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The mechanistic understanding of why neuronal population activity hovers on criticality
remains unresolved despite the availability of experimental results. Without a coherent
mathematical framework, the presence of power-law scaling is not straightforward
to reconcile with findings implying epileptiform activity. Although multiple pictures
have been proposed to relate the power-law scaling of avalanche statistics to phase
transitions, the existence of a phase boundary in parameter space is until now an
assumption. Herein, a framework based on differential inclusions, which departs from
approaches constructed from differential equations, is shown to offer an adequate
consolidation of evidences apparently connected to criticality and those linked to
hyperexcitability. Through this framework, the phase boundary is elucidated in a
parameter space spanned by variables representing levels of excitation and inhibition in
a neuronal network. The interpretation of neuronal populations based on this approach
offers insights on the role of pharmacological and endocrinal signaling in the homeostatic
regulation of neuronal population activity.

Keywords: neuronal avalanches, differential inclusion, excitation-inhibition balance, epileptiform activity,
homeostatic regulation

INTRODUCTION

The debate on whether and how the brain operates at a critical state is far from settled (Muñoz,
2018; Wilting and Preisemann, 2019; Plenz et al., 2021). What is common among experimental
observations of cortical network activity referred as neuronal avalanches is that the size of such
events (measured in several ways) can span across extended length and time scales. Generating
mechanisms have been proposed, and the scientific consensus is undecided. However, glaring and
recurring facets of experimental evidence must be governed by a simple corroborating explanation.

Most of the mathematical approaches used to describe neuronal population dynamics are based
on differential equations and thresholds. The differential equation offers a convenient method of
analysis because of the rich mathematical tradition it holds. Through uniqueness and existence
theorems, differential equations can produce reliable expressions that can be used to predict
natural phenomena, such as neuronal population activity. However, this reliable method does
not necessarily provide a complete and sufficient picture of the phenomena. For instance, the
Gillespie stochastic simulation algorithm and chaos theory must add “roughness” to the otherwise
smooth analytic results from differential equations to assimilate information from real-world data.
Yet, another generalization of differential equations is the differential inclusion (Gast, 2020). The
differential inclusion admits the possibility of multiple solutions that pass through a single initial
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value. This set-valued property of the differential inclusions
is a reasonable starting point to convert the inherent
discontinuities of individual neuron properties to the scale
of neuronal populations.

The salient properties of neuronal avalanches observed in
laboratory experiments offer the clues necessary to complete
the picture. Although the power-law scaling of avalanche
size and duration statistics received the broadest attention,
there are additional results that deserve more notice. One
of these results is the emergence of a bimodal distribution
of avalanche sizes when the neuronal network is disinhibited
in a certain way. This property can be transitory, such as
those produced by pharmacological methods, after which the
power-law scaling recovers (Plenz et al., 2021). However, this
transient property could already hint at the elements that a
more adequate mathematical picture of neuronal population
activity must possess.

This paper offers a framework with which to make sense of the
variety of properties observed in the neuronal avalanche statistics.
A parameter space spanned by variables representing the levels
of excitation and inhibition is mapped to elucidate the boundary
between a quiescent and active state of the neuronal network.
Through this framework, new insights are offered to explain the
characteristics of neuronal population activity, such as in relation
to the emergence of epileptiform episodes.

DIFFERENTIAL INCLUSION MODEL

Neuronal population models are inherently discontinuous with
respect to the dependent variable, assuming threshold activation.
Although threshold activity is evident in single neurons, it is less
clear how threshold activity translates to the level of population
or networks. Various proposals to address this gap between
microscopic timescale of spikes and macroscopic timescale of
collective network behavior (Tkačik et al., 2015) include notions
of synchronized firing and synfire chains (Plenz et al., 2021).
Scaling assumptions may be taken to mean that discontinuous
neurons also imply discontinuous neuronal populations. Thus,
a discontinuous population model, specifically a differential
inclusion model (DIM) with a discontinuous right-hand side, is
suitable for describing the neuronal network dynamics. It is a
straightforward way of translating cell-level discontinuity to the
scale of a network.

