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ABSTRACT  Cranberry consumption has numerous health benefits, with exper-
imental reports showing its anti-inflammatory and anti-tumor properties. 
Importantly, microbiome research has demonstrated that the gastrointestinal 
bacterial community modulates host immunity, raising the question of 
whether the cranberry-derived effect may be related to its ability to modulate 
the microbiome. Only a few studies have investigated the effect of cranberry 
products on the microbiome to date. Especially because cranberries are rich in 
dietary fibers, the extent of microbiome modulation by polyphenols, particu-
larly proanthocyanidins (PACs), remains to be shown. Since previous work has 
only focused on long-term effects of cranberry extracts, in this study we in-
vestigated the effect of a water-soluble, PAC-rich cranberry juice extract (CJE) 
on the short-term dynamics of a human-derived bacterial community in a 
gnotobiotic mouse model. CJE characterization revealed a high enrichment in 
PACs (57%), the highest ever utilized in a microbiome study. In a 37-day ex-
periment with a ten-day CJE intervention and 14-day recovery phase, we pro-
filed the microbiota via 16S rRNA sequencing and applied diverse time-series 
analytics methods to identify individual bacterial responses. We show that 
daily administration of CJE induces distinct dynamic patterns in bacterial 
abundances during and after treatment, before recovering resiliently to pre-
treatment levels. Specifically, we observed an increase of Akkermansia mu-
ciniphila and Clostridium hiranonis at the expense of Bacteroides ovatus after 
the offset of the selection pressure imposed by the PAC-rich CJE. This demon-
strates that termination of an intervention with a cranberry product can in-
duce changes of a magnitude as high as the intervention itself. 
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INTRODUCTION 
Cranberry (Vaccinium macrocarpon) is a botanical product 
used worldwide for the maintenance of a healthy urinary 
tract. It is consumed in the form of fruit, juice, and other 
products as part of a diet rich in fibers and polyphenols for 
the prevention of urinary conditions and diseases of aging 
including cardiovascular diseases and cancers [1–3]. Cran-

berry proanthocyanidins (PACs) and other constituents 
interact with a wide variety of bacteria, including gut mi-
crobes that cause urinary tract infections (UTIs) and other 
health conditions, by reducing adhesion, biofilm, and co-
aggregation [4–7]. Persistent gut inflammation, as experi-
enced in inflammatory bowel disease (IBD), has been 
linked to genetic factors, lifestyle, and dietary habits, in-
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creasing the risk for colon cancer [8, 9]. Consuming foods 
high in anti-inflammatory and antioxidant compounds, 
such as polyphenols or dietary fiber, may therefore provide 
a preventative strategy to mitigate these conditions and 
reduce colon cancer risk. Using a DSS-AOM (dextran sodi-
um sulphat – azoxymethane) mouse model of colitis-
induced colon tumorigenesis, previous studies by us 
showed a significant reduction in colon tumors and tissue 
inflammation in mice fed either whole cranberry powder 
or cranberry extracts rich in either polyphenols or non-
polyphenol constituents of cranberry [10, 11]. Multiple 
compounds in cranberries including flavonoids, PACs and 
triterpenoids have also been reported to reduce tumor cell 
growth and proliferation, stimulate apoptosis, induce cell 
cycle arrest, and alter associated signaling processes in 
cells [12–15].   

A significant amount of work has recently demonstrat-
ed the role of the gastrointestinal microbiota in modulating 
host immunity [16]. Seminal studies in animal models have 
demonstrated that short-chain fatty acids, and in particular 
butyrate-producing Clostridia species from Clusters IV and 
XIVa, promote the induction of regulatory T-cells and ame-
liorate symptoms of colitis [17, 18]. Furthermore, these 
bacteria have been associated with the dampening system-
ic inflammatory response in humans and with the promo-
tion of neurological health of related anti-inflammatory 
innate immune phenotypes [19, 20]. Recent work has also 
shown that specific members of the Bacteroides, Parabac-
teroides, and Fusobacterium genera robustly induce inter-
feron-γ-producing CD8 T cells in the intestine and enhance 
therapeutic efficacy of immune checkpoint inhibitors in 
syngeneic tumor models [21]. Similarly, a recent clinical 
study demonstrated that patients lacking Akkermansia 
muciniphila did not respond to PD-1 checkpoint inhibitor 
immunotherapy [22]. Remarkably oral administration of  
A. muciniphila was capable of restoring the efficacy of PD-1 
blockade in vivo, thus demonstrating the causality of the 
phenotype and highlighting the importance of this bacte-
rium in modulating anti-cancer immunity [22].  

