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The development and implementation of vaccines have been growing

exponentially, remaining one of the major successes of healthcare over the

last century. Nowadays, active regular immunizations prevent epidemics of

many viral diseases, including tick-borne encephalitis (TBE). Along with the

generation of virus-specific antibodies, a highly effective vaccine should induce

T cell responses providing long-term immune defense. In this study, we

performed longitudinal high-throughput T cell receptor (TCR) sequencing to

characterize changes in individual T cell repertoires of 11 donors immunized

with an inactivated TBE vaccine. After two-step immunization, we found

significant clonal expansion of both CD4+ and CD8+ T cells, ranging from

302 to 1706 vaccine-associated TCRb clonotypes in different donors. We

detected several waves of T cell clonal expansion generated by distinct

groups of vaccine-responding clones. Both CD4+ and CD8+ vaccine-

responding T cell clones formed 17 motifs in TCRb sequences shared by

donors with identical HLA alleles. Our results indicate that TBE vaccination
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leads to a robust T cell response due to the production of a variety of T cell

clones with a memory phenotype, which recognize a large set of epitopes.
KEYWORDS

TCR repertoire, T cell immune response, clonal expansion, immunological memory,
TCR motif, TBE vaccination, tick-borne encephalitis
1 Introduction

Vaccination is one of the greatest achievements of healthcare,

which has contributed to a significant increase in life expectancy over

the past century (1). However, many infections still pose a threat,

and we regularly face new challenges, one of which is the recently

emerged novel coronavirus disease (COVID-19). Significant

resources have been invested to combat this infection and all

available technologies for vaccine development have been used,

including a classical approach of creating inactivated vaccines,

which have a good safety and tolerance profile, as well as mild

storage and transport requirements. For each new vaccine, including

an inactivated one, an immunogenicity test is required, in which the

level of specific antibodies is the major evaluation parameter (2).

However, complete elimination of viral pathogens is possible only

with the involvement of T cell response (3), which should be

considered in the process of developing inactivated vaccines.

Furthermore, T cells play a role in the differentiation of long-lived

plasma cells and generation of high-affinity antibodies (4) and can

recognizemany conserved regions of viral polymerases (5) and other

proteins essential for the virus life cycle but inaccessible to antibodies.

Conventional T cells with ab T cell receptors (TCRs) play an

important role in infection control, pathogen elimination, and

establishment of long-lived immunological memory. The high

diversity of the TCR repertoire is provided by V(D)J-

recombination mechanisms, which theoretically allow generation

of up to 2 × 1019 of unique abTCRs (6). The reorganization of the

TCR repertoire upon infection or vaccination reflects changes in the

abundance and phenotypic properties of responding clonotypes.

The development of high-throughput sequencing technologies has

significantly improved the quality of TCR repertoire profiling,

making it possible to detect any minor changes in T cell-

mediated immunity. Studies that used deep TCR repertoire

profiling and clonotype tracking to assess immune response to

vaccination have been first performed on live attenuated vaccines

(7–10) known to induce strong T cell response, and later, on other

vaccine types (11–15). However, the data on the effect of multi-step

vaccination on the human TCR repertoire and immunological T

cell memory are still limited.

Vaccination against tick-borne encephalitis (TBE) is an

example of a highly effective immunization schedule including
02
administration of multiple doses of the inactivated vaccine (16).

Still, regular booster vaccination is required to maintain a high

level of protection. Breakthrough TBE infections are a matter of

concern in endemic regions because of a high risk of

neurological complications and even death (17). To overcome

drawbacks of the current vaccination protocol and develop new

generation TBE vaccines, better understanding of the

mechanisms underlying T cell response to TBE vaccination is

needed. In this study, we performed deep profiling and

longitudinal tracking of the TCRb repertoire after two-step

immunization with the inactivated TBE vaccine. We observed

hundreds of vaccine-associated CD4+ and CD8+ T cell clones,

with a prevalence of CD4+ responding cells. The clonotypes had

highly diverse expansion dynamics and could be subdivided into

four groups with different roles in immune response and distinct

contributions to memory T cell generation. Despite variability in

individual immune responses, we observed several common

patterns, including clusters of vaccine-associated clonotypes

with similar TCRb amino acid sequences in different donors.
2 Materials and methods