The common mathematical models that have been used to
describe the dynamics of neuronal activity are constructed from
systems of differential equations. For instance, the celebrated
mathematical models of FitzHugh and Nagumo, Hodgkin and
Huxley, and others, such as the Wilson-Cowan equations (di
Santo et al., 2018) are expressed as differential equations. The
drawback with differential equations is that they presume the
uniqueness of the solution to any initial-value problem, which
requires that the equations must satisfy at least Lipschitz-
continuity conditions. On the other hand, DIMs admit any
feasible (under certain closure assumptions) solutions through
every initial point (Benaïm et al., 2005). Gast (2020) showed
that DIM solutions can be found numerically using stochastic

simulations in such a way that stochastic trajectories converge to
the set of solutions admitted by the DIM.

The interplay between inhibition and excitation is assumed
to be behind the network activity patterns, but the explicit
roles each take in this process is unclear. For instance, in
some models, disinhibiting the neuron does not necessarily
lead to a disinhibited network, i.e., displaying the bimodal
activity observed in multi-electrode array experiments. This
gap must be seriously considered. One of the commonly held
assumptions is that neurons tend to contribute to the excitation
of other neurons to which it makes direct electrophysiological
connections, or be excited by the sum of inputs supplied by
those incoming direct connections. However, it is well established
in the neurophysiology literature that other non-neuronal cells,
such as glial cells, also influence network activity (Zierenberg
et al., 2018). Also, neurons have high membrane resistance that
causes nerve connections to dissipate energy like memristors,
as revealed by measurements based on impedance spectroscopy
(Bou and Bisquert, 2021). This dissipation implies that nerve
membranes do not achieve superconductivity for any amount of
electric charge, which is consistent with the dissipative equivalent
circuits deduced to represent neuronal electrical behavior.

Villegas et al. (2019) recognized the contact process as
a suitable approach for the population-wide propagation of
active potentials from neuron to neuron across the network.
Unlike models of self-organized criticality (SOC), the assumption
of infinite time-scale separation between external driving and
dissipation is not necessary. Contact-process models are also seen
as straightforward representation of spreading dynamics, as in
the context of epidemics (Muñoz, 2018; Korchinski et al., 2021).
Within the context of a contact process, it is easier to interpret the
existence of two or more types of otherwise identical units, such
as neurons, which can differ from one another at any given point
in time by virtue of their membrane potentials that are either
above or below a threshold.

Following Juanico (2014, 2015), the rate of excitation of a
neuron depends on whether it is excited or quiescent. The
probability per unit time that presently spiking neurons activate
an excited (quiescent) neuron is µ (1-µ) as illustrated in
Figure 1A. Thus, µ or, more precisely, 2µ–1 is the excitation
parameter with values between 0 and 1. This parameter can
take a similar meaning as the inverse of information entropy
because at the value of 0 this entropy is maximum as the
excited and quiescent neurons are no longer distinguishable.
On the other hand, at a value of 1, the excitation parameter
corresponds to a situation of minimum entropy. With this
interpretation, 2µ–1 therefore becomes a structural parameter
that allows us to explore how this assumption of connectivity
influences the characteristics of population activity, addressing
the gap of scaling the representation from individual neurons to
neuronal networks.

Inhibition can be described on the local (i.e., connection-
based) and global (e.g., pharmacological or endocrine/hormonal
signaling) levels. Locally, an appropriate contact-process
representation will be density-dependent, i.e., higher number
of spiking neurons triggers stronger local inhibitory influences
(Savin and Tkačik, 2017). Local inhibition influences the
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FIGURE 1 | Avalanches in the neuronal population/network. (A) The excitation by a spiking neuron with a probability µ for an excited neuron, and 1-µ for a
quiescent neuron, where µ∈[1/2,1]. The excitation parameter 2µ–1 is inversely related to the information entropy of this excitation process. At maximum entropy,
µ = 1/2, a neuron’s subsequent excitation is not dependent on its state. At minimum entropy, µ = 1 implying that only excited neurons can be activated by a spiking
neuron. A total of N(u) spiking neurons at time u comprises x neurons that were at the excited state and y neurons at the quiescent state immediately beforehand.
(B) The number of spiking neurons N for any given time u as a time-series signal. The peaks of this time series are recognized using Matlab’s findpeaks algorithm by
setting the prominence to 1. The avalanche duration t is the estimate width between consecutive troughs, whereas the avalanche size S is the total area under the
peak between the troughs.