Due to the role that the microbiome has on immune 
modulation, significant interest is currently placed on un-
derstanding the effect of dietary interventions on this sys-
tem and how diet can be tailored to impact the microbiota 
and promote health [23–25]. Thanks to this work, it is now 
established that dietary fibers from plants can promote a 
healthy and anti-inflammatory microbiome, whereas a diet 
enriched in animal products has been shown to select for 
bacteria that have been associated with immune dysregu-
lation and pathogenesis [26].  

Interestingly, a few studies have investigated the effect 
of cranberry extracts on the microbiome and shown that 
members of the genus Akkermansia, as well as members of 
the Bifidobacteria and Clostridia order, appear to be posi-
tively affected by long-term interventions with cranberry 
derivatives [27, 28]. Additionally, Bifidobacterium longum 
subsp. infantis is also associated with the amelioration of 
symptoms in a DSS-induced gut inflammation mouse mod-
el [29]. However, because cranberry fruit averages about 
36% fiber on a dry weight basis, we do not know the extent 

of microbiome modulation that is due to the sole polyphe-
nols [30]. It is not known, how quickly the microbiome re-
sponds to a challenge with polyphenol-rich cranberry ex-
tracts, since previous studies only focused on long-term 
effects. A clearer answer to these questions will provide us 
with a greater understanding of the role of cranberry poly-
phenols in modulating gut microbiota dynamics, and how 
cranberry polyphenol-based dietary interventions could be 
used to promote gut health in the future. 

 

RESULTS 
Cranberry product composition 
A water-soluble, polyphenol-rich cranberry juice extract 
(CJE) was chosen for this study, allowing for safe admin-
istration via oral gavage to gnotobiotic mice. The major 
polyphenols in cranberries are poly-flavan-3-ol oligomers, 
or PACs composed primarily of epicatechin units with two 
types of linkages, either direct carbon-carbon bonding  
(B-type) or carbon-carbon bonding with an additional ether 
linkage between units (A-type). Cranberry fruit ranges 
widely in soluble PAC content depending on cultivar and 
other factors [31]. PACs are widely distributed in foods and 
plant sources, and most contain only B-type linkages. The 
presence of A-type linkages is characteristic of PACs found 
in cranberries and other Vaccinium fruits [32]. PACs have 
long been associated with the urinary health benefits of 
cranberry, and cranberry juice and extracts have been the 
subject of multiple clinical trials and other studies, re-
viewed in [6]. Constituents detected in utilized CJE are 
summarized in Figure 1A. The total PAC content in the uti-
lized CJE was determined to be 574 + 40 mg/g (57.4%), 
using the DMAC method with an authentic cranberry PAC 
standard. Consistent with previous studies [33], PAC oli-
gomers of up to eight degrees of polymerization and at 
least one A-type linkage were detected in the 70% ace-
tone-soluble PAC fraction of CJE by MALDI-TOF MS (Figure 
1B, C) Other polyphenols present in CJE detected by HPLC-
DAD and MALDI-TOF MS analyses include flavonols, pri-
marily quercetin glycosides [34] and anthocyanins, primari-
ly cyanidin and peonidin glycosides (Figure S1, Table S1). 
The total flavonol content and total anthocyanin content of 
CJE were 9.6 + 0.5 mg/g and 3.4 + 0.3 mg/g, respectively 
(Figure 1A).  

Quantitative 1H NMR analysis found no detectable con-
tent of triterpenoids ursolic acid and oleanolic acid, which 
are typically present in the peel of cranberry fruit and as-
sociated with the chemopreventive properties of cranberry 
[11, 12]. Whole cranberry fruit contains approximately  
10 mg/g dry weight (1%) ursolic acid, but due to its low 
water-solubility, cranberry juice and products derived from 
juice are much lower in triterpenoid content [13]. No quin-
ic, malic or citric acids were detected, suggesting that 
smaller organic acids characteristic of cranberry juice were 
removed by the commercial preparation process (Figure 
1A). 1H NMR confirmed the presence of benzoic acid by 
comparison with an authentic standard, as well as a major 
derivative of benzoic acid, the glucoside 6-O-benzoyl-D-
glucose, which was identified by comparison of aromatic 
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proton signals between 7.4 – 8.1 ppm and the anomeric 
proton signal for glucose at 5.6 ppm with those previously 
reported (Figure S2) [35] . The remaining glucoside signals 
were obscured by other signals in the 3.5 – 5.5 ppm region 
associated with multiple flavonoid glycosides. Based on 
peak fit integration of aromatic protons for benzoic acid 
and its glucoside, the CJE contained 30.9 mg 6-O-benzoyl-
D-glucose and 17.6 mg benzoic acid per g dry weight. Thus, 
CJE contains nearly 5% free and conjugated benzoic acid. 
1H NMR also contained signals between 6.3 and 6.8 ppm 
characteristic of p-coumaric acid, a major hydroxycinnamic 
acid in cranberry, however, it appears to be present in very 
low quantity in CJE.  