2.1 Donors and blood sample collection

All subjects gave written informed consent in accordance

with the Declaration of Helsinki. The study was approved by the

Pirogov Russian National Research Medical University local

ethics committee. Informed consent was obtained from 11

healthy donors (7 women and 4 men, age 24–60 years

[median 27 years, Q1 = 25 – Q3 = 32]). Each donor received

two doses of the inactivated TBE vaccine (Tick-E-Vac®, 0.5 ml,

FSBSI “Chumakov FSC R&D IBP RAS”, Russia) with the interval

of 30 days according to the approved immunization protocol

(16); immunizations were performed in 2016–2018. Ten donors

had no record of previous TBE vaccinations or infections, and

one (donor #9) had a TBE vaccination course 10 years prior to

the study. Blood samples (9–72 ml) were collected at each time

point (Figure 1) in a certified diagnostics laboratory and placed

into VACUETTE® K3E K3EDTA tubes (Greiner Bio-One,

Austria). Additional portions of peripheral blood (from 2.5 to
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10 ml) were collected into the VACUETTE® CAT serum

separator clot activator tubes (Greiner Bio-One, Austria) for

serum isolation according to a standard protocol. HLA alleles for

all donors were determined using an in-house cDNA high-

throughput sequencing method.
2.2 Isolation of PBMCs and T cell subsets

Blood samples from each donor at each time point were divided

into 4 aliquots of 4.5 ml for parallel PBMCs preparation and

subsequent isolation of bulk, CD4+, CD8+ and CD45RO+ T cell

subsets. PBMCs were isolated by Ficoll-Paque (Paneco, Russia)

density gradient centrifugation according to a standard protocol.

CD4+, CD8+, and CD45RO+ T cell subsets were isolated from

PBMCs using the CD4 and CD8 Dynabeads Positive Isolation Kits

(Invitrogen, USA) and CD45RO MicroBeads (Miltenyi Biotec,

USA), respectively, according to the manufacturers’ protocols.

Obtained T cell subsets and bulk PBMCs were lysed using Trizol

reagent (Invitrogen, USA) for total RNA isolation. Additional blood

samples were collected on days 37 and 44. Corresponding PBMCs

were used for in vitro stimulation and cell sorting of activated T cell

subsets (see below for details).
2.3 In vitro T cell stimulation and
flow cytometry

PBMCs were diluted to 1 × 107 cells/mL in RPMI 1640

GlutaMAX Supplement medium (Gibco, USA) with 5%

autologous serum and stimulated with inactivated purified
Frontiers in Immunology 03
TBEV particles, Sofjin strain (18) (10 mg/mL of E protein

determined using VectoTBEV-antigen kit [Vector-Best, Russia]).

Stimulated cells were incubated in 24-well plates for 16 or 24 h at

37°C and 5−7% CO2. After 16 h, half of the stimulated cells were

subjected to the IFNg Secretion Assay (Miltenyi Biotec, USA)

according to the manufacturer’s protocol. After 24 h, the rest of

the cells were washed and stained with PE-labeled anti-CD137

antibodies (Miltenyi Biotec, USA, clone REA765). In addition,

cells were stained with eFluor450-labeled anti-CD3 antibodies

(eBioscience, USA, clone UCHT1). Then, CD3+IFNg+ and

CD3+CD137+ cells were collected by fluorescence-activated cell

sorting on Sony SH800S Cell Sorter with the Purity Mode

allowing for at least 97% of purity (see Supplementary Figure 1

for the gating strategy and Supplementary Table 1 for the number

of sorted cells) and lysed with Trizol reagent (Invitrogen, USA)

immediately followed by total RNA isolation.
2.4 ELISA

Serum samples collected on days 0, 30, 37, 44, and 75

(Figure 1) were used for detection and quantification of

TBEV-specific IgGs with VectoTBEV-IgG kit (Vector-Best,

Russia). Each sample was tested twice.
2.5 TCRb library preparation
and sequencing

The preparation of TCRb-chain cDNA libraries for bulk

PBMCs, CD4+, CD8+, and CD45RO+ T cells was performed as
A

B

FIGURE 1

Study design. (A) Timeline of vaccination and blood sample collection. At each time point two replicates of bulk PBMCs were collected (PBMCs
2x). Additional aliquots of PBMCs were divided into cell subsets, including CD4+, CD8+, and CD45RO+ (memory T cells). On days 37 and 44 a
portion of PBMCs was used for in vitro stimulation with inactivated purified TBEV particles followed by isolation of CD137+ and IFNg-producing
T cells. Blood serum was used for TBEV-specific IgG antibody level measurement. (B) Donors cohort information.
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previously described (19–21). In brief, first-strand cDNA was

synthesized from total RNA using SmartScribe revertase

(Clontech, USA) and universal primers specific for the TCRb-
chain constant segment. SMART oligonucleotides were used to

generate universal 5′-ends and to introduce unique molecular

identifiers (UMIs). Two-step PCR was used to amplify cDNA

and introduce Illumina adapters at the amplicon ends. PCR

products were purified using the Qiagen PCR purification kit

(Qiagen, Germany).

