its promise as part of a complete, hearing-assistive system.

Data Availability
The software is available from the corresponding author, and the dataset is available for collaborating institutions.
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