alternation of periods of activity and silence, proposed as an
essential inhibitory control on neural encoding (di Santo et al.,
2018). Globally, a diversity-based approach seems reasonable,
especially at the level of populations, i.e., neuronal networks
or neural mass (Fan et al., 2019; Deschle et al., 2021). Global
inhibition such as endocrine signaling has not been explicitly
considered in previous descriptions of neuronal network activity.
For instance, in vivo networks appear “subcritical” (Preisemann
et al., 2014), i.e., avalanche sizes do not span across extended
scales, compared to in vitro (organotypic) samples (Zierenberg
et al., 2018), possibly because of a higher degree of global
inhibitory feedback exerted by the full homeostatic regulation at
work within the organism (Lignani et al., 2020).

Consider a random network of N spiking neurons in which
x had membrane potential at or near the threshold (i.e.,
“excited” neurons) and y had membrane potential below the
threshold (Figure 1A). The membrane potential need not be
the same across all neurons in the network at any given time,
as emphasized by Deschle et al.’s (2021) critique of neural
mass models. A random network structure is also a reasonable
description of connectivity, whether it is directed (Deschle et al.,
2021) or not (Liang et al., 2020). These elements of excitation,
local and global inhibition combine additively to the following
DIM:

ẋ ∈
[
µ−δx−ν8

(
x, y

)]
N

ẏ ∈
[
1−µ−δy−ν8

(
x, y

)]
N

With x + y = N the DIM can further be simplified into the
following:

Ṅ ∈
[
1−δN−2ν8

(
x, y

)]
N

which reveals the three competing mechanisms: excitation
represented by the first term; local density-dependent inhibition
in which the parameter δ is inversely proportional to system size
(i.e., δ−1 > N); and global inhibition by the third term, which
contains the inhibition parameter ν and the set-valued function
8, which can be written as,

8
(
x, y

)
=


0 0<x, y ≤ 1

x(x−1)+y(y−1)
(x+y)(x+y−1)

x, y > 1

1 0 < x
∣∣|y ≤ 1,y

∣∣ |x > 1

This piecewise definition of 8 indicates that it takes one spiking
neuron (i.e., the threshold value for N) to trigger a neuronal
avalanche, which is the essential piece of the recipe in SOC
models. At the limit of large values of x and y, this set-valued
function is equivalent to the Simpson diversity index. One
consequence of the discontinuity inherent in 8 is that a pure
population of spiking neurons comprising only the formerly
excited ones drives an inhibitory feedback twice stronger than
driving a perfectly mixed spiking population consisting of equal
proportions of formerly excited and quiescent neurons.

Using the contact process as the framework, the avalanche
dynamics can be analyzed from the solutions of the DIM. The

Frontiers in Physiology | www.frontiersin.org 3 February 2022 | Volume 13 | Article 840546

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-840546 February 4, 2022 Time: 15:29 # 4

Juanico Neuronal Population Transitions Frontier

neuronal avalanche is the event representing the spiking activity
of multiple neurons at a specific point in time. The number
of spiking neurons is denoted by N , and from this number’s
evolution in time the size and duration of the avalanche can be
estimated (Figure 1B).

Solutions of the DIM were obtained using Gillespie stochastic
simulation. Stochastic simulation also provides the randomness
needed for exploring the concept of statistical criticality (Muñoz,
2018; Wilting and Preisemann, 2019). Stochastic dynamics is
indeed known to be an essential property of neuronal network
activity, as previous studies established.

MATERIALS AND METHODS

Gillespie Stochastic Algorithm
The direct method was used to find feasible solutions to the DIM
from an initial condition of a single spiking neuron emerging
randomly from an excited or a quiescent neuron, i.e., N(0) = 1.
For every stochastic realization, the extinction was recorded
at the time T wherein N(T) = 0. The ensemble average of T
was calculated for every given combination of the excitation
and global inhibition parameters at a given system size/local
inhibition parameter, δ. The values are visualized in a contour
plot (Figure 2A) and surface plot (Figure 2B). The number of
realizations to obtain sufficient convergence can vary depending
on the variability across stochastic results. Fewer realizations were
needed if this variability is low, whereas more were considered for
high variability.