TCR cDNA libraries for IFNg-producing and CD137+ T cell

subsets were prepared as previously described (22) using

SuperScript™ III Reverse Transcriptase (Invitrogen, USA) for

cDNA synthes i s and Human mul t ip l ex TCR k i t

(MiLaboratories, USA) for cDNA amplification. PCR products

were purified using the Qiagen PCR purification kit.

cDNA libraries were sequenced on Illumina HiSeq

(2x100nt) and NovaSeq (2x150nt) platforms. The total

number of sequencing reads for each sample is shown in

Supplementary Table 1.
2.6 TCR repertoire data analysis

2.6.1 Raw data preprocessing
For TCRb libraries prepared by the 5′ RACE technology, raw

sequencing data files were preprocessed with MiNNN v10.1

(https://github.com/milaboratory/minnn), and sequencing reads

were clustered by UMI. Sequences were processed with MiXCR

v3.0.13 (23) to extract TCR CDR3 sequences, determine V, D,

and J genes, and build clonotypes. Numbers of UMIs and

clonotypes after filtering are shown in Supplementary Table 1.

2.6.2 Identification of
vaccine-associated clonotypes

Statistically significant expanded and contracted clonotypes in

TCRb repertoires of bulk PBMCs were identified with ‘edgeR’

package (24) as previously described (9). In brief, two bulk TCRb
repertoires were used as biological replicates for each time point.

Normalization by the TTM method and trended dispersion

estimation were performed according to the ‘edgeR’ User’s

Guide. To identify significant differences in expanded or

contracted clonotypes between two time points, we used an exact

test based on the qCML methods and FDR BH-adjusted p-value ≤

0.01. Clonotypes with log2 fold-change ≥ 5 between two time

points and absent in TCRb repertoires of bulk PBMCs before

vaccination (days -14 and 0) were considered as vaccine-associated.

To identify clonotypes that underwent antigen-driven

selection, TCRb repertoires of bulk PBMCs collected on days

30, 37, and 44 were analyzed using the ALICE pipeline in

combination with OLGA (25, 26). Clonotypes predicted by

ALICE with BH-adjusted p-value < 0.001 and not present in

the TCRb repertoires before vaccination were also considered

vaccine-associated.
Frontiers in Immunology 04
2.6.3 Comparison of TCRb amino acid
sequences

We calculated the Hamming distance for pairs of CDR3

amino acid sequences and marked clusters of similar clonotypes

(identical V and J segments with one or no mismatch in CDR3

amino acid sequences). Before comparison of CDR3 amino acid

sequences of different donors, we checked if any of the vaccine-

associated clonotypes with given V and J segments and at most 1

amino acid mismatch could be found in the VDJdb database (27)

by using the VDJmatch v1.3.1 (28). The search was conducted

for the records of clonotypes with similar CDR3 amino acid

sequences (one or no substitutions), identical V and J segments

and CDR3 length. We only considered TCR clonotypes for

which HLA allele restriction in VDJdb matched one of the

alleles of the donors bearing this TCR. All matched clonotypes

were excluded from further analysis.

Random subsets of clonotypes were generated by sampling

from replicates of bulk TCRb repertoires on days 30, 37, and 44.

We repeated the random sampling 100 times for each time

point. The mean number of pairs of similar clonotypes in the

random subset was compared with the number of pairs of

similar clonotypes in the vaccine-associated subset.
3 Results

3.1 Study design

Eleven healthy donors were immunized with the inactivated

TBE vaccine (Tick-E-Vac®, FSBSI “Chumakov FSC R&D IBP

RAS”) twice with a 30-day interval according to the approved

immunization protocol. Ten donors had no record of previous

TBE vaccinations or infections, whereas one (donor #9) received

a TBE vaccination course 10 years prior to the study. Blood

samples were collected before the 1st (days -14 and 0) and 2nd

(day 30) doses and on days 37, 44, and 75 (Figure 1) and used to

isolate peripheral blood mononuclear cells (PBMCs) in two

biological replicates. To detect T cell clonal expansion we

chose two time points (days 37 and 44) because T cell

response has been demonstrated 1 and 2 weeks after

immunization with another inactivated TBE vaccine in an

earlier study (29). Aliquots of blood samples from days 0, 30,

37, 44, and 75 were also used to isolate CD4+, CD8+, and

CD45RO+ (memory) T cell subpopulations. PBMCs obtained

from two post-vaccination samples (days 37 and 44) were used

for in vitro stimulation with inactivated purified TBE virus

(TBEV) particles with subsequent isolation of CD137+ and

IFNg+ T cell subsets. All obtained cells were used for TCR

cDNA library preparation and high-throughput Illumina

sequencing. TCRb repertoires were reconstructed using

computational methods with PCR/sequencing error correction.