Multiple ions were detected in the MALDI-TOF MS 
spectrum of CJE, having masses consistent with previously 
published data for cranberry oligosaccharides (Figure S3). 
These included poly-galacturonic acid methyl esters of 
three and four galacturonic acid units (specifically [M+Na+] 
at 579 for uG3m2 m/z = 556; and [M+Na+] at 769 for uG4m3 
m/z = 746) as reported by Sun and coworkers [36] and a 
series of larger arabinoxyloglucan oligomers containing 
between five to nine hexose units and four to eight pen-
tose units. This pattern of oligomer masses is similar to 
those previously reported in cranberry-derived materials 
[37, 38],  but includes larger oligomers, with molecular 
weights between 1680 and 2532 amu (Table S2). Thus, CJE 
contains a variety of oligosaccharides. We were unable to 
quantify oligomer content in CJE due to the lack of appro-
priate reference standards. 
 
 

Gut microbiota resilience induced by CJE 
The current literature reports conflicting results on how 
cranberry-derived compounds affect the microbial gut 
community. Most of the microbiome modulatory effect has 
been attributed to high fiber contents of the fruit as well as 
their high abundance in polyphenols, however, thorough 
time-dependent in vivo analyses are missing to date, since 
all previous studies only report analyses through snapshots 
of selective timepoints [27, 39–41]. While whole cranberry 
fruit contains approximately 4% PACs on a dry weight basis 
[42, 43], other studies have utilized moderately enriched 
extracts (10%) to investigate the long-term effect of PACs 
on the microbiome [40]. We aimed to study the dynamic 
response of the gut microbiome to a CJE highly enriched in 
PACs (57%) throughout the intervention as well as after the 
treatment. In order to closely monitor the complex micro-
bial dynamics in vivo over several weeks, we chose to uti-
lize a simplified human microbiome consisting of 25 cul-
turable commensal species of human origin (Table S3) [44]. 
Six germ-free C57BL/6J mice were colonized by oral gavage 
and singly housed under gnotobiotic conditions [45]. After 
two weeks of colonization, the mice were given 200 mg/kg 
body weight (5 mg) of CJE daily for ten days, followed by a 
recovery phase of two weeks (Figure 2A).  

After first establishment of the gut microbiota at day 9 
of the experiment, we found that 15 of the 25 species con-
sistently colonized the murine intestine, as detected by 16S 
rRNA sequencing of the fecal pellets. Before treatment, the 
microbiota was dominated by Bacteroides ovatus at about 
80% mean relative abundance, a known prominent colo-
nizer of the  human gut  microflora (Figure S4). When  com- 

