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Abstract
The deficiency of micronutrients, including vitamins and min-
erals, is estimated to affect two billion people worldwide and
can have devastating immediate and long-term consequences.
Major causes range from inadequate micronutrient consump-
tion mostly owing to a lack of dietary diversity, to poor nutrient
absorption in the gastrointestinal tract as a result of clinical or
pathological conditions. Recent studies in model organisms
and humans demonstrated that intestinal microbiota plays an
important role in the de novo biosynthesis and bioavailability of
several micronutrients and might be a major determinant of
human micronutrient status. Here, we address the importance
of the gut microbiome for maintaining the balance of host vi-
tamins and minerals and explore its potential therapeutic
benefits and implications on human health.
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Introduction
Vitamins and minerals, collectively termed micro-
nutrients, are crucial for human health. These micro-
nutrients are essential core regulators of fundamental
biosynthetic cellular reactions such as immune, and
energy functions [1], as well as growth, bone health, fluid
balance, and other biological processes [2].Micronutrient
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deficiency is considered a global health issue, as it is
associated with severe health problems, particularly in
children where it leads to poor physical and mental
development and increased susceptibility to pathogen
infections, development of allergies, and inflammatory
diseases. Deficiency of micronutrients, such as that of
vitamin D, may contribute to disordered immune
response, both in children and adults, resulting in a

higher risk of autoimmune disease development [3,4].
Minerals, particularly zinc, play a critical role in B and T
cell-dependent immune activities [5]. Moreover, multi-
ple studies show shreds of evidence that micronutrient
deficiency may contribute to the progression of some
human cancers [6]. Micronutrients also modulate the
abundance and diversity of the gut microbiota resulting in
beneficial or detrimental outcomes to the host [7,8].

Humans cannot synthesize all required micronutrients,
which therefore need to be acquired exogenously from

the three major resources of (i) dietary components, (ii)
oral supplements, or (iii) synthesis by commensal gut
bacteria. As a large percentage of the population does
not meet recommended intakes of micronutrients, oral
supplementation of micronutrients and food fortifica-
tion programs have been implemented worldwide.
Despite their effectiveness and positive impacts [9], a
considerable number of studies have recently raised
serious concerns for the negative health consequences
of certain micronutrient supplements. For example, it
has been shown that iron supplementation in individuals

with an iron overload disease, such as hemochromatosis,
iron supplementation/fortification, can lead to iron
overload and liver disease, increased abundance of
inflammation-associated bacterial species, and markers
in the intestine [10], as well as higher risks of intestinal
disorders such as colorectal cancer [10,11]. Moreover,
folic acid (vitamin B9) supplementation was associated
with adverse health outcomes including zinc deficiency
caused by impaired absorption in the intestine, neuro-
logical damage owing to its role in masking the signs of
B12 (cobalamin) deficiency, and increased risk of colo-

rectal cancer [12].

Micronutrient bioavailability is the fraction of a micro-
nutrient that is available for use and storage in the body
[13e15]. Micronutrients use various, and in some cases,
specific absorption routes and mechanisms that can be
both passive and active [16,17]. For example, absorption
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2 Microbiome
of both vitamin C and vitamin B7 (biotin) is mediated
by Na þ -dependent carriers, and vitamin B9 (folate)
uses three folate-specific carriers. On the other hand,
absorption of vitamins A and D occurs by passive
diffusion in the small intestine (Figure 1). However,
detailed absorption mechanisms and involved carriers of
many micronutrients pend further research [16].

Commensal gut bacteria supply their host with essential
nutrients and are the least explored resource for
acquiring micronutrients. Gut microbiota is considered
an effective bioreactor in the human intestinal tract,
transforming various compounds into beneficial or
harmful metabolites, thus having a crucial role in their
bioavailability [18]. Although many efforts in microbiome
research have been directed toward discovering effective
means for modulating the microbiome to improve health,
the contribution of gut microbes in the biosynthesis,
uptake, absorption, and bioavailability of micronutrients

remains less well studied. With the advances of meta-
genomics technologies in microbiome research, there has
been an increasing interest in understanding the contri-
bution of different bacteria to human micronutrient
status. In this review, we primarily focus on the in vivo
Figure 1

Micronutrient interexchange between the gut microbiota and host. Differ
gastrointestinal tract, together with the presence of site-specific receptors, en
colonization of each different section by different microorganisms can impact
bioavailability of micronutrients.
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studies and clinical trials addressing the association be-
tween bacterial classes/families with the host micro-
nutrient balance, the microbiota role in biosynthesis and
bioavailability of a given micronutrient, and the potential
therapeutic benefits and implications of this interplay on
human health.