The level of TBEV-specific IgG antibodies was measured in

serum samples collected on days 0, 30, 37, 44, and 75 (Figure 1).
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3.2 Two-step immunization with the
inactivated TBE vaccine induces strong
immune response and generation of
memory T cells

To examine T cell clonal expansion in response to

vaccination, we compared TCRb repertoires of bulk PBMCs

from different time points using an approach we previously

described for yellow fever vaccination (9). The approach is based

on the active dynamics of immune response and is designed to

determine T cell clones that were absent before vaccination and

expand after. To take into account sampling noise, we assessed

variability in biological replicates (Supplementary Figures 2A, B)

using the ‘edgeR’ package (24). We only considered clonotypes

that were expanded at least 32-fold (Supplementary Figure 2C).

As a result, we found from 302 to 1706 vaccine-associated

clonotypes, which were absent in TCRb repertoires before

vaccination (days -14 and 0) and which constituted up to 3.1%

of an individual TCRb repertoire at the peak of expansion,

indicating strong T cell response to the vaccine. The vaccinated

donors demonstrated diverse dynamics of T cell response with

the highest abundance of the responded clonotypes on day 37

(donors #1–5, 8) or day 44 (donors #6, 7, 9–11) (Figure 2A). For

two donors (#7 and #9), we also observed a small peak on day 30.

At the same time, the dynamics of TBEV-specific IgG

production was uniform for almost all donors, with a peak on

day 44 (Supplementary Figure 3).

Next, we determined CD4+ and CD8+ phenotypes for the

vaccine-associated clonotypes by matching TCRb nucleotide

sequences of bulk repertoires to those of CD4+ and CD8+ T cell

repertoires. Both CD4+ and CD8+ subsets of the responded

clonotypes had similar dynamics except for those in donors #6,

#7, and #9, in which CD8+ T cell clones demonstrated two-peak

dynamics, whereas CD4+ T cell clones had only one peak

(Supplementary Figure 4). The CD4+/CD8+ ratio of vaccine-

associated T cell clones was significantly biased towards CD4+

(both in the clone and cell proportions at the peak of T cell

response) for all donors except one (Figure 2B). Nevertheless, the

CD8+ T cell response was strong enough to be detected with our 32-

fold expansion threshold, and CD8+ T cell clones constituted up to

0.53% of all T cells at the peak of expansion. For donor #3, we

observed a comparable expansion in both subsets with a subtle

prevalence of CD8+ T cells (Supplementary Figure 4).

The main purpose of any vaccination is to generate

immunological memory for long-term protection against

subsequent infections. Therefore, to examine whether the

vaccine-associated T cell clones developed a memory

phenotype we sequenced CD45RO+ (memory) T cell subset.

The results indicated that 58–79% of all responded clonotypes

were detected at least once in the TCRb repertoires of memory T

cells. We also observed an enrichment of the memory T cell

compartment with new clonotypes after the 2nd dose
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(Figure 2C). It should be noted that a small number of the

responded clonotypes already had the memory phenotype on

day 0. Importantly, up to 70% of the responded clonotypes could

be detected in the TCRb repertoires of memory T cells 1.5

months after the 2nd dose (day 75).

To validate whether the expanded clonotypes indeed recognize

antigens from TBEV, we evaluated the TCRb repertoire of T cells

expressing CD137+ or producing IFNg after in vitro stimulation of

the same donor’s PBMCs with inactivated purified TBEV particles

on days 37 and 44 (donors #5 and #6). About 10% of the vaccine-

associated clonotypes were found among the TCRb sequences of in

vitro activated T cells (Figure 2D), indirectly confirming the

recruitment of these clones in response to vaccination. Moreover,

8 and 13 responded clonotypes (for donors #5 and #6, respectively)

were detected in two repertoires of in vitro activated T cells

(“double” in Figure 2D and Supplementary Figure 5). There were

no differences between the “activated” and other vaccine-associated

clonotypes in V and J segment usage, CDR3 length distribution, and

the presence in CD4+ or CD8+ T cell subsets. However, we observed

higher abundance of “activated” clonotypes in the TCRb repertoire

of bulk PBMCs collected on the same day as the activated T cell

subset (two-tailed Wilcoxon signed-rank test, Benjamini Hochberg

adjusted p-value < 0.0000308). The CD4+/CD8+ ratio in these

clonotypes also indicated the predominance of CD4+ T cell

clones, even for clonotypes found in the repertoire of IFNg-
producing T cells. In addition, 77.8% and 85.5% of the activated

T cell clones were detected in the TCRb repertoires of memory

T cells.