FIGURE 1: Cranberry juice extract composition. (A) Summary of cranberry juice extract components. UQ=Detected in unknown quantity. (B) 
MALDI-TOF MS spectrum of proanthocyanidin (PAC) fraction from cranberry juice extract, in positive ion mode. (C) Putative identification of 
the major ion masses in the PAC fraction. 
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FIGURE 2: CJE treatment modulates the intestinal microbiome in a gnotobiotic mouse model. (A) Schematic of the experimental setup. (B) 
Bray Curtis distance of the microbial compositions related to the pre-treatment time point day 9. Points and error bars represent mean and 
standard error of the mean. *: p≤0.05, ***: p≤0.001. (C-N) Longitudinal depiction of the mean relative abundance throughout the experi-
ment for the 12/15 bacteria that persistently colonized the gnotobiotic mice and were regulated in response to the CJE treatment. Lighter 
lines show individual replicates. Data for indicated statistical tests are summarized in Figure S5. 
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paring the Bray Curtis distances for each time point to the 
pre-treatment samples taken at day 9, we found a bimodal 
dynamic over the course of the experiment driven by the 
onset and offset of the CJE treatment (Figure 2B). Strikingly, 
after beginning the treatment with CJE on day 14, we saw a 
significant increase in the distance to the pre-treatment, 
indicating major changes in the microbial gut composition. 
Interestingly, the microbiome recovers towards the end of 
the treatment around day 22, before offset of the CJE in-
tervention induced another shift in distance at day 26. 
Thereafter, the microbiome gradually stabilized resiliently, 
nearly returning to the pre-treatment level at day 37. In 
order to statistically evaluate the changes throughout this 
longitudinal CJE experiment, we leveraged three tools for 
statistical analysis (DESeq2, Limma-Voom and ANCOM) to 
compare the intervals (pre, treatment, post) with one an-
other and report a significant change in relative abundance, 
when at least 2/3 tests indicated so (Figure S5) [46–48]. 
We found that CJE treatment itself affected two species of 
the Enterobacteriaceae family. In particular, Klebsiella oxy-
toca significantly increased in relative abundance, whereas 
Proteus mirabilis and the main colonizer B. ovatus de-
creased. As reflected by the distance plot in Figure 2B, a 
greater number of changes was also observed when com-
paring abundances after cessation of the treatment (after 
day 23). Specifically, B. ovatus was found to significantly 
decrease further in abundance, coinciding with an increase 
in Clostridium hiranonis and Akkermansia muciniphila (Fig-
ure 2, Figure S5), making them the most abundant bacteria 
after B. ovatus. K. oxytoca kept increasing in relative abun-
dance even after the treatment, while P. mirabilis returned 
to pre-treatment levels. Overall, our data suggest that CJE 
treatment challenged the dominance of B. ovatus and 
promoted expansion of A. muciniphila, C. hiranonis and  
K. oxytoca (Figure 2, Figure S5) in a short time frame in this 
simplified microbial community. 

The described analysis relies on predefined intervals, 
which are set a priori to reflect the treatment boundaries. 
However, closer examination of the plots in Figure 2 re-
veals that most of the observed bacterial dynamics may be 
shorter than the predefined windows. Consequently, none 
of the applied statistical tools identified E. coli, B. fragilis or 
B. vulgatus to be responding in the treatment window 
compared to pre-treatment, as their mean relative abun-
dances both spike and recover throughout the ten days of 
CJE intervention.  

In order to unbiasedly define intervals of abundance 
change in the collected time-series, we applied a change 
point detection algorithm to the data set [49, 50]. Briefly, 
this algorithm infers a position in the time series, where 
the mean of the relative abundance changes across time 
intervals. Utilizing this approach, we estimated the inter-
vals of change for each bacterium in each mouse (Figures 
S6 to Figure S17) as well as for the mean abundance of 
each bacterial species across multiple mice (Figure 3). In-
terestingly, this approach highlights variability across spe-
cies in their response to CJE in terms of number of occur-
rences and locations of change points. Investigating the 
mean change point plots in Figure 3, it becomes apparent 

that three different dynamics can be observed throughout 
the treatment. Firstly, there was an early response just 
after the onset of the CJE treatment, followed by a quick 
partial to full recovery that, in the majority of cases, was 
still happening during the CJE intervention. This dynamic 
can be observed for B. vulgatus, E. coli, B. fragilis, C. ra-
mosum and E. faecalis (Figure 3, Table 1). Secondly, we 
could observe a late response after suspension of the CJE 
treatment followed by a recovery before the end of the 
experiment. This dynamic recorded for A. muciniphila,  
C. hiranonis and L. reuteri (Figure 3, Table 1) may be fueled 
by the release of the selection pressure imposed by the CJE, 
allowing for a temporary rearrangement of the microbial 
community structure post treatment. Lastly, we could ob-
serve a set of bacteria that show an early or late response 
but never experience a recovery in relative abundance, 
including B. ovatus, K. oxytoca, P. distasonis and P. mirabi-
lis. Interestingly, even though the change point algorithm 
does not detect a recovery for B. ovatus in the experi-
mental time frame, the data for the individual mice reveal 
that a recovery event is detected for 4/6 mice before day 
35 (Table 1, Figure S8). Moreover, while the overall pattern 
looks similar across all mice, the individual responses vary 
in onset and duration, resulting in a diluted signal and 
therefore an incomplete recovery in the mean values (Fig-
ure 3A). Even though the overall resilient bacterial com-
munity structure returns to pre-treatment levels at the end 
of the experiment (Figure 2B), especially the dynamics of 
the latter bacteria without a recovery demonstrate that an 
intervention with CJE is able to induce long-term changes 
in the gut microbiome. Overall, both the treatment with 
CJE as well as terminating the treatment challenge the 
dominance of the main colonizer B. ovatus, leading to the 
short-term expansion of other colonizers, including Bac-
teroides species, Clostridia and Akkermansia. However, in 
both instances B. ovatus showed signs of recovery within 
two weeks of change. 
 