Gut microbiota and micronutrients
The micronutrientemicrobiome axis is bidirectional.
On one hand, microbes in the gut are consumers of
micronutrients for their growth and functioning. The

host nutrition and micronutrient supplementation
largely impact the gut microbiota composition and
function (Figure 1). In particular, supplementation of
vitamin A [19], vitamin C [20], vitamin B12 [21], and
vitamin D [22] contribute to changes in the composition
of the gut microbiota by promoting colonization of
several beneficial species from the Bifidobacterium,
Lactobacillus, and Roseburia genera. Assessing the effect of
mineral deficiency or supplementation on the gut
microbiota is an emerging field [23], and it has been
shown that iron [24], calcium [25], zinc [26], and

magnesium [27] supplementation modulate the gut
microbiome (reviewed in the study by Yang et al. [8]).
ences in the physicochemical properties of various sections of the
able absorption of different vitamins and minerals along the tract. The
the local environment and thereby positively or negatively influence the
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On the other hand, the gut microbiota produces signifi-
cant quantities of a wide range of vitamins, notably
vitamin K and B group vitamins, and facilitates uptake
and absorption of minerals such as iron and calcium. The
Human Microbiome Project [28] provided high-
resolution portrayal of the human gut microbiota, which
enabled a wealth of in vitro studies evaluating the bac-
terial metabolic capabilities, including micronutrient

biosynthesis, uptake, absorption, and secretion capabil-
ities of some of the representative strains. Engevik et al.
[29] assessed the folate (vitamin B9) biosynthesis capa-
bilities of 512 gastrointestinal strains from six key phyla of
the human microbiome (Actinobacteria, Bacteroidetes,
Firmicutes, Proteobacteria, Fusobacteria, and Verrucomi
crobia) and found that only 13% of the investigated
strains, all belonging to Proteobacteria, encompass the
required genes for a complete de novo folate biosynthesis.
Another 39% of the strains (mostly from Firmicutes, Acti-
nobacteria, and Verrucomicrobia) had the partial genetic

capacity to synthesize folates. This group of bacteria
required pABA, a biosynthesis pathway intermediate that
can be obtained from the diet or other intestinal mi-
crobes, to completely generate folate de novo. These
findings suggest a close cooperation amongst intestinal
microbes to provide the required folate for both the host
and the microbiome metabolic activities. Another in vitro
study by González et al. [30] addressed the mechanisms
by which probiotic bacteria increase iron absorption in
the host. Fe(III)must be reduced toFe(II) to be properly
absorbed in the gastrointestinal tract. The authors

demonstrated that Lactobacillus fermentum, one of the
main probiotics of the microbiota, exhibits a remarkably
high ferric-reducing activity. They also found that
excretion of p-hydroxyphenyllactic acid by L. fermentum
results in increasing Fe(II) bioavailability and its uptake
by enterocytes. These in vitro studies advance our un-
derstanding of the gut microbiota contributions to the
overall host micronutrient status. Nevertheless, consid-
ering the complexity of the human gut microbiota and its
metabolic interactions with the host, in vivo studies are
essential for probiotics-based nutritional counseling
aiming to improve the host micronutrient states. The in
vivo studies investigating the microbiomee
micronutrient axis are reviewed in the following sections.