The DIM was also solved numerically using Matlab ode45,
a numerical solver based on the Runge-Kutta method with
adaptive step size for efficient computation. Although the results
from this numerical computation do not necessarily represent
the mean field, stochastic convergence can be shown for some
parameter combinations.

Extinction Time
The extinction time T is the solution to the boundary
value problem derived from the backward Fokker-Planck
representation of an autonomous process that takes the trajectory
of x to 0. If the DIM will tend to saturate to a non-zero value
of N , then the expected T will tend to infinity, corresponding
to the stable dynamics within the context of avalanche criticality
(Wilting and Preisemann, 2019). However, infinite activity is also
not physically reasonable. Sustaining electrical signal propagation
with a single pulse of input, the neuronal network’s connections
must become superconductive (Bou and Bisquert, 2021), which
is inconsistent with the physiologically supported notion of a
dissipative neuron. For this reason, an avalanche is unlikely to
have an unbounded average size, which is equivalent to stating
that avalanches are not likely to last indefinitely. Inhibition is
a necessary feature that naturally silences neuronal population
activity, preventing it from over-activating the system and
damaging the organism. It is interesting to find conditions for the
existence of finite expected values of T. Consider the equilibrium
x = x∗ and a parameter K that tends to infinity as the network size

expands. Then,

T
(
x∗
)
= 2K

∫ x∗

0

∫
∞

r

Exp
[

2K
∫ s

r
µ−z−ν8(z)
µ+z+ν8(z) dz

]
(µ−z−ν8 (s))

dsdr

The term inside the square brackets must be less than zero so that
T will be finite. Close to extinction, it is expected that the number
y of neurons that were quiescent before triggered to spike is much
lower than the number x that were already excited. Also, the ratio
y/x can be estimated as a function of the excitation parameter.
From the Taylor expansion of 8,

y
x
≈ (1−µ)2A

in which A is a constant. From this approximation, a curve
representing a constraint for 2µ–1 and ν can be expressed.
This curve appreciably fits (not shown) the shape of the
frontier (Figure 2A).

Bifurcation Locus
The DIM has a hidden transcritical bifurcation satisfied by the
locus defined by the following constraint (Juanico, 2014):

2µ−1 =
2
3

√
(1−ν)3

3ν

As ν→1, the locus degenerates to the point 2µ–1 = 0
(Figures 2A,B), which recovers the case of maximum
information entropy, µ = 1/2 (Figure 1A), corresponding
to the case wherein every neuron in the population is equally
likely to spike regardless of its present excitation state.

Avalanche Size and Duration
The Matlab subroutine named findpeaks was used to automate
the identification, measurement, and location of the peaks
in a time series signal. This algorithm iterates a nearest-
neighbor comparison. The value of the peak detected and its
horizontal width are two of the quantities that findpeaks generates
efficiently. Following Villegas et al. (2019), the avalanche size is
the area under the curve peaks, while the avalanche duration
is estimated through the width between consecutive troughs.
Unlike the approach by Villegas et al. (2019) however, the current
implementation does not require a threshold value as N , by
its very definition, is never less than zero. This method of
implementation eludes the conceptual difficulty and ambiguity
caused by thresholding when counting or measuring neuronal
avalanches (Villegas et al., 2019; Wilting and Preisemann, 2019).

RESULTS

The excitation-inhibition (“E/I”) balance (Lombardi et al., 2012;
Lignani et al., 2020; Plenz et al., 2021), in the sense of a
static equilibrium, takes shape as a non-linear frontier/boundary
between two regimes in the parameter space—the (active) up-
state and (quiescent) down-state. This categorization of network
state was previously provided by Millman et al. (2010) in a model

Frontiers in Physiology | www.frontiersin.org 4 February 2022 | Volume 13 | Article 840546

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-840546 February 4, 2022 Time: 15:29 # 5