Taken together, these results suggest that the identified vaccine-

associated T cell clones were involved in the immune response to

the TBE vaccine and induced immunological memory.
3.3 Dynamics of the vaccine-associated
T cell clones shows four waves of
immune response

The general dynamics of the vaccine-associated clonotypes

includes several waves of clonal expansion with diverse

magnitudes. According to the timing of expansion peaks, we

divided all vaccine-associated clonotypes into four groups: d30,

d30_44, d37, and d44 (Figure 3A). Among them, groups “d37”

and “d44” with peaks on days 37 and 44 (i.e., 1 and 2 weeks after

the 2nd immunization, respectively) were the most abundant.

In the memory T cell subset on day 30, we detected 40.7 ±

12% and 26.6 ± 15.3% clonotypes of groups “d37” and “d44”,

respectively, which makes them the most plausible candidates

for reactivated after the 2nd immunization T cell clones. Group

“d37” had higher abundance in the memory T cell subsets on day

30 in comparison with group “d44” (Figure 3B, paired two-tailed

Wilcoxon signed-rank test, p = 0.003906), which could result in

a higher proliferating rate after revaccination. We found no
frontiersin.org
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statistically significant differences in the CD4+/CD8+ T cell clone

ratio between groups “d37” and “d44” for all donors except #8,

for whom the proportion of CD4+ T cell clones was significantly

lower in group “d44” (G-test, p = 0.0017).

An interesting case was group “d30_44”, which peaked

on day 30, contracted one week after (day 37), and expanded

once again on day 44. For most donors, it was a minor group

of clonotypes (Figure 3A); however, for donors #7 and #9, it

significantly contributed to the general dynamics of vaccine-

associated clonotypes, resulting in “two-peak” expansion

with predominance on day 44 (Figure 2A). In contrast,
Frontiers in Immunology 06
clonotypes of group “d30” peaked before the 2nd dose and

contracted thereafter despite the 2nd immunization and

presence of 70% of its clonotypes in the memory Т cell

subset on day 30.

To determine the contribution of the described groups to

immunological memory generation, we analyzed clonotype

abundance of each group in memory T cell subsets on day 30

(1 month after the 1st dose) and day 75 (1.5 months after the

2nd dose). Despite the extension of the memory compartment

with new clonotypes after the 2nd dose (Figure 2C), the total

fraction of vaccine-associated clonotypes in the memory T cell
A

B

D

C

FIGURE 2

Characteristics of T cell immune response to two-step immunization with the inactivated TBE vaccine. (A) Dynamics of responded clonotype
fractions in the bulk TCRb repertoire calculated as the sum of clonotype frequencies (average of two replicates at each time point). (B)
Percentage of CD4+ and CD8+ T cells from the fraction of responded T cells at the peak of expansion. The bar width corresponds to the CD4+

or CD8+ T cell clones. (C) Cumulative percentage of responded clonotypes found in TCRb repertoires of memory (CD45RO+) T cell subsets
among the responded clonotypes. (D) Vaccine-associated clonotypes found in TCRb repertoires of CD137+ and IFNg-producing T cells obtained
after in vitro stimulation with inactivated purified TBEV particles on days 37 and 44 for donors #5 and #6. The numbers of detected clonotypes
are indicated. For more details about the detection of “double” clonotypes in the activated T cell subsets see Supplementary Figure 5.
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subset decreased from day 30 to day 75, but still accounted for

0.41% (median, Q1 = 0.29 – Q3 = 0.75) of memory T cells on

day 75 (Figure 3B). The proportion of the clonal groups in this

fraction differed between days 30 and 75, and groups “d37” and

“d44” became predominant after restimulation in all donors

(except for donor #7 with group “d30_44” prevalence). Thus, it

can be assumed that the clonotypes from groups “d37” and

“d44” could make the greatest contribution to the

establishment of long-term immunity.
Frontiers in Immunology 07
3.4 Clonotypes with similar TCRb amino
acid sequences have different dynamics