Vitamins
Human gut commensals such as Bacteroides, Enterococcus,
and Bifidobacterium can synthesize vitamin K and most
water-soluble B-vitamins de novo. Magnúsdóttir et al.
[31] systematically assessed the in silico biosynthetic
capability of common human gut bacteria for the pro-
duction of eight B-vitamins and showed that 40e65% of
each of those vitamins was produced by the studied gut
microbes. To be available to the host, however, the
bacterial de novo synthesis of micronutrients must take

place upstream of their dedicated intestinal absorption
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zone. For example, because cobalamin is only absorbed
in the ileum, B12-producing colonic bacteria will un-
likely contribute to increasing the bioavailability of this
vitamin for the host, except in the case of coprophagy
seen in rodents and nonhuman primates [32]. Recent in
vivo studies and clinical trials shed light on the role of
microbiota in the host vitamin balance (Table 1). Using
C. elegans, Maynard et al. [12] found that Escherichia coli
assists the metabolism of vitamin B9 (folic acid) by
increasing its bioavailability, through uptake of the
breakdown product (PABA-glu), and via de novo syn-
thesis of tetrahydrofolate, demonstrating that bacteria
play an important role in the effective metabolism of
micronutrients. In addition, E. coli acts as an indis-
pensable conduit of vitamin B12 for the host, by scav-
enging exogenous vitamin B12 (cobalamine) through
the tonB siderophore [12]. Several members of the
Firmicutes phylum identified using 16S ribosomal RNA
sequencing of human stool samples, such as Clostridia

class, Clostridia order, and part of the Ruminococcacus,
Coprococcus,Mogibacterium, Blautia genera, were positively
associated with the vitamin D levels in serum [33]
(Table 1). Butyrate-producing bacteria were linked to an
increased vitamin D receptor protein expression in a
human cohort. This is in line with an earlier study in
mice [34], which demonstrated a relationship between
the vitamin D receptor and gut microbiota, important
for maintaining intestinal homeostasis and for the
pathophysiology of inflammatory bowel disease.

Microbiota can also be negatively associated with
vitamin bioavailability. A recent mouse study [35] sug-
gested an increased bioavailability of vitamin E after an
antibiotic treatment, likely owing to increased absorp-
tion of vitamin E, or its decreased degradation by gut
microbes after microbiota depletion. In contrast,
Subramanian et al. [36] have shown that an increase in
the circulating lipopolysaccharide, which is produced by
the microbiota, inhibits sodium-dependent transport of
ascorbic acid within the intestine, and in some cases,
could lead to vitamin C deficiency by reducing
its absorption.

Minerals
The gut microbiota affects the mineral metabolism by
(i) directly influencing mineral absorption in the
gastrointestinal (GI) tract during digestion and by (ii)
producing an array of enzymes, which are exclusive for
the colonic microbes and that help releasing minerals
from foods [37]. Such are the bacterial phytases, which
catalyze hydrolysis of the phytic acid found in many
plant tissues, releasing useable forms of minerals such as
calcium, magnesium, and phosphate [38].

In iron-deficient women, the gut microbiome is rela-

tively depleted of genus Lactobacilli compared with
rrent Opinion in Endocrine and Metabolic Research 2021, 20:100285
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Table 1

In vivo and clinical studies demonstrating association between the gut microbiota and host micronutrients.

Vitamins Studied in Commensal bacteria References

Vitamin B9 (folic acid)and
vitamin B12 (cobalamine)

C. elegans Escherichia coli C. Maynard et al. (2020) [12]

Vitamin D Humans Ruminococcacus genus
Coprococcus genus
Mogibacterium genus
Blautia genus

R.L. Thomas et al. (2020) [33]

Humans Lactobacillus reuteri M.L. Jones et al. (2013) [49]
Mice Colonic butyrate producers S. Wu et al. (2015) [34]

Vitamin E Mice Antibiotic-mediated microbiota depletion L. Ran et al. (2019) [35]
Vitamin C Mice Gram-negative bacteria overgrowth V.S. Subramanian et al. (2018) [36]

Minerals
Iron Humans Lactobacillus plantarum N. Scheers et al. (2016) [40]

Humans Lactobacilli genus R. Balamurugan et al. (2010) [39]
C. elegans Escherichia coli B. Qi et al. (2018) [42]

A K. Sewell (2018) [41]
Calcium Rats Bacteroides genus

Butyricicoccus genus
Oscillibacter genus
Dialister genus

C.M. Weaver (2015) [44]