Juanico Neuronal Population Transitions Frontier

FIGURE 2 | Avalanche size and duration statistics in parameter space. (A) The contour plot of the extinction time with respect to the excitation parameter, 2µ–1, and
global inhibition parameter, ν, for δ = 0.0005 (or δ–1 = 2,000). Superimposed on the contour plot is the bifurcation locus (black curve). (B) The three-dimensional view
of the contour also showing the same bifurcation locus (black curve). The color scale representing the extinction time T applies to the contour plot as well. The
maximum value of T has been set to 104 for faster computation, although it could have been set at a higher order of magnitude. Avalanche size (left) and duration
(right) histograms, shown in double logarithmic scale, from simulations of the model with specific parameters mapped in (A). (C) 2µ–1 = 0.40, ν = 0.70.
(D) 2µ–1 = 1.00, ν = 0.92. (E) 2µ–1 = 0.10, ν = 0.75. (F) 2µ–1 = 0.00, ν = 0.85. (G) 2µ–1 = 0.00, ν = 0.90. (H) 2µ–1 = 0.10, ν = 0.85.

that attempted to make an explicit representation of excitation
and inhibition from the equations governing neuronal membrane
circuitry. Unlike analyses based on commonly appealing notions
of criticality (Muñoz, 2018), the results here explicitly visualize
this balance in the parameter space representing excitation (2µ–
1) and inhibition (ν), shown as a “frontier” in Figure 2A.
This balance is much more pronounced in three-dimensions,
such as Figure 2B showing the T-surface falling off like a cliff
when moving from left to right and crossing this frontier. The
bifurcation locus traversing this surface illustrates the substantial
drop in value. The maximum value of the plateau is only
limited by the length of the observation period. On the other
hand, the height of the valley does not change much despite
lengthening this period.

The avalanche statistics provide the visual test of the model’s
generalization. At several points around the frontier (Figure 2A),
the statistical distribution of avalanche size and duration
vary from shapes indicating hyperexcitability (Figures 2C,D),
marginally disinhibited (Figure 2F), critical (Figures 2E,H),
and damped or “sub-critical” (Figure 2G). The epileptiform
activity associated to hyperexcitable states is characterized by
avalanche sizes that have a peak at high values although the
duration statistics exhibit robust power-law scaling. A marginally
disinhibited activity, on the other hand, displays the tail hump
and a steeper fall off to the hump, as observed in previous
laboratory studies of neuronal avalanches (Plenz et al., 2021).

The critical behavior characterized by the exponent of 1.5 for
avalanche sizes and 2.0 for duration seems to appear in the
vicinity of both the frontier and bifurcation locus. Finally,
subcritical behavior is well within the quiescent regime in the
parameter space, in which the population activity initiated by a
single spiking neuron dies out within a characteristic scale. This
scale is apparent in both the avalanche size and duration statistics
tapering off faster than the power law.

The change from supercritical through critical and subcritical
regimes happens by crossing the frontier. For the case of 2µ–
1 = 0.1, the supercritical (hyperexcited/epileptiform) behavior is
seen when ν = 0.65, which is to the left of the frontier (Figure 2A).
The size statistics display the bimodal shape with a peak at small
sizes and another near the system size, although the duration
statistics exhibits the expected power-law scaling (Figure 3A).
At the frontier (2E), on which ν = 0.75, the statistics possess the
well-known –3/2 and –2 power-laws for the avalanche size and
duration, respectively (Figure 3B). Lastly, at ν = 0.85 (Figure 2H),
which is to the right of the frontier and within the quiescent
regime of the parameter space, the avalanche statistics developed
the characteristic scaling indicating the constrained population
spiking activity (Figure 3C).

For further validation, the transitions across the frontier were
also examined through the scaling between the average avalanche
duration and avalanche size, as presented in the rightmost
column of Figure 3. In the supercritical case (Figure 3A), the
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FIGURE 3 | Avalanche statistics influenced by global inhibition. The magnitude of the global inhibition parameter ν can induce different shapes of the avalanche size,
f(S), and duration statistics, f(t), in double logarithmic scale, for 2µ–1 = 0.10. (A) Bimodal shape of with a tail hump for f(S) and a scaling of exponent –2, while f(t)
scales as –3 at low ν. The mean duration scales with size in two regimes characterized by two exponents separated by a gap. (B) The power-law of f(S) with
exponent –3/2 at critical ν with the accompanying power-law of f(t) with exponent –2. The duration scales with size with a scaling exponent of 1/2. (C) Faster tail
decline at high ν for both f(S) and f(t). The scaling between duration and size with an exponent of 1/2 occurs over a limited extent.