Antigen exposure drives activation and proliferation of

clonotypes with identical or similar antigen specificity, which

is determined by TCR amino acid sequence (30, 31). In this

study, we assessed the similarity of TCRb by pairwise

comparison of CDR3 amino acid sequences in the responded

clonotypes with the same V and J segments and CDR3 length.
A

B

FIGURE 3

Groups of vaccine-associated clonotypes with different dynamics. (A) Dynamics of the responded clonotype fractions in the bulk TCRb
repertoire (Figure 2A) formed by clonotypes of groups “d30”, “d37”, “d44”, and “d30_44”. (B) Fractions of clonotype groups in memory T cells on
days 30 and 75. Donors #10 and #11 were excluded from analysis because of incomplete sample collection.
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We detected up to 142 clonotypes (median 27, Q1 = 23.5 – Q3 =

38) with one or no amino acid mismatches (the Hamming

distance ≤ 1) within the responded clonotypes of the same

donor. The vaccine-associated clonotypes formed significantly

more pairs with similar TCRs than a random subset of

clonotypes with the same VJ-combinations and CDR3 length

(Figure 4A), suggesting convergent selection of the

responded clonotypes.

To extend pools of vaccine-associated clonotypes, we used

the ALICE software that detects clonotypes with a higher

number of similar TCR amino acid sequences than is expected

by the VDJ-recombination model (i.e., in absence of convergent

selection) (25). The ALICE was applied to the repertoires of bulk

PBMCs, collected on days 30, 37 and 44. Implementation of this

approach allowed us to identify about 152 (median, Q1 = 92 –

Q3 = 231) additional vaccine-associated clonotypes for each

donor. We grouped all responded clonotypes with identical V

and J segments and CDR3 length and similar (one or no

mismatches) CDR3 sequences within each donor into about

35 clusters (median, Q1 = 28.5 – Q3 = 39.5) (Supplementary

Figure 6), many of which contained both highly expanded

(detected with the ‘edgeR’ package) and slightly expanded

(detected with ALICE) clonotypes. Then, we examined the
Frontiers in Immunology 08
expansion dynamics for clusters consisting of ≥ 4 clonotypes.

Only 22% (median, Q1 = 13 – Q3 = 35) of clusters included

clonotypes with identical dynamics (Figures 4C, D), indicating

that the vaccine-associated clonotypes with the same or very

similar TCRb sequences could have distinct functions during

immune response.
3.5 Responded clonotypes from donors
with shared HLA alleles have similar
TCRb amino acid sequences

Donors with shared HLA alleles (Supplementary Figure 7,

Supplementary Table 2) were immunized with the same vaccine,

suggesting that they should have identical or very similar

peptide-MHC complexes and, consequently, similar TCRs of T

cell clones involved in immune response. To filter out shared

clonotypes specific to other widespread pathogens, we screened

the vaccine-associated clonotypes against the VDJdb database

(27) . Al l matched clonotypes were excluded from

further analysis.

We next compared TCRb amino acid sequences of the

vaccine-associated clonotypes from different donors and
A B

DC

FIGURE 4

Vaccine-associated clonotypes with similar TCRb amino acid sequences. (A, B) Pairs of similar TCRb amino acid sequences (identical V and J
segments and CDR3 length, with one or no mismatches in CDR3 amino acid sequences) for the responded and random clonotypes within a
donor (A) and between two donors (B) normalized by the number of possible pairs in each subset. Paired two-tailed Wilcoxon signed-rank test
was used (***p < 0.001, ****p < 0.0001). (C) Group distribution in the clusters of responded clonotypes with similar TCRb amino acid sequences
(example for donor #1). Only 2 of 12 clusters consist of clonotypes of the same group. (D) Sequence similarity network for the responded
clonotypes of donor #1. Each vertex corresponds to a unique TCRb clonotype, and edges connect clonotypes with one or no mismatches in
CDR3 amino acid sequences and identical V and J segments. Only clusters with 4 or more clonotypes are shown. The color scheme is the
same as in (C).
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revealed 17 clusters consisting of 6 or more clonotypes, which

were similar to at least 2 clonotypes from other donors (identical

V and J segments and CDR3 length, one mismatch in the CDR3

amino acid sequence allowed) (Figure 5, Supplementary

Table 3). Among the 17 clusters, 9 included vaccine-associated

clonotypes from the repertoires of more than 2 donors. For each

clonotype pair, we tested whether they could have been detected

by chance because of similarity between donor TCRb repertoires

and found that randomly sampled clonotypes had significantly

less similar pairs (Figure 4B).