DISCUSSION 
Cranberry products are consumed around the world for 
their high nutritional values and antioxidants as well as to 
prevent UTIs. While it is well established that cranberry 
derivatives, especially polyphenols, have a modulatory 
impact on the protective gut microbiome, the mechanisms, 
by which bacteria influence inflammation-linked processes 
in gut tissues in the presence of cranberry phytochemicals 
and their various metabolites, are not established. Other 
studies of cranberry’s effect on the gut microbiota in vari-
ous mouse models have reported opposite responses of 
Akkermansia muciniphila in the gut population, in response 
to treatment with cranberry, linking these effects to the 
polyphenols [40, 51]. However, polyphenol content and 
composition in cranberry-derived preparations varies wide-
ly depending on source materials and method of prepara-
tion, but PACs are typically the major constituent by weight 
[43]. Anhê and coworkers fed C57BL/6J mice on a high-fat 
high-sucrose (HFHS) diet incorporating 200 mg per kg body 
weight of cranberry extract (10% PACs by weight) for eight 
weeks. The resulting reduction in insulin resistance and 
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intestinal inflammation was associated with a significant 
increase in A. muciniphila [40]. A related study reported 
that incorporation of a polyphenol-rich cranberry powder 
into an HFHS diet restored the functional structure of gut 
microbiota toward that of mice fed normal chow, with a 
healthier enterotype lower in Firmicutes and higher in Ak-
kermansiaceae and Coriobacterales [52]. These changes 
were not induced by the cranberry fiber alone, indicating 
the polyphenols exert specific effects. In contrast, a study 

utilizing cranberry powder in a DSS-treated mouse model 
of gut inflammation found that the A. muciniphila popula-
tion was boosted significantly by DSS treatment, an effect 
that could be partially reversed in mice fed cranberry pow-
der  for  several  weeks [51]. While  these  previous  studies  
focused on long-term microbial effects, reporting single 
time points after several weeks of treatment, the short-
term effects on the gut microbiome remained unknown. 
Therefore, we chose a ten-day intervention with a CJE rich  

FIGURE 3: Change point analysis of mean relative abundances throughout the experiment. (A-L) Longitudinal depiction of the mean rela-
tive abundance throughout the experiment for the 12/15 bacteria that persistently colonized the gnotobiotic mice and were regulated in 
response to the CJE treatment. Change points are indicated with a red vertical line, segments are indicated with a green horizontal line. 
Figures for individual replicates are in the Supplementary Figures, a summary of changes and directions can be found in Table 1. 
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in polyphenols (57% PACs) to monitor the immediate 
community dynamics through time, and after suspension 
of the treatment. Using a gnotobiotic mouse model, we did 
not observe a significant increase of A. muciniphila during 
CJE treatment, however, the bacterium was able to flourish 
at the expense of the main colonizer B. ovatus after the 
treatment, suggesting that it was affected by the PAC-rich 
CJE during the ten-day intervention.  

Cranberry polyphenols have been reported to increase 
mucin secretion by goblet cells, which helps protect the gut 
mucous layer and barrier [53]. Akkermansia are mucin-
degrading bacteria that liberate oligosaccharides from mu-
cin and produce short chain fatty acids [54], which can 
then be utilized by butyrate-producing bacteria, including 
commensal Clostridia (clusters XIVa and IV) and other Fir-
micutes [54]. Interestingly, the expansion of A. muciniphila 
coincides with the expansion of Clostridium hiranonis in 
our study (Figure 3, Figure S6A, Figure S10A), a cluster XIVa 
bacterium, whereas Clostridium ramosum (Cluster XVIII) 
was not significantly affected by the treatment. Commen-
sal Clostridia are strict gram-positive anaerobes that are 
thought to play important roles in modulating gut homeo-
stasis, maintaining colonocyte health, participation in 
crosstalk between epithelial and immune cells, and can act 
as strong inducers of colonic regulatory T cells (Tregs) [55]. 
Low abundance of these Clostridia has been linked to in-
flammatory conditions such as IBD. However, the relation-
ship between A. muciniphila and various inflammatory 
bowel diseases is not completely clear, since overabun-
dance of Akkermansia has been reported to exacerbate the 
inflammation caused by pathogenic bacteria Salmonella 
Typhimurium [56, 57]. 