duration and size are scattered in two scaling regimes separated
by a gap. The first regime follows closely a scaling exponent of
1/2, whereas the other regime with exponent of 1. This scaling
behavior associated with a hyperexcited neuronal population has
been observed experimentally in folate-reared neuronal cultures
(Yaghoubi et al., 2018). The critical case (Figure 3B) exhibited
a 1/2-scaling law between duration and size, which is consistent
with more elaborate statistical arguments outlined elsewhere
(Shaukat and Thivierge, 2016). The subcritical case (Figure 3C)
retains the 1/2-scaling to a limited extent due to the short
lifetime of population activity in the regime to the right of the
frontier (Figures 2A,H).

The increase in system size by reducing δ does not affect the
power-law scaling in avalanche size (Figure 4). At 2µ–1 = 0.1
and ν = 0.75 in parameter space, the avalanche size distribution
displays the –3/2 power-law scaling (Figures 2E, 3B). By reducing
δ by an order of magnitude, the scaling law spanned a broader
extent while maintaining the –3/2 exponent. However, to observe

this extension also requires longer observation periods as large
sizes occur at much smaller probabilities.

The stochastic realizations of the DIM corresponding to
different points in parameter space (Figure 5A) do not strictly
converge to a mean-field solution obtained by numerical
integration. The stochastic convergence seems to depend on
whether or not the parameters are found near or within the
frontier. Inside the frontier, the stochastic realizations show
hyperexcited state of the network with sustained population
activity at a high level (Figure 5B). At this level of excitation
(i.e., 2µ–1 = 0.6), the neuronal network stabilizes to a maximum
level of activity. Also, inside the frontier, but on the bifurcation
locus, the activity peaks, on average, before it stabilizes to a level
lower than the peak (Figure 5C). Near the frontier, however,
the deviation of the stochastic average from the mean field
is more pronounced. The average peak activity is significantly
higher and occurs later than predicted by the numerical solution
of the DIM for this case (Figure 5D). These observations
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FIGURE 4 | System size effects on avalanche size statistics. Reducing the
parameter effectively increases the system size relating to local inhibition. The
scaling exponent (1.5) appears to be robust to the change in system size.

apparently corroborate the findings of multiple solutions above
criticality by Allegrini et al. (2010).

DISCUSSION

The mathematical structure of the DIM proposed herein must
subscribe to the assumption that the neuronal state is a quantum
state, specifically a qubit. This quantum picture is hinted by
the notion of “diversified elements” in the work of Allegrini
et al. (2010). Indeed, in the words of Koch and Hepp (2006),
a neuronal network inside a biological organism “must obey
the laws of physics, both classical and quantum.” However,
the conceptual difficulties of reconciling neurophysiological
knowledge about how neurons exchange information and the
requisite of coherence for quantum states persist because the
definition of a “neuronal quantum state” has been unclear. The
present study postulates that the excitability level (i.e., how close
the membrane potential is to the threshold) can be interpreted as
a qubit, which explains why the DIM interprets a spiking neuron
at a certain time as being previously an excited or quiescent
neuron. The excitation arising from a stimulus originating
from one neuron can be regarded as a form of quantum
measurement in the sense recently formalized by Khrennikov and
Asano (2020). Sustaining the coherence of this qubit to allow
the simultaneous existence of the two states until a quantum
measurement event takes place in a neuron may be possible
because of background activity or spontaneous neuronal noise
(Juanico and Monterola, 2007). Indeed, coherent spontaneous
fluctuations in neuronal activity have been suggested as a possible
explanation of the variability in human behavioral response
found in controlled experiments (Fox et al., 2006). Consequently,
by admitting the qubit nature of the neuronal state, its excitability
level at any given point in time, leads to the mathematical
parsimony of the DIM.