The clonotypes of four clusters (4, 6, 9, and 15) were detected

in TCRb repertoires of the CD8+ T cell subset, and those of the

other clusters – in the CD4+ T cell subset. Three and two

clonotypes from clusters 8 and 17, respectively, were detected

in the TCRb repertoire of CD137+ T cells from donor #6 on day

44. For each cluster we identified CDR3 amino acid sequence

motif (Figure 6), suggesting response to the same pMHC

complex in donors with shared HLA alleles.
4 Discussion

Using high-throughput sequencing of the TCRb repertoire,

we revealed robust T cell clonal expansion in response to the

licensed inactivated TBE vaccine (Tick-E-Vac®, FSBSI

“Chumakov FSC R&D IBP RAS”). We confirmed vaccine-

specificity of expanded clonotypes by in vitro stimulation with

inactivated purified TBEV particles. The general dynamics of

vaccine-associated clonotypes was more diverse than that of

TBEV-specific IgGs, and the peak of expansion was observed on

days 37 or 44 after the start of vaccination. These results indicate

that the antibody response alone does not fully reflect individual

differences in adaptive immune response to TBE vaccination and

should be considered along with T cell characteristics.

Furthermore, both time points (days 37 and 44 corresponding

to one and two weeks after the 2nd dose, respectively) should be

included in the analysis of T cell immune response to the TBE

vaccine. Although both CD4+ and CD8+ T cell subpopulations

were involved in immune response, the former clones were

predominant. CD4+ vaccine-associated T cell clonotypes were

found among IFNg-producing T cells. Described CD4+ IFNg-
producing T cells belong to Th1 cells in most cases (32). Our

results complement previous data on the functional properties of

CD4+ T cell response to the inactivated TBE vaccine (29), but do

not agree with the reported failure of this vaccine to induce a

detectable CD8+ T cell response (33–36). Since CD8+ T cells are

an essential component of protective immunity against viral

infections, there is a need for new approaches to augment CD8+

T cell response to inactivated vaccines. One of such approaches

could be the use of adjuvants that improve the efficiency of cross-

presentation in dendritic cells (37).

We detected up to 79% of the responded clonotypes in the

TCRb repertoires of memory T cell subsets positive for CD45RO.
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This marker is expressed in various subsets of memory T cells,

including TCM, TTM and TEM cells (38). We also observed

enrichment of memory T cells with new vaccine-associated

clonotypes after both the 1st and 2nd vaccine doses. About half

(46 ± 17.7%) of the responded clonotypes detected in the memory

subpopulation only after the 2nd dose were absent in the bulk

repertoires on days -14, 0 and 30, suggesting that the 2nd

immunization led to the recruitment of naive T cell clones

along with reactivation of the existing memory T cells.

Noteworthy, from 3% to 16.5% of the responded clonotypes

were found in the memory T cell subset (but not in the bulk

TCRb repertoire) on day 0, i.e., before vaccination. These

clonotypes had extremely low abundance and their proportion

in all responded clonotypes did not correlate with the sequencing

depth of the memory T cell repertoire (Supplementary Figure 8),

suggesting that these preexisting memory T cell clones were

reactivated because of TCR cross-specificity. In summary, our

results demonstrate that the responded clonotypes produced a

pool of memory T cells, which could be detected 1.5 months after

the 2nd vaccine dose (day 75), and thus could provide long-term

protection against TBEV infection.
FIGURE 5

Sequence similarity networks for the responded clonotypes from
different donors. Each vertex corresponds to a unique TCRb
clonotype. Edges connect clonotypes with one or no
mismatches in CDR3 amino acid sequences and identical V and
J segments; only edges between clonotypes of different donors
are shown. Color of the area around clusters indicates CD4+

(red) or CD8+ (blue) phenotypes of T cell clones in the cluster.
Only clonotypes with similarity to at least 2 clonotypes of other
donors and clusters with 6 or more clonotypes are displayed.
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The general dynamics of the TBE vaccine-associated clonotypes

included several waves of clonal expansion. Using detailed clonal

tracking, we identified four groups of the responded clonotypes

with different expansion peaks, the most representative of which

were those that peaked on days 37 or 44. In addition, these groups

were abundant in the TCRb repertoire of the memory T cell subset

collected on day 30, i.e., before the 2nd dose. We suggest that

clonotypes with peaks on days 37 and 44 were restimulated but had

different proliferation rates, which could be due to several factors.