We would like to point out, that this study utilized a 
baseline approach, where the pre-treatment community of 
each mouse serves as the internal for this longitudinal in-
tervention [19, 58]. While it is unlikely that the treatment 
with water alone would induce shifts in the gastrointestinal 
community, we cannot rule out a minor effect through 
increased stress levels by the daily gavage. Moreover, it is 
important to note that this and previous studies report 
relative bacterial abundances without information of actu-
al biomass in the gastrointestinal tract. Therefore, it is pos-
sible that certain bacterial species grow in absolute abun-
dance in response to the environmental change, while the 
main colonizer B. ovatus stays unaffected. Nevertheless, it 
is striking to observe that the mucin-degrading bacterium  
A. muciniphila appears to be kept in check during the CJE 
treatment, even though it has been shown that PAC-
related goblet cell density and mucus production in the 
ileum increase within a few days [53]. This suggests that  
A. muciniphila is susceptible to high concentrations of PACs, 
but may be able to expand in the community after the 
treatment, potentially by degrading the accumulated mu-
cin layer and accompanied by butyrate-producing Clostrid-
ium hiranonis. However, more detailed longitudinal studies 
on the impact of cranberry phytochemicals are needed to 
unravel the mechanisms by which bacteria influence in-
flammation-linked processes in intestinal tissues and how 
they manifest in long-term interventions. 

In summary our study shows for the first time in a nar-
rowly sampled longitudinal dataset, how a PAC-rich CJE 
induces community-wide shifts in the intestinal microbi-
ome. Moreover, we are the first to demonstrate that ter-
mination of an intervention with a cranberry product in-
duces changes of a magnitude at least as high as the inter-

TABLE 1. Results of changepoint analysis describing the dynamics for every bacterium in each mouse. 'Response' indicates a change 
from the pre-treatment level, while a 'recovery' marks a subsequent change in the opposite direction. Arrow indicates the direction of 
the response relative to the pre-treatment level. 

 Response/Recovery 

Bacterial species Strain ID 
Mouse  

I 
Mouse  

II 
Mouse  

III 
Mouse  

IV 
Mouse  

V 
Mouse  

VI 
Mean 

Akkermansia muciniphila DSM 22959 2/2 (↑) 1/1 (↑) 1/1 (↑) 1/0 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 

Bacteroides fragilis ATCC 25285 1/1 (↑) 1/1 (↓) 1/1 (↑) 1/1 (↓) 1/0 (↑) 1/1 (↑) 1/1 (↑) 

Bacteroides ovatus ATCC 8483 2/2 (↓) 1/1 (↓) 1/1 (↓) 1/0 (↓) 1/0 (↓) 2/2 (↓) 1/0 (↓) 

Bacteroides vulgatus ATCC 8482 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 

Clostridium hiranonis DSM 13275 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 

Clostridium ramosum DSM 1402 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 

Enterococcus faecalis ATCC 29200 1/1 (↑) 1/0 (↑) 1/1 (↑) 1/0 (↑) 1/0 (↑) 1/0 (↑) 1/1 (↑) 

Escherichia coli MG1655 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/0 (↓) 1/1 (↑) 

Klebsiella oxytoca ATCC 700324 1/0 (↑) 1/1 (↑) 1/0 (↑) 1/0 (↑) 1/1 (↑) 1/0 (↑) 1/0 (↑) 

Lactobacillus reuteri DSM 20016 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 1/1 (↑) 2/2 (↑) 1/1 (↑) 

Parabacteroides distasonis ATCC 8503 1/1 (↑) 1/0 (↑) 1/0 (↑) 1/0 (↑) 1/0 (↑) 1/0 (↑) 1/0 (↑) 

Proteus mirabilis ATCC 29906 1/0 (↑) 1/0 (↑) 1/0 (↑) 1/0 (↑) 2/2 (↑) 1/0 (↑) 1/0 (↑) 
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vention itself. Both intervals (treatment and post) highlight 
the strong resilience of the gut microbiome, which was 
able to recover close to pre-treatment levels within two 
weeks. While the dominance of B. ovatus is mainly chal-
lenged by other Bacteroides species, Clostridium ramosum 
and Escherichia coli after the onset of the treatment, Ak-
kermansia muciniphila and Clostridium hiranonis flourish 
after offset of the selection pressure imposed by the poly-
phenol-rich cranberry extract. 
 