Persistent phenomena must indeed emerge from simple
explanations, and for neuronal population activity, no
phenomenon could be more persistent than those suggesting
an E/I balance operating in a neuronal system. Several attempts
have indeed been proposed to elucidate the notion of E/I

balance (Deschle et al., 2021), even recently finding its way
to applications for the clinical detection of epileptic seizure
or epileptogenesis (Fan et al., 2019; Lignani et al., 2020). This
attempt to clarify the meaning of E/I balance is even less apparent
in previously proposed representation of the phenomena, e.g.,
critical branching process, Boltzmann’s chaos (Touboul and
Destexhe, 2017), neutral theory (Martinello et al., 2017), directed
random network of integrate-and-fire neurons (Millman et al.,
2010). For instance, Millman et al. (2010) proposed to change the
ratio between the inhibitory and excitatory currents to shift the
network’s state between quiescent and active regimes. However,
even with their straightforward network-of-neurons approach,
the model by Millman et al. (2010) did not generate a state
of hyperexcitability that is associated to the observed bimodal
shapes of the avalanche statistics (Plenz et al., 2021). Lombardi
et al. (2012) and Lignani et al. (2020) previously offered an
interpretation of E/I balance within the context of homeostatic
regulation, an involuntary mechanism in the organism that
can drive the neuronal network to swing between up and
down-states. The unclear aspect of this interpretation, however,
is the definition of the quiescent-to-active boundary that the
system’s state crosses over and how this crossover can take place.
Notwithstanding, even a proposal to view criticality based on
synchronization phase transition instead of a quiescent-to-active
transition (di Santo et al., 2018) falls short of capturing the
qualitative change in the avalanche size distribution when the
network is disinhibited intentionally (e.g., organotypic cortex
cultures) or by virtue of its incomplete structural development
(e.g., dissociated cultures).

This paper sought to map the parameter space to elucidate
the quiescent-to-active boundary that is the basis of the phase
transition. Some previous work also used a parameter mapping
approach to elaborate the shortcomings of mean-field based
frameworks. For example, Deschle et al. (2021) showed that
integrate-and-fire neural mass models, which originated as far
back as Brunel’s (2000) canonical work, predict population
activity only within a small region of a parameter space. To
this end, the DIM can be interpreted as probing the parameter
space of possible models, according to Tkačik et al. (2015), who
proposed the entropy-based framework of criticality. Indeed, the
MaxEnt framework is consistent with finding an optimal solution
in the set spanned by a differential inclusion. The DIM helped
in this mapping because it admits multiple solutions that passes
through a given initial value, unlike ordinary differential equation
systems that require a unique trajectory for every given initial
value. The multiple solutions for a single initial value is akin to the
notion of chaos, which Touboul and Destexhe (2017) observed in
the synchronized irregular regime in which neuronal population
activity spreads throughout the network while triggering massive
inhibition that silences the network. This tug-of-war between
excitation and inhibition is also the statement about population
activity expressed by the DIM. Indeed, as DIM clearly embeds
the concepts of entropy and chaos, it is an approach that can be
aligned with the proposal of statistical criticality (Muñoz, 2018;
Wilting and Preisemann, 2019).

The DIM approach gives rise to a variety of avalanche
statistics, which views the power-law scaling properties as a
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FIGURE 5 | Convergence of stochastic solutions of the DIM. The Gillespie method covers admissible solutions that match the “mean-field” graph for different
excitation and global inhibition parameters. (A) The parameter map showing the indicating parameter pairs. The stochastic solution is the average of multiple
stochastic realizations (orange) and the “mean-field” solution (black dash) was estimated by numerically solving the DIM equations at the initial condition, x = 1 and
y = 1. The color scale is the same as shown in Figure 2B. The number of realizations considered varied in rough proportion to the variance between realization.
(B) Far from the frontier (2µ–1 = 0.6, ν = 0.6; number of realizations = 20) the stochastic solution converges to a high level of sustained number of spikes agreeing
with the mean field solution. (C) Also in the interior and on the bifurcation locus (2µ–1 = 0.2, ν = 0.5; number of realizations = 84), the averaged stochastic
trajectories initially ramp up and peak at a certain time before it declines and stabilizes. The peak predicted is shorter than the estimated mean field solution while the
stabilization value is higher. (D) Near the frontier (2µ–1 = 0.2, ν = 0.7; number of realizations = 105), the stochastic trajectories include sustained oscillations that
extend the extinction time of the population activity, which explains why the stochastic average of these trajectories substantially overshoot the peak predicted by the
mean-field estimates.

special case rather than a universal property. Non-universality
is at odds with proposals that the neuronal avalanche process
belongs to the same class as critical branching processes. On the
one hand, this interpretation seems to support the non-critical
mechanisms of generating persistent power-law scaling, such as
Boltzmann’s molecular chaos (Touboul and Destexhe, 2017). On
the other hand, the results from the DIM analysis suggest that a
quiescent-to-active transition exists in parameter space spanned
by excitation and inhibition variables. The visualization of this
phase boundary provides a clearer interpretation why neuronal
avalanche experiments report a variety of consistent findings
beyond the power-law scaling of size and duration statistics.