Thus, the size of a T cell clone at the moment of stimulation, TCR

affinity (39), cytokine background (40), and the functional state of T

cells (41, 42) can all affect T cell clonal expansion. At the same time,

some T cell clones from groups “d37” and “d44” could be recruited

only after the 2nd vaccine administration.

Similar reasons for the “delayed” immune response may

apply to the group with two peaks (days 30 and 44). The

abundance on day 30 was measured at the contraction phase

of immune response to the 1st vaccine dose, whereas that on day

44 was a result of expansion after the 2nd dose. However, instead

of significant augmentation on day 44 (two weeks after

restimulation) we observed comparable peaks for most

clonotypes on days 30 and 44 (Supplementary Figure 9),

which can indicate low proliferation capacity of the clonotypes.
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In contrast to the groups described above, group “d30” did

not show significant clonal expansion after the 2nd vaccine dose.

One possible explanation of the weak response is an exhausted-

like memory T cell phenotype of the clonotypes. Galletti et al.

(43) have shown that exhausted-like memory T cell progenitors

(TPEX) have lower proliferation rates and generate progeny with

reduced functionality than progenitors of classic memory T cells.

Authors identified TPEX as CCR7+PD-1+TIGIT+(GZMK+) T

cells, but also demonstrated that they can express CD45RO.

Exhausted T cells reported in different types of infections could

be generated after stimulation with a high antigen dose (44),

which is the case for inactivated vaccines.

Convergent selection of antigen-specific clonotypes

accompanies each T cell response; therefore, we expected to

observe expansion of T cells with similar TCR sequences. Many

clusters of similar vaccine-associated clonotypes were found in

each donor, indicating recognition of diverse vaccine epitopes

and generation of full-scale T cell-mediated defense. Several

dominant clonotypes with high abundance at the expansion

peak could be distinguished in many clusters, suggesting a

higher affinity of their TCRs for the respective epitopes than

that of the other clonotypes in the cluster. The differences in

TCR affinity could lead to variations in clonotype dynamics

within the same cluster.

Donors with shared HLA alleles responded to TBE vaccination

with similar clonotypes, which formed 17 clusters. The majority of

clonotypes were identified as CD4+, which can be due to preferential

activation of CD4+ T cells in response to the inactivated TBE vaccine

and to a greater diversity of CD4+ T cell clones, which provides a

higher probability of TCRb sequence matching. Earlier, Schwaiger

et al. (45) have identified TBEV peptides representing the most

promising candidate immunodominant epitopes for the activation

of CD4+ T cells. Since donors in their and our study have matching

HLA alleles, the data could be combined to engineer HLA class II

multimers of TBEV epitopes for studying the immune response to

this vaccine in detail.

At the same time, we observed several clusters of vaccine-

associated CD8+ T cell clones in the TCRb repertoires of

different donors. For three clusters, we determined HLA class I

alleles common to all the donors in the respective cluster: HLA-

C*12:03 for cluster 4, HLA-C*07:02 and HLA-C*12:03 for

cluster 9, and HLA-B*08:01 for cluster 15 (Supplementary

Table 2). In previous studies, several immunodominant HLA-

A2- and HLA-B7-restricted TBEV epitopes have been detected

using T cells from TBEV-infected patients (46, 47). However, the

identified peptides are derived from non-structural TBEV

proteins, which usually are not present in inactivated TBE

vaccines and, therefore, cannot be used for the analysis of

immune response to vaccination. For this reason, HLA class I

allele variants of donors with clustered CD8+ T cell clones

should also be tested in the future, which would facilitate the

search for universal TBEV epitopes to investigate immune

response to both infection and vaccination.
FIGURE 6

CDR3 amino acids motifs of clustered clonotypes from different
donors. CDR3 amino acid sequences of the responded
clonotypes from the indicated clusters are presented as
sequence logos. Cluster numbers (as in Figure 5), phenotypes
(CD4+ or CD8+), and V-J segments of T cell clones are shown
on the top of the logos. Amino acids are colored according to
their chemical properties.
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In conclusion, we observed robust immune response to

immunization with the inactivated TBE vaccine. Longitudinal

tracking of clonal expansion enabled detection not only CD4+

but also CD8+ T cell response. The dynamics of vaccine-

associated clonotypes was highly diverse, and all clonotype

groups contributed to the generation of a memory T cell pool.

The similarity of TCRs in the responded clonotypes indicated

that the TBE vaccine presented a set of immunogenic peptides

for both CD4+ and CD8+ T cells. Our findings should contribute

to the development of more effective inactivated vaccines with a

higher immunogenic potential.
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