Humans Bifidobacterium lactis
Lactobacillus acidophilus

Z. Asemi et al. (2013) [46]

Phosphate Broilers Enterococcus faecium
Eubacterium genera
Ruminococcaceae genera

W. Wang et al. (2020) [47]

4 Microbiome
controls [39]. Although it is not clear whether less
abundant Lactobacilli contribute to iron deficiency, or the
iron deficiency instead results in reduction of the
Lactobacilli genus, further studies in humans demon-
strated that Lactobacillus plantarum increases the amount
of hydrated ferric iron Fe(III) via lactic fermentation,
which leads to enhanced iron absorption [40]. Moreover,

two studies conducted in C. elegans showed that secre-
tion of the bacterially produced siderophore enter-
obactin facilitates host uptake of iron by promoting
mitochondrial iron uptake [41,42]. This finding intro-
duced an unexpected benefit from commensal bacteria
to the host by uncovering a distinct beneficial role of a
bacteria-generated molecule in promoting the host’s
iron homeostasis.

The dynamic relationship between the gut microbiota
and mineral bioavailability is well illustrated in the bone

field. Increased vitamin D intake can enhance the cal-
cium active absorption, in part mediated by vitamin D-
regulated calcium-binding proteins, calbindin D9k [43].
However, under conditions of low calcium intake,
microbiota plays an important role in calcium bioavail-
ability. Weaver et al. [44] showed that prebiotics, which
alter the gut microbiome in genera known to enhance
short-chain fatty acid production (such as Bifidobacteria,
Lactobacilli, Eubacterium, and others), correlated with
increased calcium absorption (in humans and animal
Current Opinion in Endocrine and Metabolic Research 2021, 20:100285
models) and bone density and strength (animal models)
(Table 1). Mineo et al. [45] showed an increase in the
production of short-chain fatty acids and organic acids by
dietary fiber fermenters, resulting in a decrease of the
cecal pH. This in turn led to solubilization of calcium
and increase in its passive absorption in the large in-
testine of rats. Similarly, Asemi et al. [46] found that

consumption of probiotic yogurt containing Bifidobacte-
rium lactis and Lactobacillus acidophilus in pregnant women
resulted in maintaining serum calcium levels compared
with subjects consuming conventional yogurt. Wang et
al. [47] also showed that Enterococcus faecium treatment
increases the mRNA expression of the IIb sodium-
dependent phosphate cotransporter (NaP-IIb) and en-
hances bone’s phosphate content. E. faecium supple-
mentation also induced changes in the microbiota by
promoting development of butyrate producers from the
genus Eubacterium and family Ruminococcaceae. Although
this is in line with several other studies demonstrating
the microbiota importance in preventing bone loss
[23,48], it further demonstrates that microbiota may
regulate bone via various mechanisms, including
micronutrient bioavailability.

Gut microbiota as sustainable therapeutic targets for
improving host micronutrient status
The composition of the human gut microbiome largely
contributes to the host’s micronutrient status. The
www.sciencedirect.com
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aforementioned studies demonstrate that several
micronutrient deficiencies could be positively or nega-
tively associated with gut microbiota. Therefore, an
alternative solution for increasing the micronutrient
bioavailability could be applied by correcting the
microbiome (in the case of the pathologic role of gut
microbiota) or by promoting a specific microbiome (in
the case of the positive contribution of gut microbiota),

thereby addressing the underlying cause of the problem
rather than its symptoms. Further research should
explore the actions of specific bacterial species and their
effects on improving or preventing micronu-
trient deficiency.

Similarly, a better understanding of the underlying
mechanisms by which intestinal microbiota impacts host
micronutrient uptake and absorption would enable
postbiotic approaches for tailoring the micronutrient
availability relative to the host demands. In this light, it

would be interesting to assess how endogenous bacte-
rially derived micronutrients contribute to the host
micronutrient status compared to exogenous micro-
nutrients provided by the diet and supplementations.
Such studies would help in developing physiological and
effective interventions against micronutrient deficiency.
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