The presence of a hyperexcited state is perhaps the most
perplexing piece of evidence beyond the power-law scaling as
it appears in both organotypic and dissociated cortical cultures
due to possibly different explanations. The bimodal shapes of the
avalanche size distribution seem to corroborate with findings for
disinhibited organotypic cortex cultures and dissociated cortical
cultures (Plenz et al., 2021), or the observation of “dragon
king avalanches” (Costa et al., 2017; Kinouchi et al., 2019), or

“system size events” (Yaghoubi et al., 2018). For organotypic
cortex cultures, the pharmacological intervention (e.g., bathing
with picrotoxin) likely reduces temporarily the influence of
global inhibition, allowing the parameter ν to make a brief
lateral excursion to the left of the frontier. On the other hand,
for dissociated cultures, the global inhibition feature could be
less fully developed, maintaining the value of ν to the left of
the frontier. The bimodal statistics corresponding to marginally
disinhibited cases are not seen in models that generated the same
critical scaling with exponents –3/2 and –2 for avalanche size and
duration, respectively.

The hyperexcited states appear at low entropy levels (i.e.,
high 2µ–1) implying that structural assumptions about cortical
networks are at odds with notions of criticality based on power-
law scaling of avalanche statistics. This structural assumption
is inherent in branching processes, which assert that the
propagation of activity is only forward and never in loops.
Another structural assumption relates to the threshold-based
activity of a neuron, essential to electrophysiology-inspired
descriptions such as the integrate-and-fire model. Such models
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ascribe an assumed preference to excite neurons that are
already at or above the threshold. The results generated by
the DIM suggests that these assumptions about the neuronal
activity propagation generates supercritical, instead of critical,
neuronal networks. Experiments on neuronal cultures reared
with folate implied the same selectivity of excitation that
generate hyperexcited, system-size events (Yaghoubi et al.,
2018). In that study, the scaling between the mean avalanche
duration and sizes appear to be governed by two regimes
separated by an apparent gap and characterized by different
scaling exponents (1/2 and 1). Also the scaling part of the
size statistics and duration appear to be governed by scaling
exponents different from those predicted by branching processes
and similar mean-field approaches that rely on differential
equations. On the contrary, critical networks operate at high
entropy levels, specifically where the bifurcation locus and
frontier are intertwined (Figure 2A). At high entropy, the
activity propagates more indiscriminately, without a dominating
preference for one type.

The DIM also shows a non-trivial relationship between the
average of multiple stochastic realizations and the mean-field
solution obtained numerically. For instance, near or at the
frontier, the delay in the average peak is indicative of avalanche-
like activity, which could propagate across a wider portion of
the network due to the intermittent synchrony. For instance,
Touboul and Destexhe (2017) established the occurrence of
waves of synchronization in a network state they described as
“synchronous irregular,” which is proposed to be the outcome
of molecular chaos. In this regime, inhibition dominates over
excitation, which is consistent with the episodes of low activity
between high activity, akin to a wave or oscillation. These
waves likely resemble the properties of a system undergoing
synchronization phase transition (di Santo et al., 2018).

Finally, it would also be interesting to see how the
parsimonious DIM approach can make sense of other systems
that exhibit intermittent synchronization. For example, the

recurrent surges of epidemic cases resemble the population
dynamics arising from neuronal avalanches. Here, excitation is
analogous to infection, while the susceptibility of any individual
can be taken as a qubit. Epidemic spread is also a contact process
with analogous elements of local inhibition (e.g., local healthcare
facilities with finite capacity) and global inhibition (e.g., public
health policy and interventions). Still, other systems, which have
been mathematically described by differential equations, may
benefit from a DIM representation through simplified expression
and interpretation, yet richer dynamical outcomes.
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