MATERIALS AND METHODS 
Cranberry materials and reagents used in characterization 
A food-grade, water-soluble, sterile cranberry-juice derived 
powder in capsule form (CJE) was donated by Amy Howell of 
Rutgers University (Ellura®, Trophikos, Inc.). The powder is 
standardized by the manufacturer to contain at least 36 mg of 
PACs per 240 mg capsule. The capsules were stored at -20°C 
and in the dark until use. Commercial reagents and standards 
for analysis were purchased from the following suppliers: Deu-
terated Dimethylsulfoxide (DMSO-d6, 99.9%) and 4,4-
dimethyl-4-silapentane-1-sulfonic acid (Cambridge Isotope 
Laboratories, Andover, MA; N,N-
dimethylaminocinnamaldehyde (DMAC), ursolic acid, oleanolic 
acid (Sigma-Aldrich, St. Louis, MO); malic acid (Eastman Chem-
icals, Kingsport, TN); citric acid (J.T Baker, Phillipsburg, NJ); 
quercetin-3-O-galactoside or hyperoside (Chromadex, Irvine, 
CA); procyanidin-A2 (Indofine Inc., Hillsborough, NJ; quinic 
acid (Supelco, Bellefonte, PA); cyanidin-3-O-galactoside and 
peonidin-3-O-galactoside (Extrasynthese, Genay, France). 
 
Total proanthocyanidin determination 
The polyphenol content of the CJE was determined using es-
tablished methods. Briefly, total PAC content was determined 
using a modification [59] of the industry standard microplate 
BL-DMAC assay [60]. An isolated whole fruit cranberry PAC 
fraction prepared as described previously [33] was used as the 
standard for the DMAC method, and absorbance measure-
ments were obtained using a microplate reader (Molecular 
Devices SpectraMax M5, SoftMax Pro V5) as described in [42].  
 
PAC characterization 
PACs were isolated from the fraction for further characteriza-
tion of oligomers by MALDI-TOF MS (Matrix-Assisted Laser 
Desorption-Ionization – Time-Of-Flight Mass Spectrometry) 
using methods established previously.[33] Briefly, free sugars 
were removed from CJE by chromatography on Diaion-HP20, 
washing with distilled water, then eluting the polyphenols and 
oligomers using methanol followed by acetone. The eluate 
was subjected to further chromatography on Sephadex-LH20, 
eluting with 70:30 methanol/water to remove any residual 
sugars, phenolic acids and flavonoids, followed by elution of 
proanthocyanidins using 70:30 acetone/water, rotary evapo-
ration and lyophilization.  MALDI-TOF MS analysis was per-
formed by Dr. Stephen Eyles at the University of Massachu-
setts Amherst Mass Spectrometry Facility using a Bruker Dal-
tonics Omniflex MALDI-TOF mass spectrometer. Data acquisi-
tion was carried out in positive ion reflectron mode with 0.1 
mM CsI, 0.1% TFA and 50 mM dihydroxybenzoic acid included 
in the matrix. 
 
 

HPLC-DAD analysis 
CJE was analyzed for flavonoid composition using HPLC. Identi-
fication and quantitation of anthocyanins and flavonol glyco-
sides was performed via reversed-phase HPLC-DAD using a 
Waters HPLC binary system with 515 pumps coupled with a 
Waters 996 photodiode array detector and Waters Milleni-
um32 software, as described previously.[42]. Briefly, analyses 
employed a Waters Atlantis C18 column (100 Å, 3 μm, 3.9 mm 
x 150 mm) and gradient elution at a flow rate of 0.9 mL/min 
with mobile phases consisting of 99.5:0.5 (v/v) wa-
ter:phosphoric acid (A) and 50:48.5:1:0.5 (v/v/v/v) wa-
ter:acetonitrile:acetic acid:phosphoric acid (B) according to a 
published gradient scheme as in [61]. Flavonol glycosides were 
detected at a wavelength of 355 nm and quantified based on a 
quercetin-3-O-glycoside standard; anthocyanins were detect-
ed at 520 nm and quantified based on cyanidin-3-O-
galactoside and peonidin-3-O-galactoside standards as previ-
ously described [11].  

 
1H NMR analysis 
A qualitative profile of CJE was generated, and quantitative 
NMR to determine several non-polyphenol metabolites was 
conducted using a Bruker AVANCE III 400 MHz NMR spec-
trometer equipped with a 5 mm BBFO z-gradient probe, as 
described previously [42]. Briefly, samples were prepared 
(n=5) at 75 mg/mL in DMSO-d6 with 4,4-dimethyl-4-
silapentane-1-sulfonic acid as a reference standard. 1H NOESY 
NMR spectra were acquired and processed using TopSpinTM 
3.5 and IconNMRTM 5.0.3 as in [42]. Data analysis was per-
formed using AssureNMRTM 2.0 and AMIXTM 3.9.15. Organic 
acids and triterpenoids were determined by matching signals 
against a spectral database and quantified using peak fit inte-
gration.  
 
Animal study 
The animal study was conducted under an institutionally ap-
proved IACUC protocol. To study the dynamics of the microbi-
ota to a polyphenols-rich cranberry extract, we adopted an 
approach similar to that presented in [62]. Briefly, six male 
germ-free C57BL/6 mice at eight weeks of age were trans-
ferred into individual cages and checked for sterility by plating 
fecal pellets before the start of the experiment. In order to 
closely monitor the complex microbial dynamics in vivo over 
several weeks, we chose a defined human microbiota consist-
ing of 25 human-origin commensal species (GnotoComplex 2.0 
flora), usually found in the gastrointestinal tract. This allowed 
us to study the effect of CJE on human gut commensals in an 
in vivo gut environment, simplifying the knowledge transfer to 
a human study. On day 0 the mice were inoculated with 
GnotoComplex 2.0 flora by oral gavage [44, 45]. After 14 days, 
a time in which bacterial establishment can be assessed after 
initial challenge [62], mice were administered daily a dosage 
of 5 mg (200 mg/kg body weight) via oral gavage (0.25 mL of 
20 mg/mL solution) of CJE in sterilized H2O for ten days until 
day 23 of the experiment. The daily dosage was chosen based 
on a previously published study, in which a similar dosage 
appears to have been well-tolerated [63]. Fecal samples were 
collected every two days throughout the course of the exper-
iment, and daily around the beginning and at end of the CJE 
treatment. Fecal pellets were snapfrozen and stored at -80°C 
until DNA extraction with the DNeasy Powersoil kit by Qiagen 
(Hilden, Germany) according to the manufacturer’s protocol. 
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The variable regions V3 and V4 of the bacterial 16S rRNA gene 
were amplified according previously described methods using 
the universal 341F and 806R primers, and sequenced with 
300nt paired-end sequences on the Illumina MiSeq platform 
[64]. 
 
Bioinformatics and computational analyses 
Forward and reverse 16S MiSeq-generated amplicon sequenc-
ing reads were dereplicated and sequences were inferred 
using dada2 [65]. Potentially chimeric sequences were re-
moved using consensus-based methods. Resulting amplicon 
sequencing variants (ASVs) were mapped to the 16S rRNA 
gene sequence of the Gnotocomplex 2.0 strains and samples 
with less than 4000 reads were dropped from the analysis. 
Sequence files were imported into R and merged with a 
metadata file into a single Phyloseq object. Due to the repeat-
ed-sampling nature of the longitudinal dataset (e.g., paired), 
we applied three commonly used differential abundance test-
ing methods (DESeq2, Limma-Voom and ANCOM) to deter-
mine the effect of CJE on each bacterial species abundance 
(Figure S5) [46–48]. DESeq2 and Limma-Voom are popular 
differential abundance testing methods originally developed 
for RNA-Seq data. DESeq2 models the observed counts of taxa 
using negative binomial distribution and estimates taxon-wise 
dispersion parametrically. Limma-Voom on the other hand 
uses log counts normalized by sequencing depth and esti-
mates mean-variance relation non-parametrically at the indi-
vidual observation level. It can also model sample correlations 
for repeated measures data. ANCOM doesn't assume any un-
derlying distribution but uses the compositional structure of 
microbiome data and utilizes additive log ratios (ALR) in a 
linear model framework to account for multiple covariates 
both in cross-sectional and longitudinal settings. Significance 
thresholds for DESeq2 and Limma-Voom are p≤0.05 and for 
ANCOM W>W(0.6). Additionally, we analyzed the abundance 
data using the change point detections algorithm to detect 
abrupt shifts in relative abundance of species across different 
time points (http://sia.webpopix.org/changePoints.html) [49, 
50]. Detection of change point is based on the changes in 
means of relative abundance across time intervals. For a given 
number of segments (K), K-1 change points are detected using 
dynamic programming algorithm, which minimizes the cost of 
segmentation along with reduced time complexity. To obtain 
an optimal number of segments (2≤K≤Kmax), an elbow curve is 

generated using cost of segmentation with respect to the 
number of segments. A knee point (Kopt) with maximum curva-
ture is estimated using the maximum of second derivative 
which is approximated using central difference (Figures S6B to 
Figure S17B). 
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